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Abstract

To scale up data analysis, distributed and parallel
computing approaches are increasingly needed.
Here we study a fundamental problem in this area:
How to do ridge regression in a distributed com-
puting environment? We study one-shot methods
constructing weighted combinations of ridge re-
gression estimators computed on each machine.
By analyzing the mean squared error in a high
dimensional model where each predictor has a
small effect, we discover several new phenom-
ena including that the efficiency depends strongly
on the signal strength, but does not degrade with
many workers, the risk decouples over machines,
and the unexpected consequence that the optimal
weights do not sum to unity. We also propose a
new optimally weighted one-shot ridge regression
algorithm. Our results are supported by simula-
tions and real data analysis.

1. Introduction

Computers have changed all aspects of our world. Impor-
tantly, computing has made data analysis more convenient
than ever before. However, computers also pose limitations
and challenges for data science. For instance, hardware
architecture is based on a model of a universal computer—
a Turing machine—but in fact has physical limitations of
storage, memory, processing speed, and communication
bandwidth over a network. As large datasets become more
and more common in all areas of human activity, we need
to think carefully about working with these limitations.

How can we design methods for data analysis (statistics and
machine learning) that scale to large datasets? A general
approach is distributed and parallel computing. Roughly
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speaking, the data is divided up among computing units,
which perform most of the computation locally, and syn-
chronize by passing relatively short messages. While the
idea is simple, a good implementation can be hard. More-
over, different problems have different inherent needs in
terms of local computation and global communication re-
sources. For instance, in statistical problems with high levels
of noise, simple one-shot schemes like averaging estimators
computed on local datasets can sometimes work well.

In this paper, we study a fundamental problem in this area.
We are interested in linear regression, which is arguably
one of the most important problems in statistics and ma-
chine learning. A popular method for this model is ridge
regression (also known as /5 or Tikhonov regularization),
which regularizes the estimates using a quadratic penalty
to improve estimation and prediction accuracy. We aim
to understand how to do ridge regression in a distributed
computing environment. We are also interested in the high-
dimensional setting, where the number of features can be
large. We also work in a random-effects model where each
predictor has a small effect on the outcome, which is the
model for which ridge regression is best suited.

1.1. Main Results and Contributions

In contrast to existing work, we introduce a new mathe-
matical approach to the problem. We leverage and further
develop sophisticated recent techniques from random matrix
theory and free probability theory in our analysis. This en-
ables us to make contributions that were unattainable using
more “traditional” mathematical approaches.

We find the limiting mean squared error of the one-shot
distributed ridge estimator, which takes a weighted sum
of the local ridge estimators computed on individual ma-
chines. This is a highly communication efficient method.
We characterize the optimal weights and tuning parameters,
as well as the relative efficiency compared to centralized
ridge regression, meaning the ratio of the risk of usual ridge
to the distributed estimator. This can precisely pinpoint
the computation-accuracy tradeoff achieved via one-shot
distributed estimation. See Figure 1 for an illustration.

As a consequence of our detailed risk analysis, we make
several discoveries:
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Figure 1. Efficiency loss due to one-shot distributed learning. This plot shows the relative mean squared error of centralized ridge
regression compared to optimally weighted one-shot distributed ridge regression. This quantity is at most unity, and the larger, the “better”

distributed ridge works. See the text for details.

Efficiency Depends Strongly on Signal Strength. The sta-
tistical efficiency of the one-shot distributed ridge estimator
depends strongly on signal strength. The efficiency is gener-
ally high (meaning distributed ridge regression works well)
when the signal strength is low.

Infinite-worker Limit. The one-shot distributed estimator
does not lose all efficiency compared to the ridge estimator
even in the limit of infinitely many machines. Somewhat
surprisingly, simple one-shot weighted combination meth-
ods work well even for very large numbers of machines. It
is nontrivial that this can be achieved by communication-
efficient methods. This is also important from a practical
perspective.

Decoupling. When the features are uncorrelated, the prob-
lem of choosing the optimal regularization parameters de-
couples over the different machines. We can choose them
in a locally optimal way, and they are also globally optimal.
This is a delicate result, and is not true in general for corre-
lated features. Moreover, this discovery is also important
in practice, because it gives conditions under which we can
choose the regularization parameters separately for each
machine, thus saving valuable computational resources.

Optimal Weights Do not Sum to Unity. We uncover un-
expected properties of the optimal weights. Naively, one
may think that the weights need to sum to unity, meaning
that we need a weighted average. However, it turns out
the optimal weights sum to more than unity, because of the
negative bias of the ridge estimator. This means that any
type of averaging method is suboptimal.

Based on these results, we propose a new optimally
weighted one-shot ridge regression algorithm. We also con-
firm these results in detailed simulation studies and on an
empirical data example, using the Million Song Dataset.

Some aspects of our work can help practitioners directly,
while others are developed for deepening our understanding
of the problem.

