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Abstract
The optimization of multilayer neural networks
typically leads to a solution with zero training er-
ror, yet the landscape can exhibit spurious local
minima and the minima can be disconnected. In
this paper, we shed light on this phenomenon: we
show that the combination of stochastic gradient
descent (SGD) and over-parameterization makes
the landscape of multilayer neural networks ap-
proximately connected and thus more favorable
to optimization. More specifically, we prove that
SGD solutions are connected via a piecewise lin-
ear path, and the increase in loss along this path
vanishes as the number of neurons grows large.
This result is a consequence of the fact that the pa-
rameters found by SGD are increasingly dropout
stable as the network becomes wider. We show
that, if we remove part of the neurons (and suit-
ably rescale the remaining ones), the change in
loss is independent of the total number of neu-
rons, and it depends only on how many neurons
are left. Our results exhibit a mild dependence
on the input dimension: they are dimension-free
for two-layer networks and require the number of
neurons to scale linearly with the dimension for
multilayer networks. We validate our theoretical
findings with numerical experiments for different
architectures and classification tasks.

1. Introduction
The recent successes of deep learning have two elements
in common: (i) a local search algorithm, e.g., stochastic
gradient descent (SGD), and (ii) an over-parameterized neu-
ral network. Even though the training problem can have
several local minima (Auer et al., 1996) and is NP-hard in
the worst case (Blum & Rivest, 1989), the optimization of
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an over-parameterized network via SGD typically leads to a
solution that has small training error and generalizes well.
This fact has led to a focus on the theoretical understanding
of neural networks’ optimization landscape (see, e.g., (Livni
et al., 2014; Dauphin et al., 2014; Safran & Shamir, 2016;
Pennington & Bahri, 2017) and the discussion in Section
2). However, most of the existing results either make strong
assumptions on the model or do not provide a satisfactory
scaling with respect to the parameters of the problem.

From the empirical viewpoint, it has been observed that, if
we connect two minima of SGD with a line segment, the
loss is large along this path (Goodfellow et al., 2015; Keskar
et al., 2017). However, if the path is chosen in a more so-
phisticated way, one can connect the minima found by SGD
via a piecewise linear path where the loss is approximately
constant (Garipov et al., 2018; Draxler et al., 2018). These
findings suggest that the minima of SGD are not isolated
points in parameter space, but rather they are approximately
connected. In the recent paper (Kuditipudi et al., 2019),
mode connectivity of multilayer ReLU networks is proved
by assuming generic properties of well-trained networks,
i.e., dropout stability and noise stability.

In this work, we consider multilayer neural networks trained
by one-pass (or online) SGD with the square loss. We show
that, as the number of neurons increases, (i) the neural
network becomes increasingly dropout stable, and (ii) the
optimization landscape becomes increasingly connected be-
tween SGD solutions. We establish quantitative bounds
on how much the loss changes after the dropout procedure
and along the path connecting two SGD solutions, and we
relate this change in loss to the total number of neurons, the
size of the dropout pattern, and the input dimension. By
doing so, we give a theoretical justification to the empirical
observation that the barriers between local minima tend to
disappear as the neural network becomes larger (Draxler
et al., 2018). More specifically, our main contributions can
be summarized as follows:

Two-layer networks. We consider the training of a two-
layer neural network ŷ(x) = 1

N a
Tσ(Wx) with N neu-

rons. First, we study the dropout stability of SGD solutions,
namely, we bound the change in loss when N −M neurons
are removed from the trained network and M remaining
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neurons are suitably rescaled: we show that the change in
loss scales at most as

√
logM/M , and therefore it does not

depend on the number of neurons N of the original network
or on the dimension d of the input. Then, we characterize
the landscape connectivity for the parameters obtained via
SGD: we show that pairs of SGD solutions are connected
via a piecewise linear path, and the loss along this path is no
larger than the loss at the extremes plus a term that scales
as
√

logN/N . Let us emphasize that the two solutions
of SGD are obtained by running the algorithm on differ-
ent samples (from the same data distribution), for different
initializations, and for the different number of iterations.

Multilayer networks. We consider the training of a general
model of deep neural network with L+ 1 ≥ 4 layers, where
each hidden layer contains N neurons. This model includes
as a special case ŷ(x) which is equal to

1

N
WL+1σL

(
· · ·
(

1

N
W 2σ1 (W 1x)

)
· · ·
)

(1.1)

Our results are similar to those for two-layer networks: (i) if
we keep at least M neurons in each layer, the change in loss
scales at most as

√
(d+ logM)/M ; (ii) pairs of SGD solu-

tions are connected via a piecewise linear path, along which
the loss does not increase more than

√
(d+ logN)/N .

In contrast with the two-layer case, these bounds are not
dimension-free. However, the dependence on the input di-
mension d is only linear, since the loss change vanishes as
soon as M,N � d. We assume that, during SGD train-
ing, the parameters of the first and last layer are kept fixed,
and they are regarded as random features (Rahimi & Recht,
2008). We believe that this assumption, as well as the re-
quirement of having at least 4 layers, can be removed with
an improved analysis.