1.2. Prior Work

The area of distributed statistics and machine learning has
attracted increasing attention only relatively recently, see for
instance (Mcdonald et al., 2009; Zhang et al., 2012; 2013b),
(Li et al., 2013; Zhang et al., 2013a; Duchi et al., 2014;
Chen & Xie, 2014; Mackey et al., 2011; Zhang et al., 2015;
Braverman et al., 2016; Jordan et al., 2016; Rosenblatt &
Nadler, 2016; Smith et al., 2016; Banerjee et al., 2016; Zhao
et al., 2016; Xu et al., 2016; Fan et al., 2017; Lin et al.,
2017; Lee et al., 2017; Volgushev et al., 2017; Shang &
Cheng, 2017; Battey et al., 2018; Zhu & Lafferty, 2018;
Chen et al., 2018a;b; Wang et al., 2018; Shi et al., 2018;
Duan et al., 2018; Liu et al., 2018; Richards et al., 2020),
and the references therein. See (Huo & Cao, 2018) for a
review. We can only discuss the most closely related papers
due to space limitations.

(Zhang et al., 2013b) study the MSE of averaged estimation
in empirical risk minimization. Later (Zhang et al., 2015)
study divide and conquer kernel ridge regression, showing
that the partition-based estimator achieves the statistical min-
imax rate over all estimators, when the number of machines
is not too large. These results are very general, however
they are not as explicit or precise as our results. (Lin et al.,
2017) improve the above results, removing certain eigen-
value assumptions on the kernel, and sharpening the rate.
In the same framework, (Guo et al., 2017) study regular-
ization kernel networks, and propose a debiasing scheme
that can improve the behavior of distributed estimators. (Xu
et al., 2016) propose a distributed General Cross-Validation
method to choose the regularization parameter.

(Rosenblatt & Nadler, 2016) consider averaging in
distributed learning in fixed and high-dimensional M-
estimation, without studying regularization. (Lee et al.,
2017) study sparse linear regression, showing that aver-
aging debiased lasso estimators can achieve the optimal
estimation rate if the number of machines is not too large.
(Battey et al., 2018) in addition studies hypothesis testing
under more general sparse models. These last two works
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are on a different problem (sparse regression), whereas we
study ridge regression in random-effects models.

1.3. Paper Organization

Section 2 introduces our model. Section 3 presents our
main theoretical results. We start with finite sample results,
then provide asymptotic results for generally correlated fea-
tures. We consider the special case of an identity covariance,
where we study in detail the properties of the estimation
error, tuning parameters and decoupling. We also provide a
practical algorithm. Section 4 contains experiments on real
data. The supplementary material provides proofs for the
theorems, additional discussion and experiments.

2. Preliminaries

‘We consider the standard linear model
Y=X(B+e. (1)

Here Y € R" is the n-dimensional continuous outcome vec-
tor of n independent samples, X is the n x p design matrix
containing the values of p features for each sample. More-
over, 3 = (B1,...,8p) " € RPis the p-dimensional vector
of unknown regression coefficients. We assume that the
coordinates of the random noise ¢ are independent random
variables with mean zero and variance o2

The ridge regression (or Tikhonov regularization) estimator
is a popular method for estimation and prediction in linear
models. Recall that the ridge estimator of /3 is

BA) = (XTX +nA,) 'XTY, 2)

where )\ is a tuning parameter.

Suppose we are in a distributed computation setting. The
samples are distributed across k sites or machines. For
simplicity we call the sites “machines”. We can write the
partitioned data as

Xk Y
Thus the ¢-th machine contains n; samples whose features

are stored in the n; X p matrix X; and also the corresponding
n; X 1 outcome vector Y;.

Since the ridge regression estimator is a widely used method
with certain optimality properties, we aim to understand how
we can approximate it in a distributed setting. Specifically,
we will focus on one-shot weighting methods, where we per-
form ridge regression locally on each subset of the data, and
then aggregate the regression coefficients by a weighted sum.
There are several reasons to consider weighting methods:

1. This is a practical method with minimal communication
cost. When communication is expensive, it is impera-
tive to develop methods that minimize communication
cost. In this case, one-shot weighting methods are at-
tractive, and so it is important to understand how they
work. In a well-known course on scalable machine
learning, Alex Smola calls such methods “idiot-proof”
(Smola, 2012), meaning that they are straightforward
to implement (unlike some of the more sophisticated
methods).

2. Averaging (which is a special case of one-shot weight-
ing) has already been studied in several works on dis-
tributed ridge regression (e.g., (Zhang et al., 2015; Lin
et al., 2017)), and much more broadly in distributed
learning, see the related work section for details. Such
methods are known to be rate-optimal under certain
conditions.

3. Weighting may serve as a useful initialization to iter-
ative methods. In practical distributed learning prob-
lems, iterative optimization algorithms such as dis-
tributed gradient descent may be used.

Therefore, we define local ridge estimators for each dataset
X, Y;, with regularization parameter \; as

Bi(\) = (X[ Xi + nMiL) " X VG 3)

We consider combining the local ridge estimators at a central
server via a one-step weighted summation. We will find the
optimally weighted one-shot distributed estimator

k
Bdist(w) = Z UMBZ €]
i=1

We will write & = n=1 X T X for the sample (uncentered)
covariance and ; = n; ' X, X; the sample covariance of
the local datasets.

3. Main Results
3.1. Finite Sample Results

A stepping stone to our analysis is the following key result.
Theorem 1 (Finite sample risk and efficiency of optimally
weighted distributed ridge for fixed regularization param-
eters). Consider the distributed ridge regression problem
described above. The optimal weights that minimize the
mean squared error E||Byx(w) — B||? of the distributed
estimator Bdist(w) are

w* = (A+ R) v, )
where the quantities v, A, R are defined below.

1. v is a k-dimensional vector with i-th coordiﬁate
BTQipB, and Q; are the p x p matrices Q; = (X; +
)\Jp)—lzi,
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2. Aisak x k matrix with (i, j)-th entry BT Q;Q; 3, and
3. Risak x k diagonal matrix with i-th diagonal entry
n; Lo tr[(S; + N I,) 28

The mean squared error of the optimally weighted dis-
tributed ridge regression estimator Bgis, With k sites equals

MSE} = E| Bais(w*) — 8|1 = |BI]> — v (A + R) "o
(6)

See the supplementary material for the proof. This result
quantifies the mean squared error of the optimally weighted
distributed ridge estimator for fixed regularization parame-
ters \;. Later we will choose the regularization parameters
optimally. The result gives an exact formula for the optimal
weights. However, they depend on the unknown regression
coefficients 3, and are thus not directly usable in practice.
Instead, our approach is to make stronger assumptions on 3
under which we can develop estimators for the weights.

3.2. Asymptotic Results

We will consider an asymptotic setting that leads to more
explicit results. We first introduce the model and some
fundamentals of random matrix theory.

Random-effects Model. Recall our basic linear model (1).
Next, we also assume that a random-effects model holds.
We assume f is random—independently of e—with coor-
dinates that are themselves independent random variables
with mean zero and variance p*102a2. Thus, each feature
contributes a small random amount to the outcome. Ridge
regression is designed to work well in such a setting, and has
several optimality properties in variants of this model. The
parameters are now § = (02, &?): the noise level o2 and the
signal-to-noise ratio o respectively. This parametrization
is standard (e.g. (Searle et al., 2009; Dicker & Erdogdu,
2017; Dobriban & Wager, 2018)).

Random Matrix Theory (RMT). We will focus on
”Marchenko-Pastur” (MP) type sample covariance matri-
ces, which are popular in statistics (see e.g., (Bai & Sil-
verstein, 2009; Anderson, 2003; Paul & Aue, 2014; Yao
et al., 2015)). A key concept is the spectral distribution,
which for a p x p symmetric matrix A is the distribu-
tion F'4 that places equal mass on all eigenvalues \;(A)
of X. This has cumulative distribution function (CDF)
Fa(x) = p7t 37 1(\(A) < z). A central result in
the area is the Marchenko-Pastur theorem, which states that
eigenvalue distributions of sample covariance matrices con-
verge (Marchenko & Pastur, 1967; Bai & Silverstein, 2009).
We state the required assumptions below:

Assumption 1. Consider the following conditions:
1. The nx p design matrix X is generated as X = ZX'/?

for an n X p matrix Z with i.i.d. entries (viewed as
coming from an infinite array), satisfying E[Z;;] = 0

and E[Z}] = 1, and a deterministic p X p positive
semidefinite population covariance matrix X..

2. The sample size n grows to infinity proportionally with
the dimension p, i.e. n,p — oo and p/n — v €
(0, 00).

3. The sequence of spectral distributions Iy, := Fy, ,, , of
Y 1= X, p converges weakly to a limiting distribution
H supported on [0, 00), called the population spectral
distribution.

Then, the Marchenko-Pastur theorem states that with prob-
ability 1, the spectral distribution F%; of the sample covari-
ance matrix X also converges weakly (in distribution) to
a limiting distribution F’, := F.,(H) supported on [0, c0)
(Marchenko & Pastur, 1967; Bai & Silverstein, 2009). The
limiting distribution is determined uniquely by a fixed-point
equation for its Stieltjes transform, which is defined for any
distribution G supported on [0, co) as

mag(z) = /000 tisz(t), zeC\R*. (1)

With this notation, the Stieltjes transform of the spectral
measure of X satisfies

~

mg(z) = p! tr[(EfzIp)fl] —as. mp, (2), z€ C\R™,
3

where mp._ (z) is the Stieltjes transform of F".

We are now ready to study the asymptotics of the risk. We
will denote by T' a random variable distributed according to
H, so that E g(T') denotes the mean of g(T) when T is a
random variable distributed according to the limit spectral
distribution H.

Now, we can state one of our main results.