The proofs of dropout stability build on recent results con-
cerning the mean-field description of the SGD dynamics
(Mei et al., 2019; Araújo et al., 2019), see also the discus-
sion in Section 2. The proofs of landscape connectivity use
ideas from (Kuditipudi et al., 2019).

Organization of the paper. In Section 2, we succinctly
review related work. In Section 3, we present our rigorous
results for two-layer networks: we first assume that the
activation function σ is bounded, and then we provide an
extension to unbounded activations. In Section 4, we present
our results for multilayer networks. In Section 5, we validate
our findings with numerical experiments on fully-connected
neural networks trained on MNIST and CIFAR-10 datasets.
Finally, in Section 6 we discuss additional connections to
the literature and give directions for future work. All the
proofs are deferred to the appendices in the supplementary
material, which also contain additional numerical results.

Notation. We use bold symbols for vectors a, b, and
capitalized bold symbols for matrices A,B. We denote

by ‖a‖2 the norm of a, by ‖A‖op the operator norm ofA,
by 〈a, b〉 the scalar product of a, b, and by a � b the
Hadamard (or entrywise) product of a, b. Given an inte-
ger N and a real number r ≥ 1, we set [N ] = {1, . . . , N}
and [r] = {1, . . . , brc}. Given a discrete set A, we denote
by |A| its cardinality.

2. Related Work
The landscape of several non-convex optimization problems
has been studied in recent years, including empirical risk
minimization (Mei et al., 2018a), low rank matrix problems
(Ge et al., 2017), matrix completion (Ge et al., 2016), and
semi-definite programs (Boumal et al., 2016). Motivated
by the extraordinary success of deep learning, a growing
literature is focusing on the loss surfaces of neural networks.
Under strong assumptions, in (Choromanska et al., 2015)
the loss function is related to a spin glass and it is shown
that local minima are located in a well-defined band. It
has been shown that local minima are globally optimal in
various settings: deep linear networks (Kawaguchi, 2016);
fully connected and convolutional neural networks with a
wide layer containing more neurons than training samples
(Nguyen & Hein, 2017; 2018); deep networks with more
neurons than training samples and skip connections (Nguyen
et al., 2019). Furthermore, if one of the layers is sufficiently
wide, in (Nguyen, 2019b) it is shown that sublevel sets are
connected. Similar results are proved for binary classifi-
cation in (Liang et al., 2018a;b). In (Freeman & Bruna,
2017), a two-layer neural networks with ReLU activations
is considered, and it is shown that the landscape becomes ap-
proximately connected as the number of neurons increases.
However, the energy gap scales exponentially with the input
dimension. In (Venturi et al., 2019), it is shown that there
are no spurious valleys when the number of neurons is larger
than the intrinsic dimension of the networks. However, for
many standard architectures, the intrinsic dimension of the
network is infinite.

In this paper, we take a different view and relate the prob-
lem to a recent line of work, which shows that the behavior
of neural networks trained by SGD tends to a mean field
limit, as the number of neurons grows. This phenomenon
has been first studied in two-layer neural networks in (Mei
et al., 2018b; Rotskoff & Vanden-Eijnden, 2018; Chizat &
Bach, 2018; Sirignano & Spiliopoulos, 2018). In particular,
in (Mei et al., 2018b), it is shown that the SGD dynamics
is well approximated by a Wasserstein gradient flow, given
that the number of neurons exceeds the data dimension. Im-
proved and dimension-free bounds are provided in (Mei
et al., 2019). Convergence to the global optimum is proved
for noisy SGD in (Mei et al., 2018b; Chizat & Bach, 2018),
without any explicit rate. A convergence rate which is ex-
ponential and dimension-free is proved in (Javanmard et al.,
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2019) by exploiting the displacement convexity of the limit
dynamics. An argument indicating convergence in a time
polynomial in the dimension is provided in (Wei et al., 2018),
but for a different type of continuous flow. Fluctuations
around the mean field limit are also studied in (Rotskoff &
Vanden-Eijnden, 2018; Sirignano & Spiliopoulos, 2019a).
The multilayer case is tackled in (Nguyen, 2019a; Sirig-
nano & Spiliopoulos, 2019b; Araújo et al., 2019; Nguyen
& Pham, 2020a). In (Sirignano & Spiliopoulos, 2019b), it
is considered a (less natural) model where the number of
neurons grows one layer at a time. In (Nguyen, 2019a), a
formalism is developed to describe the mean field limit, but
the results are not rigorous. Rigorous bounds between the
SGD dynamics and a limit stochastic process are established
in (Araújo et al., 2019), where it is assumed that the first and
last layer are not trained to simplify the analysis. A different
approach based on the concept of neuronal embedding is
put forward in (Nguyen & Pham, 2020a). In (Nguyen &
Pham, 2020a), it is also provided a convergence result for
three-layer networks, later generalized in the companion
note (Nguyen & Pham, 2020b).

In a nutshell, existing mean-field analyses show that the
dynamics of SGD is close to a limit stochastic process.
However, the consequences of this fact remain largely un-
explored, since the limit process is hard to analyze. In this
work, we advance the mean-field theory of neural networks,
and we provide the first theoretical guarantees on two phe-
nomena widely observed in practice: dropout stability and
mode connectivity of SGD solutions.

We remark that the mean-field regime considered in this
paper is different from the “lazy training” regime that has re-
cently received a lot of attention (Allen-Zhu et al., 2019a;b;
Chizat et al., 2019; Du et al., 2018; 2019; Jacot et al., 2018;
Li & Liang, 2018; Zou et al., 2018). In fact, in order to
prove convergence of gradient descent in the lazy regime,
it is crucially exploited that the parameters stay bounded in
a certain region. On the contrary, in the mean field regime,
the scaling of the gradient (see Eqs. (3.3) and (4.3)) ensures
that the parameters move away from the initialization. The
connection between the mean-field and the lazy regime is
investigated in Section 4 of (Mei et al., 2019) and in the
recent paper (Chen et al., 2020). We highlight that neural
networks trained in the mean-field regime achieve results
comparable to the state of the art for standard datasets, as
demonstrated in the numerical results of Section 5.

3. Dropout Stability and Connectivity for
Two-Layer Networks

3.1. Setup

We consider a two-layer neural network with N neurons:

ŷN (x,θ) = 1
N

∑N
i=1 aiσ(x,wi), (3.1)

where x ∈ Rd is a feature vector, ŷN (x,θ) ∈ R is the
output of the network, θ = (θ1, . . . ,θN ), with θi =
(ai,wi) ∈ RD+1, are the parameters of the network and
σ : Rd × RD → R is an activation function.

A typical example is σ(x,w) = σ(〈x,w〉), for a scalar
function σ : R → R. In order to incorporate a bias term
in the hidden layer, one can simply add the feature 1 to x
and adjust the shape of the parameters wi accordingly. We
are interested in minimizing the expected square loss (also
known as population risk):

LN (θ) = E
{(
y − ŷN (x,θ)

)2}
, (3.2)

where the expectation is taken over (x, y) ∼ P. To do so,
we are given data (xk, yk)k≥0

i.i.d.∼ P, and we learn the
parameters of the network via stochastic gradient descent
(SGD) with step size sk:

θk+1
i = θki − skN ·Gradi(θ

k),

Gradi(θ
k) = ∇θi

(
yk − ŷN (xk,θ

k)
)2
,

(3.3)

where θk denotes the parameters after k steps of SGD, and
the parameters are initialized independently according to the
distribution ρ0. We consider a one-pass (or online) model,
where each data point is used only once.

Given a neural network with parameters θ and a subset A
of [N ], the dropout network with parameters θS is obtained
by setting to 0 the outputs of the neurons indexed by [N ]\A
and by suitably rescaling the remaining outputs. Denote
by ŷ|A|(x,θS) and L|A|(θS) the output of the dropout net-
work and its expected square loss, respectively. In formulas,

ŷ|A|(x,θS) =
1

|A|
∑
i∈A

aiσ(x,wi),

L|A|(θS) = E
{(
y − ŷ|A|(x,θS)

)2}
.

(3.4)

Let us compare the original network (3.1) with the dropout
network (3.4): wi does not change, ai is rescaled by
|A|/|N | and in (3.4) we sum over |A| neurons (while in
(3.1) the sum is over N neurons). This is equivalent to set-
ting |N | − |A| neurons to zero and rescaling the others by a
factor, as in (Kuditipudi et al., 2019).

We now define the notions of dropout stability and connec-
tivity for network parameters.

Definition 3.1 (Dropout stability). Given A ⊆ [N ], we say
that θ is εD-dropout stable if

|LN (θ)− L|A|(θS)| ≤ εD. (3.5)

Definition 3.2 (Connectivity). We say that two parameters
θ and θ′ are εC-connected if there exists a continuous path
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in parameter space π : [0, 1]→ RD×N , such that π(0) = θ
and π(1) = θ′ with

LN (π(t)) ≤ max(LN (θ), LN (θ′)) + εC. (3.6)

3.2. Results for Bounded Activations

We make the following assumptions on the learning rate sk,
the data distribution (x, y) ∼ P, the activation function σ,
and the initialization ρ0:

(A1) sk = αξ(kα), where ξ : R≥0 → R>0 is bounded
by K1 and K1-Lipschitz.
(A2) The response variables y are bounded by K2 and the
gradient ∇wσ(x,w) is K2 sub-gaussian when x ∼ P.
(A3) The activation function σ is bounded by K3 and differ-
entiable, with gradient bounded by K3 and K3-Lipschitz.
(A4) The initialization ρ0 is supported on |a0i | ≤ K4.

We are now ready to present our results, which are proved
in Appendix A in the supplementary material.