Theorem 2 (Asymptotics for distributed ridge, arbitrary
regularization). In the linear random-effects model under
Assumption 1, suppose that the eigenvalues of 3 are uni-
formly bounded away from zero and infinity, and that the
entries of Z have a finite 8 + c-th moment for some ¢ > 0.
Suppose moreover that the local sample sizes n; grow pro-
portionally to p, so that p/n; — ~; > 0.

Then the optimal weights for distributed ridge regression,
and its MSE, converge to definite limits. Recall from The-
orem 1 that we have the formulas w* = (A + R)~'v and
MSE} = 181> — v (A + R)~v for the optimal finite
sample weights and risk, and thus it is enough to find the
limit of v, A and R. These have the following limits:

1. With probability one, we have the convergence v —
V € RF. The i-th coordinate of the limit V is

xiT

Vi =oc?a?Eyp——— =
o« HZL'zT-f—)\Z

02a2(1 — )\impw (_)\z))
)
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Recall that H is the limiting population spectral dis-
tribution of X, and T is a random variable distributed
according to H. Among the empirical quantities, F.,,
is the limiting empirical spectral distribution of i and
x; = x;(H, A\i, ;) > 0 exists as the unique solution
of the fixed point equation

1—a2; =7 |1-Eg (10)

T+ N |’

2. With probability one, A — A € R¥** Fori # j,
the (i, j)-th entry of A is, in terms of the population
spectral distribution H,

zx; T?

The i-th diagonal entry of A is

Aij = 02a2EH

(an

Ay =da? |1 — 2)\ime (=) + )\?m;—‘w (—)\i)} .
(12
3. With probability one, the diagonal matrix R converges,
R — R € R*** where of course R is also diagonal.
The i-th diagonal entry of R is

Rii =0 |vime,, (=X) = yidimp, (=A:)| . (13)
The limiting weights and MSE are then
Wi=(A+R)'V
and

My =020 -VT(A+R)"V.

See the supplementary material for the proof. The statement
may look complicated, but the formulas simplify consider-
ably in the uncorrelated case ¥ = I),.

3.3. Special Case: Identity Covariance

When the population covariance matrix is the identity, that
is ¥ = I, the results simplify considerably. In this case
the features are uncorrelated. It is known that the limiting
Stieltjes transform m g, := m., of ¥ has the explicit form
(Marchenko & Pastur, 1967):

(z+7-—1++(z+7—-1)2 —4zy
—227 '

mo(z) = (14)

We can get explicit formulas for the optimal weights using
this expression. From Theorem 2, we conclude the follow-
ing simplified result:

Theorem 3 (Asymptotics for isotropic population covari-
ance, arbitrary regularization parameters). In addition to
the assumptions of Theorem 2, suppose that the population
covariance matrix ¥ = I. Then the limits of v, A and R
have simple explicit forms:

1. The i-th coordinate of V' is:
V; = a%a?[1 — Nima, (= \)], (15)

where m., (—\;) is the Stieltjes transform from equa-
tion (14).
2. The off-diagonal entries of A are

Aij = 020 [1 = Xy, (= A0)] - [L = Ay, (=)
(16)
The diagonal entries A are

Aii = 0%a? [1—2Ximq, (= X;) + )\?mfyi(—/\i)} .
17)
3. The i-th diagonal entry of R is

Rii = 0'2’71‘ [m%(—)\i) — /\men(_)\l)} . (18)

The limiting optimal weights for combining the local ridge
estimators are W} = (A + R) ™'V, and MSE of the opti-
mally weighted distributed estimator is

o%a?

My = ——; 73 (19)

+ i1 R A VE
This theorem shows the surprising fact that the limiting risk
decouples over the different machines. By this we mean
that the liming risk can be written in a simple form, involv-
ing a sum of terms depending on each machine, without
any interaction. This seems like a major surprise. See the
supplementary material for the proof and more detailed
explanation on the decoupling phenomenon.

An important consequence of the decoupling is that we can
optimize the individual risks over the tuning parameters \;
separately.

Theorem 4 (Optimal regularization (tuning) parameters,
and risk). Under the assumptions of Theorem 3, the optimal
regularization (tuning) parameters \; that minimize the
local MSEs also minimize the distributed risk My. They
have the form

i
A= —,
1 a2

1=1,2,... k. (20)
Moreover, the risk My, of distributed ridge regression with
optimally tuned regularization parameters is

o%a?

k a2 ’
L+ Yimq, (=vi/a?) 1]

My, = 21

See the supplementary material for the proof.

To compare the distributed and centralized estimators, we
will study their (asymptotic) relative efficiency (ARE),
which is the (limit of the) ratio of their mean squared errors.
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Figure 2. Plots of optimal weights for different «, and surface and contour plots of the optimal weights.

Here we assume each estimator is optimally tuned. This
quantity, which is at most unity, captures the loss of effi-
ciency due to the distributed setting. An ARE close to 1 is
”good”, while an ARE close to 0 is ”bad”. From the results
above, it follows that the ARE has the form

E)

where ¢(7) := ym.(—v/a?) equals the optimally tuned
global risk M up to a factor 2.