Theorem 1 (Two-layer). Assume that conditions (A1)-(A4)
hold, and fix T ≥ 1. Let θk be obtained by running k steps
of the SGD algorithm (3.3) with data {(xj , yj)}kj=0

i.i.d.∼ P
and initialization ρ0. Then, the following results hold:

(A) PickA ⊆ [N ] independent of θk. Then, with probability
at least 1−e−z2

, for all k ∈ [T/α], θk is εD-dropout stable
with εD equal to

KeKT 3

(√
log |A|+ z√
|A|

+
√
α
(√

D + logN + z
))

,

(3.7)

where the constant K depends only on the constants Ki of
the assumptions.

(B) Fix T ′ ≥ 1 and let (θ′)k
′

be obtained by running k′

steps of SGD with data {(x′j , y′j)}k
′

j=0
i.i.d.∼ P and initializa-

tion ρ′0 that satisfies (A4). Then, with probability at least
1− e−z2

, for all k ∈ [T/α] and k′ ∈ [T ′/α], θk and (θ′)k
′

are εC-connected with εC equal to

KeKT 3
max

(√
logN + z√

N
+
√
α
(√

D + logN + z
))

,

(3.8)

where Tmax = max(T, T ′). Furthermore, the path connect-
ing θk with (θ′)k

′
consists of 7 line segments.

The result (A) characterizes the change in loss when only
|A| neurons remain in the network. In particular, the change
in loss scales as

√
log |A|/|A|+

√
α(D + logN), where

N is the total number of neurons, D is the dimension of
the neurons and α is the step size of SGD. This quantity
vanishes as long as |A| � 1 and α � 1/(D + logN).

Note that the number of training samples k is such that kα
is a constant. Thus, the condition α � 1/(D + logN)
implies that k needs to scale only logarithmically with N .
Furthermore, the condition |A| � 1 implies that |A| does
not need to scale with N , D. The proof builds on the
machinery developed in (Mei et al., 2019) to provide a
mean-field approximation to the dynamics of SGD. In (Mei
et al., 2019), it is shown that, as N → ∞ and α → 0, the
parameters θk obtained by running k steps of SGD with step
size α are close to N i.i.d. particles that evolve according
to a nonlinear dynamics at time kα. Here, the idea is to
show that (i) the parameters θkS are also close to |A| such
i.i.d. particles, and (ii) the quantities LN (θk) and L|A|(θ

k
S)

concentrate to the same limit value, which represents the
limit loss of the nonlinear dynamics.

The result (B) shows that we can connect two different
solutions of SGD via a simple path. Note that the two so-
lutions can be obtained by running SGD for the different
number of iterations (k′ 6= k), for different training datasets
((xj , yj) 6= (x′j , y

′
j)) and for different initializations of

SGD (ρ0 6= ρ′0). The proof uses ideas from (Kuditipudi
et al., 2019). In that work, the authors consider a multilayer
neural network with ReLU activations and show how to
find a piecewise linear path between two solutions that are
dropout stable with |A| = N/2. In fact, εC has a similar
scaling to εD after setting |A| = N/2. We are also able
to show (and, consequently, exploit) a more general notion
of dropout stability for the trained network. In fact, (Kudi-
tipudi et al., 2019) requires the existence of a single dropout
pattern, while here we give a bound for any fixed dropout
pattern (as long as it does not depend on SGD).

The bounds in Theorem 1 exhibit an exponential depen-
dence on T . We remark that, in the mean-field regime, the
number of samples k is large, the step size α is small, and
T = kα is a constant. In fact, T is the evolution time of
the limit stochastic process (which does not depend on N ,
α). Empirically, the value of T needed to achieve good
accuracy is quite small: T = 1 gives < 16% error on
CIFAR-10, see Section 5. The exponential dependence on
T is common to all existing mean-field analyses, and im-
proving it is an open question. The assumptions on the
learning rate, the data distribution and the initialization are
mild and only require some regularity. The assumptions
on the activation function are fulfilled in several practical
settings: σ(x,w) = σ(〈x,w〉), where σ : R → R is, e.g.,
the sigmoid or the hyperbolic tangent.

3.3. Extension to Unbounded Activations

Note that Theorem 1 requires that the activation function
is bounded. We can relax this assumption, at the cost
of a less tight dependence on the time T of the evolu-
tion. In particular, assume further that (i) the feature vec-
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tors x and the initialization ρ0 are bounded, and that (ii)
the loss at each step of SGD is uniformly bounded, i.e.,
maxj |yj − ŷN (xj ,θ

j)| ≤ K5. This last requirement is
reasonable, since the objective of SGD is to minimize such
a loss. Then, the results of Theorem 1 hold also for un-
bounded σ, where the term KeKT 3

is replaced by a generic
K(T ), which depends on T and on the constants Ki of the
assumptions. The simulation results of Section 5 show that
such a dependence on T is mild in practical settings.

The formal statement and the proof of this result is contained
in Appendix B in the supplementary material. The idea
is to show that, if the parameters of the neural network
are initialized with a bounded distribution, then they stay
bounded for any finite time T of the SGD evolution. Thus,
the SGD evolution does not change if we substitute the
unbounded activation function with a bounded one, and we
can apply the results for bounded σ.

4. Dropout Stability and Connectivity for
Multilayer Networks

4.1. Setup

We consider a neural network with L+ 1 ≥ 4 layers, where
each hidden layer contains N neurons. Given the input
feature vector x ∈ Rd0 , the first layer activations z(1)i1

for
i1 ∈ [N ] have form

σ(0)
(
x,θ

(0)
i1

)
, θ

(0)
i1
∈ RD0

the intermediate layer ` ∈ [L− 1] activations z(`+1)
i`+1

(x,θ)

for i`+1 ∈ [N ] are defined as follows

1

N

N∑
i`=1

a
(`)
i`,i`+1

� σ(`)
(
z
(`)
i`

(x,θ) ,w
(`)
i`,i`+1

)
,

θ
(`)
i`,i`+1

= (a
(`)
i`,i`+1

,w
(`)
i`,i`+1

) ∈ RD`+d`+1 ,

and the output of network is given by

ŷN (x,θ) =
1

N

N∑
iL=1

a
(L)
iL
� σ(L)

(
z
(L)
iL

(x,θ) ,w
(L)
iL

)
,

θ
(L)
iL

= (a
(L)
iL
,w

(L)
iL

) ∈ RDL+dL+1 , iL ∈ [N ]. (4.1)

Here, σ(`) : Rd` × RD` → Rd`+1 (` ∈ {0, . . . , L}) are the
activation functions, and θ contains the parameters of the
network, which are θ(0)i1

, θ(`)i`,i`+1
and θ(L)

iL
.

Note that (4.1) includes the model (1.1) as a special case. To
see this, consider the following setting: pick D0 = d0 and
stack the parameters θ(0)i1

∈ Rd0 into the rows of the matrix
W 1 ∈ RN×d0 ; for i ∈ [L − 1], pick D` = 1 and stack
the scalar parameters a(`)

i`,i`+1
∈ R into the matrixW `+1 ∈

RN×N ; pick DL = dL+1 and stack the parameters a(L)
iL
∈

RdL+1 into the columns of the matrixWL+1 ∈ RdL+1×N ;
finally, assume that the activation function σ(`) does not
depend on w(`)

i`,i`+1
for ` ∈ [L− 1] and that σ(L) does not

depend on w(L)
iL

. Then, in this setting, (4.1) can be reduced
to (1.1).

We are interested in minimizing the expected square loss:

LN (θ) = E
{∥∥y − ŷN (x,θ)

∥∥2
2

}
, (4.2)

where the expectation is taken over (x,y) ∼ P. To do so,
we are given data (xk,yk)k≥0

i.i.d.∼ P, we run SGD with
step size sk for the intermediate layers ` ∈ [L− 1], and we
fix first and last layer:

θ
(`)
i`,i`+1

(k + 1) = θ
(`)
i`,i`+1

(k)− skN2Grad
(`)
i`,i`+1

(
θ(k)

)
,

Grad
(`)
i`,i`+1

(
θ(k)

)
= ∇

θ
(`)
i`,i`+1

∥∥yk − ŷN (xk,θ(k))
∥∥2
2
,

θ
(0)
i1

(k + 1) = θ
(0)
i1

(k), θ
(L)
iL

(k + 1) = θ
(L)
iL

(k), (4.3)

where θ(k) contains the parameters of the network after k
steps of SGD. As in the two-layer setting, we consider a one-
pass model and the parameters are initialized independently,
i.e., {θ(0)i1

(0)}i1∈[N ]
i.i.d.∼ ρ

(0)
0 , {θ(`)i`,i`+1

(0)}i`,i`+1∈[N ]
i.i.d.∼

ρ
(`)
0 , for ` ∈ [L− 1], and {θ(L)

iL
(0)}iL∈[N ]

i.i.d.∼ ρ
(L)
0 .

The gradients of ŷN with respect to the parameters of the
network can be computed via backpropagation (Goodfellow
et al., 2016). By doing so (see Araújo et al. (2019, Section
3.3)), we obtain that θ(`)i`,i`+1

evolves at a time scale of 1/N2.
Thus, we multiply the step size sk in (4.3) with the factorN2

in order to avoid falling into the “lazy training” regime. In
lazy training, the parameters hardly vary but the method still
converges to zero training loss, and this regime has received
a lot of attention recently (Jacot et al., 2018; Li & Liang,
2018; Zou et al., 2018; Du et al., 2018; 2019; Allen-Zhu
et al., 2019b;a; Chizat et al., 2019). Let us emphasize that
the SGD scalings in (3.3) and (4.3) imply that the parameters
move as long as the product of the number of iterations with
the step size is non-vanishing.