ARE = M1 _ 20))

./\/lk 042

We have the following properties of the ARE.

Theorem 5 (Properties of the asymptotic relative efficiency
(ARE)). The asymptotic relative efficiency (ARE) has the
following properties:

1. Worst case is equally distributed data: For fixed
k,a? and v, the ARE attains its minimum when the
samples are equally distributed across k machines, i.e.
Y1 =172 = - = Y = kvy. We denote the minimal
value by 1 (k,y,a?). That is

min ARE = ¢(k,v,0”) = %7) (1 —k ;EZ;) '

Vi 2

2. Adding more machines leads to efficiency loss: For
fixed o and vy, ¥(k,v, a?) is a decreasing function
on k € [1,00) with limy_1, ¥(k,v,0%) = 1 and
infinite-worker limit

lim ¢k, 7, 02) = h(a?,7) < 1.
k— o0

Here we evaluate v as a continuous function of k for
convenience, although originally it is only well-defined
fork e N.

3. Form of the infinite-worker limit: As a function of
a? and v, h(a?,7) has the explicit form

A+ /A2 + 472 /a? ( a? )
1+ ,
2 Y(1+a2)
(24

h(a27 7) =

where A = —vy/a? +~v — 1.

See the supplementary material for the proof. See Figure 1
for the surface and contour plots of h(a2, 7). The efficiency
loss tends to be larger (ARE is smaller) when the signal-to-
noise ratio o is larger. The plots confirm the theoretical
result that the efficiency always decreases with the number
of machines. Relatively speaking, the distributed problem
becomes “easier” as the dimension increases, compared to
the aggregated problem (i.e., the ARE increases in v for
fixed parameters). This can be viewed as a blessing of
dimensionality.

We also observe a nontrivial infinite-worker limit. Even in
the limit of many machines, distributed ridge does not lose
all efficiency. This is one of the few results in the distributed
learning literature where one-step weighting gives nontrivial
results for arbitrary large k.

Overall, the ARE is generally large, except when +y is small
and « is large. This is a setting with strong signal and
relatively low dimension, which is also the easiest” setting
from a statistical point of view. In this case, perhaps we
should use other techniques for distributed estimation, such
as iterative methods.

Next, we study properties of the optimal weights. This is im-
portant, because choosing them is crucial in practice. The lit-
erature on distributed regression typically considers simple
averages of local estimators, for which Bdist =k ! Zle Bi
(see, e.g. (Zhang et al., 2015; Lee et al., 2017; Battey et al.,
2018)). In contrast, we will find that the optimal weights do
not sum up to unity.

Formally, we have the following properties of the optimal
weights.

Theorem 6 (Properties of the optimal weights). The asymp-
totically optimal weights W} = (A + R)™'V have the
following properties:

1. Form of the optimal weights: The i-th coordinate of
Wy is:
QZ

k
1+3 i {W‘l}

and the sum of the limiting weights is always greater

Wi =

)
s
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than or equal to one: Zle Wi > 1. When k > 2,
the sum is strictly greater than one: Zle Wi, > 1.

2. Evenly distributed optimal weights: When the sam-
ples are evenly distributed, so that all limiting aspect
ratios y; are equal, y; = kv, then all Wi, ; equal the
optimal weight function W(k, v, o), which has the
form

Oé2

T a2k + (1 = k)ky - myy (—ky/a?)’

W(k,7,a?)

3. Limiting cases: For fixed k and o?, the optimal
weight function W(k,~,a?) is an increasing func-
tion of v € [0,00) with lim,_,o, W(v) = 1/k and
limy 00 W(7) = 1.

See the supplementary material for the proof. See Figure 2
for some plots of the optimal weight function with k = 2.
The optimal weights are usually large, and always greater
than 1/k. In the low dimensional setting where v — 0,
the weights tend to the uniform average 1/k. Hence in this
setting we recover the classical uniform averaging methods,
which makes sense, because ridge regression with optimal
regularization parameter tends to linear regression in this
regime.

Why are the weights large, and why do they sum to a quan-
tity greater than one? The short answer is that ridge regres-
sion is negatively (or downward) biased, and so we must
counter the effect of bias by upweighting. We provide a
slightly more detailed intuitive explanation in the supple-
ment.

3.4. Implications and Practical Relevance

We discuss some of the implications of our results. Our
finite-sample results show that the optimal way to weight the
estimators depends on functionals of the unknown parameter
3, while the asymptotic results in general depend on the
eigenvalues of X (or X). These are unavailable in practice,
and hence these results can typically not be used on real
datasets. However, since our results are precise (they capture
the truth about the problem), we view this as saying that
the problem is hard. Thus, optimal weighting for ridge
regression is a challenging statistical problem. In practice
that means that we may be content with uniform weighting.
It remains to be investigated in future work how much we
should up-adjust those equal weights.