Note also that the parameters of layers ` = 0 and ` =

L, i.e., {θ(0)i1
}i1∈[N ] and {θ(L)

iL
}iL∈[N ], stay fixed to their

initial values. This is done for technical reasons. In fact,
by computing the backpropagation equations, one obtains
that θ(0)i1

and θ(L)
iL

evolve at a time scale of 1/N , which
makes it challenging to analyze their trajectories. We regard
the parameters θ(0)i1

and θ(L)
iL

as random features (Rahimi &
Recht, 2008) close to the input and the output.

Given a neural network with parameters θ and subsets
A1, . . . ,AL of [N ], the dropout network with parameters
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θS is obtained by setting to 0 the outputs of the neurons
indexed by [N ] \ Ai at layer i and by suitably rescaling
the remaining outputs. With an abuse of notation, denote
by ŷ|A| (x,θS) and L|A|(θS) the output of the dropout net-
work and its expected square loss, respectively. In formulas,
the dropout version of activations z(`+1)

i`+1
(x,θS) of layer

` ∈ [L− 1] for i`+1 ∈ A`+1 are given by

1

|A`|
∑

i`∈A`

a
(`)
i`,i`+1

� σ(`)
(
z
(`)
i`

(x,θS) ,w
(`)
i`,i`+1

)
,

the output of dropout network ŷ|A| (x,θS) takes the form

1

|AL|
∑

iL∈AL

a
(L)
iL
� σ(L)

(
z
(L)
iL

(x,θS) ,w
(L)
iL

)
,

and, consequently, the expected square loss is defined by

L|A|(θS) = E
{∥∥y − ŷ|A| (x,θS)

∥∥2
2

}
,

where z(1)i1
(x,θS) = z

(1)
i1

(x,θ) for i1 ∈ A1. The defini-
tions of dropout stability and connectivity are analogous to
those for two-layer networks: (i) θ is εD-dropout stable if
(3.5) holds; and (ii) θ and θ′ are εC-connected if they are
connected by a continuous path in parameter space such that
(3.6) holds.

4.2. Results

We make the following assumptions on the learning rate sk,
the data distribution (x,y) ∼ P, the activation functions
σ(`), and the initializations ρ(`)0 :

(B1) sk = αξ(kα), where ξ : R≥0 → R>0 is bounded by
K1 and K1-Lipschitz.
(B2) The response variables y are bounded by K2.
(B3) For ` ∈ {0, . . . , L}, the activation function σ(`) is
bounded byK3, with Fréchet derivative bounded byK3 and
K3-Lipschitz.
(B4) The initializations {ρ(`)0 }L`=0 have finite first moment
and they are supported on ‖a(`)

i`,i`+1
(0)‖2 ≤ K4 for ` ∈

[L− 1], and ‖a(L)
iL

(0)‖2 ≤ K4.

We are now ready to present our results, which are proved
in Appendix C in the supplementary material.

Theorem 2 (Multilayer). Assume that conditions (B1)-(B4)
hold, let θ(k) be obtained by running k steps of the SGD

algorithm (4.3) with data {(xj ,yj)}kj=0
i.i.d.∼ P and initial-

izations {ρ(`)0 }L`=0, and define T = kα > 0. Then, the
following results hold:

(A) Pick A1, . . . ,AL ⊆ [N ] independent of θ(k). Then,
with probability at least 1−e−z2

, θ(k) is εD-dropout stable

with εD equal to

K(T, L)

(√
d+ z√
Amin

+

√
logN

N
+
√
α
(√

d+ logN + z
))

(4.4)

where Amin = mini∈[L] |Ai|, d = max`∈{0,...,L+1} d` and
the constant K(T, L) depends on T, L and on the constants
Ki of the assumptions.

(B) Let θ′(k′) be obtained by running k′ steps of the

SGD algorithm (4.3) with data {(x′j ,y′j)}k
′

j=0
i.i.d.∼ P and

initializations {(ρ(`)0 )′}L`=0 that satisfy (B4), and define
T ′ = k′α > 0. Then, with probability at least 1 − e−z2

,
θ(k) and θ′(k′) are εC-connected with εC equal

K(Tmax, L)

(√
d+ logN + z√

N
+
√
α
(√

d+ logN + z
))

(4.5)

where Tmax = max(T, T ′).

The results are similar in spirit to those of Theorem 1, but
the analysis is more involved. We remark that, differently
from the two-layer case, the ideal particles are not indepen-
dent, see Remark 5.6 of (Araújo et al., 2019). We exploit
a bound on the norm of the weights during training (see
Lemma C.1 in Appendix C.1) and a bound on the maximum
distance between SGD weights and weights of ideal par-
ticles. Our analysis improves upon (Araújo et al., 2019),
where the bound is on the average distance between SGD
and ideal-particle weights (compare (C.23) in Appendix C.1
and (10.1) in (Araújo et al., 2019)). This improvement is
essential to show dropout stability. In fact, dropout stability
requires dropping all weights associated to a subnetwork
(and not just a given fraction of weights). The stronger
guarantee on the distance to ideal particles leads to an extra
logN in our bounds (compare Theorem 2 in this paper and
(5.1) in (Araújo et al., 2019)). As concerns the proof of con-
nectivity, we generalize the approach of (Kuditipudi et al.,
2019), in order to analyze the model (4.1).

The bounds in Theorem 2 are not dimension-free (as in
the two-layer case), but the dependence on the dimension
d is only linear. In fact, the loss change in (4.4) vanishes
as long as Amin � d, and α � 1/(d + logN). The
condition Amin � d implies that Amin needs to scale at
least linearly with d, but does not scale withN . Furthermore,
as in the two-layer case, the condition α� 1/(d+ logN)
implies that the number of samples k needs to scale only
logarithmically with N .

Compared to the two-layer case where there is no assump-
tion on the initialization for wi, here we require a mild
condition (finite first moment for ρ(`)0 ) in order to simplify
the proof.



Landscape Connectivity and Dropout Stability of SGD Solutions for Over-parameterized Neural Networks

0 1 2 3
log10(iteration)

0.0

0.5

1.0

1.5

2.0

2.5
Population risk (N= 800)

0 1 2 3
log10(iteration)

0.0

0.2

0.4

0.6

0.8

Classification error (N= 800)

0 1 2 3 4
log10(iteration)

0.0

0.5

1.0

1.5

2.0

Population risk (N= 3200)

0 1 2 3 4
log10(iteration)

0.0

0.2

0.4

0.6

0.8

Classification error (N= 3200)

0.00

0.15

0.30

0.00

0.05

0.10

0.000

0.075

0.150

0.000

0.025

0.050

original dropout

(a) MNIST, two-layer

0 1 2 3 4
log10(iteration)

0.5

1.0

1.5

2.0

Population risk (N= 800)

0 1 2 3 4
log10(iteration)

0.2

0.4

0.6

0.8

Classification error (N= 800)

0 1 2 3 4
log10(iteration)

0.5

1.0

1.5

2.0

Population risk (N= 3200)

0 1 2 3 4
log10(iteration)

0.2

0.4

0.6

0.8

Classification error (N= 3200)

0.4

0.7

1.0

0.10

0.25

0.40

0.4

0.5

0.6

0.130

0.165

0.200

original dropout

(b) CIFAR-10, three-layer

Figure 1. Comparison of population risk and classification error between the trained network (blue dashed curve) and the dropout network
(orange curve). In the full scale plot, we show the average values, and in the zoomed version we also provide the error bar.
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Figure 2. Change in loss after removing half of the neurons from each layer, as a function of the number of neurons N of the full network.

5. Numerical Results
We consider two supervised learning tasks: (a) MNIST clas-
sification with the two-layer neural network (3.1); and (b)
CIFAR-10 classification with the three-layer neural network
(1.1). For MNIST, the input dimension is d = 28 × 28 =
784 and we normalize pixel values to have zero mean and
unit variance. For CIFAR-10, the input is given by VGG-16
features of dimension d = 4× 4× 512 = 8192. These fea-
tures are computed by the convolutional layers of the VGG-
16 network (Simonyan & Zisserman, 2015) pre-trained on

the ImageNet dataset (Russakovsky et al., 2015). More
specifically, we rescale the images to size 128 × 128, we
rescale pixel values into the range [−1, 1], and we feed them
to the pre-trained VGG-16 network to extract the features.
Qualitatively similar results (with larger classification error)
are obtained by using fully connected networks directly on
CIFAR-10 images.

For both tasks, the neural networks have ReLU activation
functions, SGD aims at minimizing the cross-entropy loss,
and the gradients are averaged over mini-batches of size 100.
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Figure 3. Classification error along a piecewise linear path that connects two SGD solutions θ1 and θ2, with N = 3200. As predicted by
the theory, the error along the path (blue curve) is no larger than the error of the two SGD solutions plus the change in loss due to the
dropout of half of the neurons (red dashed curve).

In contrast with the setting of Section 4, all the layers of
the neural network are trained. The scaling of the gradient
updates follows (3.3) and (4.3): for the first and last layer,
the gradient of the loss function is multiplied by a factor of
N ; for the middle layers, the gradient of the loss function
is multiplied by a factor of N2. This scaling ensures that
the term in front of the learning rate sk does not depend
on N , i.e., it is Θ(1) as N goes large. The learning rate
sk = αξ(kα) does not depend on the time of the evolution,
i.e., ξ(t) = 1. Furthermore, we set α = α0/N , where α0

is a constant independent of N . We also set the number of
training epochs to k0 ·N , where k0 is a constant independent
of N . In this way, the product between the learning rate
and the number of training epochs is the constant T =
k0 · α0, which does not depend on N . The initializations of
the parameters of the neural network are i.i.d. and do not
depend on N , as in the setting described for the theoretical
results. The population risk and the classification error are
obtained by averaging over the test dataset. To measure
statistics in the plots, i.e., average value and error bar at
1 standard deviation, we perform 20 independent trials of
each experiment.