The optimal weights become usable only when ¥ = I. In
practice, we can get closer to this assumption by using some
form of whitening on the data, for instance by scaling all
variables to the same scale, by estimating Y over restricted
classes, such as assuming block-covariance structures. Al-
ternatively, we can use correlation screening, where we
remove features with high correlation. At this stage, all

these approaches are heuristic, but we include them to ex-
plain how our results can be relevant in practice. It is a topic
of future research to make these ideas more concrete.

Algorithm 1: Optimally weighted distributed
ridge regression

Input :Data matrices X; (n; X p) and outcomes
Yi (n; x 1), distributed across k sites
Output : Distributed ridge estimator (34;5: of

regression coefficients 3

1 for i < 1 to k (in parallel) do

2 | Compute the MLE 6; = (52, 42) locally on i-th
machine;

Set local aspect ratio ; = p/n;;

Set regularization parameter \; = ~; /&%;

Compute the local ridge estimator
Bi\) = (X Xi + na\iL,) T X[V

6 Send 51', ~; and @ to the global data center.

7 end

8 At the data center, combine 51 to get a global
estimator § = (52,42),by § = k=1 S5 6,

Use ¢(7;) = vima, (—7i/&?) to compute the
optimal weights w with i-th coordinate

h-4

6[2

(i) - (1 +30 {ﬁj) - 1])

Wi = ;

—
=4

Output distributed ridge estimator

~ & -~
ﬂdist = Zi:l w’L/B’L

3.5. An Algorithm for Distributed Ridge Regression

For identity covariance, our results lead to a very concrete
algorithm for optimally weighted distributed ridge regres-
sion. In order to develop practical methods, it is crucial to
estimate the optimal weights, for which we only need to
estimate the signal-to-noise ratio a.? and the noise level 2.
Estimating these two parameters is a well-known problem,
and several approaches have been proposed, for instance
restricted maximum likelihood (REML) estimators (Jiang,
1996; Searle et al., 2009; Dicker, 2014; Dicker & Erdogdu,
2016; Jiang et al., 2016), etc. We can use—for instance—
results from (Dicker & Erdogdu, 2017), who showed that
the Gaussian MLE is consistent and asymptotically efficient
for § = (02, a?) even in the non-Gaussian setting of this
paper.

Recall that we have n samples distributed across k& machines.
On the ¢-th machine, we compute a local ridge estimator
Bi, local estimators 32»2, &12 of the signal-to-noise ratio and
the noise level, and quantities needed to find the optimal

weights. Then, we send them to a global machine or data
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center, and aggregate them to compute a weighted ridge es-
timator. See Algorithm 1. This algorithm is communication
efficient as the local machines only need to send the local
ridge estimator 31 and some scalars to the global datacenter.

We assume the data are already mean-centered, which can
be performed exactly in one additional round of communica-
tion, or approximately by centering the individual datasets.
Our algorithm is designed for the scenario when the popula-
tion covariance matrix of the design X is close to identity,
meaning the features are nearly uncorrelated. In some cases,
we can broaden the applicability of the algorithm by using
techniques like whitening or variable pruning. For example,
if we have a good estimator 3 of the population covariance
matrix X, then we can transforgl the local design matrix X;
to X; by whitening: X; = X,;2~1/2.

4. Experiments on Empirical Data

In this section, we present an empirical data example to ex-
amine the accuracy of our theoretical results. It is reasonable
to compare the performance of different estimators in terms
of the prediction (test) error. Figure 3 shows a comparison
of three estimators including our optimal weighted estima-
tor on the Million Song Year Prediction Dataset (MSD)
(Bertin-Mahieux et al., 2011).

-$-Optimal weighted
120 -¥ Naive average
1/k data

MSE of Prediction
E
N

L

10 20 50 100 500 1000
Number of Machines

Figure 3. Million Song Year Prediction Dataset (MSD).

Specifically, we perform the following steps in our data
analysis. We download the dataset from the UC Irvine
Machine Learning Repository. The original dataset has
N = 515,345 (the first 463, 715 for training, the rest for
testing), and p = 91 features. We attempt to predict the
release year of a song. Before doing distributed regression,
we first center both the design matrix X and the outcome
Y. Then we whiten the design matrix by transforming X to
X = X(XTX/n)~1/2. One may also consider whitening
the design matrices locally, but that would not correspond
to fitting the same regression model on each machine.

For each experiment, we randomly choose 14,4, = 10,000
samples from the training set and ns.s; = 1,000 samples
from the test set. We construct the estimators on the training
samples. Then we perform ridge regression in a distributed
way to obtain our optimal weighted estimator as described in
Algorithm 1. We measure its performance on the test data by
computing its MSE for prediction. We choose the number
of machines to be k£ = 1, 10, 20, 50, 100, 500, 1, 000, and
we distribute the data evenly across the k£ machines.

For comparison, we also consider two other estimators:

1. The distributed estimator where we take the naive aver-
age (weight for each local estimator is simply 1/k) and
choose the local tuning parameter \; = p/(N¢rain - G2).
This formally agrees with the divide-and-conquer type
estimator proposed in (Zhang et al., 2015).

2. The estimator using only a fraction 1/k of the data,
which is just one of the local estimators. For this
estimator, we choose the tuning parameter A =
kp/(”train . d2)

We repeat the experiment 7' = 100 times, and report the
average and one standard deviation over all experiments on
Figure 3. Each time we randomly collect new training and
test sets.

From Figure 3, we observe the following:

1. The optimal weighted estimator has smaller MSE than
the local estimator, which means weighting can indeed
help. The variance is also reduced by weighting.

2. The performance of the two distributed estimators is
very close. However, our optimal weighted estimator is
more accurate when the number of machines is large.

3. Data splitting has little impact on the performance of
the optimal weighted estimator. This phenomenon
is compatible with our theory. Since the signal-to-
noise ratio o is about 0.3 for this data set, we are in
a low SNR scenario. In the supplementary material,
we provide formulas and plots of the relative efficiency
for prediction. These show that the performance of the
distributed estimator should be very close to the global
estimator in this case.

To conclude, in terms of computation-statistics tradeoff,
this example suggests a very positive outlook on using dis-
tributed ridge regression: The accuracy is affected very little
even though the data is split up into 100 parts. Thus we save
at least 100x in computation time, while we have nearly no
loss in performance.

Acknowledgements

The authors would like to thank the reviewers for their help-
ful comments. The authors thank Yuekai Sun for discussions
motivating our study, as well as John Duchi, Jason D. Lee,



Distributed Ridge Regression in High Dimensions

Xinran Li, Jonathan Rosenblatt, Feng Ruan, and Linjun
Zhang for helpful discussions. They are grateful to Sifan
Liu for thorough comments on an earlier version of the
manuscript. They are also grateful to the associate editor
and referees for valuable suggestions. ED was partially
supported by NSF BIGDATA grant IIS 1837992.

References

Anderson, T. W. An Introduction to Multivariate Statistical
Analysis. Wiley New York, 2003.

Bai, Z. and Silverstein, J. W. Spectral analysis of large di-
mensional random matrices. Springer Series in Statistics.
Springer, 2009.

Banerjee, M., Durot, C., and Sen, B. Divide and conquer
in non-standard problems and the super-efficiency phe-
nomenon. arXiv preprint arXiv:1605.04446, 2016.

Battey, H., Fan, J., Liu, H., Lu, J., and Zhu, Z. Distributed
testing and estimation under sparse high dimensional
models. The Annals of Statistics, 46(3):1352—-1382, 2018.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere,
P. The million song dataset. In Proceedings of the 12th
International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

Braverman, M., Garg, A., Ma, T., Nguyen, H. L., and
Woodruff, D. P. Communication lower bounds for sta-
tistical estimation problems via a distributed data pro-
cessing inequality. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp.
1011-1020. ACM, 2016.

Chen, X. and Xie, M.-g. A split-and-conquer approach for
analysis of extraordinarily large data. Statistica Sinica,
pp. 1655-1684, 2014.

Chen, X., Liu, W., and Zhang, Y. Quantile regression under
memory constraint. arXiv preprint arxiv:1810.08264,
2018a.

Chen, X., Liu, W., and Zhang, Y. First-order newton-type
estimator for distributed estimation and inference. arXiv
preprint arxiv:1811.11368, 2018b.

Dicker, L. and Erdogdu, M. Flexible results for quadratic
forms with applications to variance components estima-
tion. The Annals of Statistics, 45(1):386—414, 2017.

Dicker, L. H. Variance estimation in high-dimensional linear
models. Biometrika, 101(2):269-284, 2014.

Dicker, L. H. and Erdogdu, M. A. Maximum likelihood for
variance estimation in high-dimensional linear models.
In Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, volume 51 of Pro-
ceedings of Machine Learning Research, pp. 159-167.
PMLR, 2016.

Dobriban, E. and Wager, S. High-dimensional asymptotics
of prediction: Ridge regression and classification. The
Annals of Statistics, 46(1):247-279, 2018.

Duan, J., Qiao, X., and Cheng, G. Distributed nearest
neighbor classification. arXiv preprint arXiv:1812.05005,
2018.

Duchi, J. C., Jordan, M. 1., Wainwright, M. J., and Zhang,
Y. Optimality guarantees for distributed statistical estima-
tion. arXiv preprint arXiv:1405.0782, 2014.

Fan, J., Wang, D., Wang, K., and Zhu, Z. Distributed
estimation of principal eigenspaces. arXiv preprint
arXiv:1702.06488, 2017.

Guo, Z.-C., Shi, L., and Wu, Q. Learning theory of dis-
tributed regression with bias corrected regularization ker-
nel network. The Journal of Machine Learning Research,
18(1):4237-4261, 2017.

Huo, X. and Cao, S. Aggregated inference. Wiley Interdis-
ciplinary Reviews: Computational Statistics, pp. e1451,
2018.