Figure 1 compares the performance of the trained network
(blue dashed curve) and of the dropout network (orange
curve), which is obtained by removing the second half of
the neurons from each layer (and by suitably rescaling the
remaining neurons). On the left, we report the results for

MNIST, and on the right for CIFAR-10. For each classifica-
tion task, we plot the population risk and the classification
error for N = 800 and N = 3200. The networks are
trained until the training loss has reached a plateau (0.062
for MNIST and 0.415 for CIFAR-10 when N = 3200). As
expected, the performance of the dropout network improves
with N , and it is very close to that of the trained network.
For N = 3200, the classification error of the trained net-
work is < 2% for MNIST and < 14% on CIFAR-10, and
the classification error of the dropout network is ≈ 3% on
MNIST and < 16% on CIFAR-10.

Figure 2 plots the change in loss when only half of the
neurons remain in the network, as a function of the total
number of neurons N . For each classification task, we plot
the change in loss at the beginning of training (0 · T ), at an
intermediate point where the population risk is still not too
small ({0.65, 0.7} · T ), and at the end of training (1 · T ),
where T stands for the product of the learning rate and the
total number of training epochs. The dependence between
the change in loss andN is essentially linear in log-log scale,
as demonstrated by our theoretical results. Furthermore, the
dependence on the time of the dynamics is quite mild.

Figure 3 shows that the optimization landscape is approx-
imately connected when N = 3200. We plot the classi-
fication error along a piecewise linear path that connects
two SGD solutions θ1 and θ2 initialized with different dis-
tributions: the initial distribution of θ1 is bimodal, while
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Figure 4. Change in classification error after removing half of the
neurons from each layer, as a function of the number of neurons
N of the full network, at the end of training.

the initial distribution of θ2 is unimodal. We also show
the histograms of θ1 and θ2, in order to highlight that one
SGD solution cannot be obtained as a permutation of the
other. As expected, the classification error along the path is
roughly constant, since the network is dropout stable. More
specifically, the error along the path (blue curve) is upper
bounded by the error at the extremes plus the change in loss
after dropping out half of the neurons of the network (red
dashed curve).

Figure 4 plots the degradation in classification error due
to the removal of half of the neurons from each layer. We
consider neural networks at the end of training (1·T ) and we
report the performance degradation as a function of the num-
ber of neurons N of the full network. We compare different
architectures (two-layer, three-layer and four-layer neural
networks) and classification tasks (MNIST and CIFAR-10).
In all the cases considered, the performance degradation
rapidly decreases, as the width of the network grows. When
N = 12800, the classification error increases only (i) by
0.35% for a two-layer network trained on MNIST, (ii) by
0.4% for a three-layer network trained on MNIST, (iii) by
1% for a three-layer network trained on CIFAR-10, and (iv)
by 3.6% for a four-layer network trained on CIFAR-10.

Additional experiments are presented in Appendix D in the
supplementary material for the following learning tasks:
classification of isotropic Gaussians with the two-layer neu-
ral network (3.1); MNIST classification with the three-layer
neural network (1.1); CIFAR-10 classification with the four-
layer neural network (1.1).

6. Discussion and Future Directions
The optimization landscape of neural networks can exhibit
spurious local minima (Yun et al., 2018; Safran & Shamir,

2018), and its minima can be disconnected (Freeman &
Bruna, 2017; Venturi et al., 2019; Kuditipudi et al., 2019).
In this work, we show that these problematic scenarios
are ruled out with SGD training and over-parametrization.
In particular, we prove that the optimization landscape of
SGD solutions is increasingly connected as the number of
neurons grows. The explanation to this phenomenon has
been hypothesized by some recent work: the SGD solutions
have degrees of freedom to spare (Draxler et al., 2018)
or, equivalently, they are dropout stable (Kuditipudi et al.,
2019). We give theoretical grounding to this conjecture by
proving that SGD solutions are dropout stable, i.e., that the
loss does not change much when we remove even a large
amount of neurons. In order to have meaningful bounds, the
number of neurons does not need to be of the same order of
the number of samples (cf. (Nguyen & Hein, 2017; 2018;
Nguyen et al., 2019; Nguyen, 2019b)). Furthermore, our
bounds are dimension-free for two-layer networks and they
scale linearly with the dimension for multilayer networks
(cf. (Freeman & Bruna, 2017)). Our analysis builds on a
recent line of work showing that the dynamics of SGD tends
to a mean field limit as the number of neurons increases
(Mei et al., 2018b; 2019; Araújo et al., 2019). We believe
that with these tools one could prove similar results also for
noisy SGD and projected SGD.

The notion of dropout stability is closely related to the fact
that neural networks have many redundant connections, and
therefore they can be pruned with little performance loss,
see, e.g., (Guo et al., 2016; Molchanov et al., 2017; Frankle
& Carbin, 2019; Liu et al., 2019). However, it is difficult
even to compare the relative merits of the different pruning
techniques (Gale et al., 2019), let alone to understand the
fundamental reasons leading to sparsity in neural networks.
Thus, it would be interesting to investigate whether mean
field approaches provide a more principled way of pruning
deep neural networks.
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