Jiang, J. Reml estimation: asymptotic behavior and related
topics. The Annals of Statistics, 24(1):255-286, 1996.

Jiang, J., Li, C., Paul, D., Yang, C., and Zhao, H. On
high-dimensional misspecified mixed model analysis in
genome-wide association study. The Annals of Statistics,
44(5):2127-2160, 2016.

Jordan, M. I, Lee, J. D., and Yang, Y. Communication-
efficient distributed statistical inference. arXiv preprint
arXiv:1605.07689, 2016.

Lee, J. D, Liu, Q., Sun, Y., and Taylor, J. E.
Communication-efficient sparse regression. Journal of
Machine Learning Research, 18(5):1-30, 2017.

Li, R., Lin, D. K., and Li, B. Statistical inference in massive
data sets. Applied Stochastic Models in Business and
Industry, 29(5):399-409, 2013.

Lin, S.-B., Guo, X., and Zhou, D.-X. Distributed learning
with regularized least squares. The Journal of Machine
Learning Research, 18(1):3202-3232, 2017.

Liu, M., Shang, Z., and Cheng, G. How many machines can
we use in parallel computing for kernel ridge regression?
arXiv preprint arXiv:1805.09948, 2018.

Mackey, L. W., Jordan, M. 1., and Talwalkar, A. Divide-
and-conquer matrix factorization. In Advances in neural
information processing systems, pp. 1134—1142, 2011.



Distributed Ridge Regression in High Dimensions

Marchenko, V. A. and Pastur, L. A. Distribution of eigen-
values for some sets of random matrices. Mat. Sb., 114
(4):507-536, 1967.

Mcdonald, R., Mohri, M., Silberman, N., Walker, D., and
Mann, G. S. Efficient large-scale distributed training of
conditional maximum entropy models. In Advances in
Neural Information Processing Systems, pp. 1231-1239,
2009.

Paul, D. and Aue, A. Random matrix theory in statistics:
A review. Journal of Statistical Planning and Inference,
150:1-29, 2014.

Richards, D., Rebeschini, P., and Rosasco, L. Decentralised
learning with random features and distributed gradient
descent. arXiv preprint arXiv:2007.00360, 2020.

Rosenblatt, J. D. and Nadler, B. On the optimality of aver-
aging in distributed statistical learning. Information and
Inference: A Journal of the IMA, 5(4):379-404, 2016.

Searle, S. R., Casella, G., and McCulloch, C. E. Variance
components, volume 391. John Wiley & Sons, 2009.

Shang, Z. and Cheng, G. Computational limits of a dis-
tributed algorithm for smoothing spline. The Journal of
Machine Learning Research, 18(1):3809-3845, 2017.

Shi, C., Lu, W., and Song, R. A massive data framework for
m-estimators with cubic-rate. Journal of the American
Statistical Association, pp. 1-12, 2018.

Smith, V., Forte, S., Ma, C., Takac, M., Jordan, M. 1.,
and Jaggi, M. Cocoa: A general framework for
communication-efficient distributed optimization. arXiv
preprint arXiv:1611.02189, 2016.

Smola, A. Course notes on scalable machine learning, 2012.

Volgusheyv, S., Chao, S.-K., and Cheng, G. Distributed in-
ference for quantile regression processes. arXiv preprint
arXiv:1701.06088, 2017.

Wang, X., Yang, Z., Chen, X., and Liu, W. Distributed in-
ference for linear support vector machine. arXiv preprint
arxiv:1811.11922, 2018.

Xu, G., Shang, Z., and Cheng, G. Optimal tuning for divide-
and-conquer kernel ridge regression with massive data.
arXiv preprint arXiv:1612.05907, 2016.

Yao, J., Bai, Z., and Zheng, S. Large Sample Covariance
Matrices and High-Dimensional Data Analysis. Cam-
bridge University Press, 2015.

Zhang, Y., Wainwright, M. J., and Duchi, J. C.
Communication-efficient algorithms for statistical opti-
mization. In Advances in Neural Information Processing
Systems, pp. 1502-1510, 2012.

Zhang, Y., Duchi, J., and Wainwright, M. Divide and con-
quer kernel ridge regression. In Conference on Learning
Theory, pp. 592-617, 2013a.

Zhang, Y., Duchi, J. C., and Wainwright, M. J.
Communication-efficient algorithms for statistical opti-
mization. Journal of Machine Learning Research, 14:
3321-3363, 2013b.

Zhang, Y., Duchi, J., and Wainwright, M. Divide and con-
quer kernel ridge regression: A distributed algorithm with

minimax optimal rates. The Journal of Machine Learning
Research, 16(1):3299-3340, 2015.

Zhao, T., Cheng, G., and Liu, H. A partially linear frame-
work for massive heterogeneous data. Annals of statistics,
44(4):1400, 2016.

Zhu, Y. and Lafferty, J. Distributed nonparametric regres-
sion under communication constraints. arXiv preprint
arXiv:1803.01302, 2018.



