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A. Proof of the finite sample results (Theorem 1)
We can calculate the MSE of the weighted sum as

M(w) = E
∥∥∥∑wiβ̂i − β

∥∥∥2 = E(
∑

wiβ̂i − β)>(
∑

wj β̂j − β)

=
∑
ij

wiwj · Eβ̂>i β̂j − 2
∑
i

wiEβ̂>i β + ‖β‖2.

Let B̂ be the p× k matrix defined as B̂ = [β̂1, . . . , β̂k]. Then we can write the above MSE as

M(w) = w>EB̂>B̂w − 2Eβ>B̂w + ‖β‖2. (1)

Let also
B = EB̂ = [Eβ̂1, . . . ,Eβ̂k]. (2)

Since the local estimators are independent, we can write

M(w) = w>(B>B +R)w − 2β>Bw + ‖β‖2, (3)

where R is a diagonal matrix with entries

Ri = E‖β̂i‖2 − ‖Eβ̂i‖2 = E‖β̂i − Eβ̂i‖2. (4)

The objective function M(w) can be viewed as corresponding to a k-parameter linear regression problem, with unknown
parameters wi, design matrix B and outcome vector β. Specifically, we regress β on EB̂ = E[β̂1, . . . , β̂k]. Therefore, the
optimal weights are

w∗ = (B>B +R)−1B>β, (5)

and the optimal risk equals
M∗ = M(w∗) = β>

[
Ip −B(B>B +R)−1B>

]
β. (6)

Now, to find B = EB̂, we need Eβ̂i. The expectation of the ridge regression estimator for the full dataset is

Eβ̂(λ) = E(X>X + nλIp)
−1X>Y = (X>X + nλIp)

−1X>Xβ (7)

Letting Σ̂ = n−1X>X , this equals Eβ̂(λ) = (Σ̂ + λIp)
−1Σ̂β. Similarly,

Eβ̂i(λi) = (X>i Xi + niλiIp)
−1X>i Xiβ. (8)
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Let Qi = Qi(λi) = (X>i Xi + niλiIp)
−1X>i Xi be those matrices and let Σ̂i = n−1X>i Xi. Then the above equals

Qi = (Σ̂i + λiIp)
−1Σ̂i, and

B = [Q1β; . . . ;Qkβ]. (9)

Therefore, B>B has entries β>QiQjβ, while B>β has entries β>Qiβ. Moreover,

Ri = E‖β̂i − Eβ̂i‖2 = E‖(X>i Xi + niλiIp)
−1X>i εi‖2 = σ2 tr[(X>i Xi + niλiIp)

−2X>i Xi] (10)

We can also write this as Ri = n−1i σ2 tr[(Σ̂i + λiIp)
−2Σ̂i]. To conclude the optimal risk, we have

M∗(k) = ‖β‖2 − v>(A+R)−1v (11)

where

v = B>β = vec[β>Qiβ]

A = mat[β>QiQjβ]

R = diag
[
n−1i σ2 tr[(Σ̂i + λiIp)

−2Σ̂i]
]

Qi = (Σ̂i + λiIp)
−1Σ̂i

Here we used the vectorization and to-matrix operators vec,mat. For the global MSE, we only need to consider the special
case where k = 1, which gives us

E||β̂ − β||2 = M∗(1) = ‖β‖2 − (β>Qβ)2

β>Q2β + σ2 tr[(X>X + nλIp)−2X>X]
,

where Q = (Σ̂ + λIp)
−1Σ̂. This finishes the argument.

B. Proof of the asymptotical results for general covariance structure (Theorem 2)
In order to prove Theorem 2, we need to introduce the so-called deterministic equivalents.

B.1. Deterministic equivalents

The results about random matrix theory stated above in the paper can be expressed in a different, and perhaps slightly more
modern language, using deterministic equivalents (Serdobolskii, 2007; Hachem et al., 2007; Couillet et al., 2011; Dobriban
& Sheng, 2018). For instance, the Marchenko-Pastur law is a consequence of the following result. For any z where it is
well-defined, consider the resolvent (Σ̂− zIp)−1. This random matrix is equivalent to a deterministic matrix (xpΣ− zIp)−1
for a certain scalar xp = x(Σ, n, p, z), and we write

(Σ̂− zIp)−1 � (xpΣ− zIp)−1.

Here two sequences of n× n matrices An, Bn (not necessarily symmetric) of growing dimensions are equivalent, and we
write

An � Bn
if

lim
n→∞

tr [Cn(An −Bn)] = 0

almost surely, for any sequence Cn of n× n deterministic matrices (not necessarily symmetric) with bounded trace norm,
i.e., such that lim sup ‖Cn‖tr <∞ (Dobriban & Sheng, 2018). Informally, any linear combination of the entries of An can
be approximated by the entries of Bn. This also can be viewed as a kind of weak convergence in the matrix space equipped
with an inner product (trace). From this, it also follows that the traces of the two matrices are equivalent, from which we can
recover the MP law.

(Dobriban & Sheng, 2018) collected some useful properties of the calculus of deterministic equivalents. In this work, we
use those properties extensively.
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B.2. Proof of Theorem 2

The first step is to use the well-known concentration of quadratic forms to reduce to trace functionals (See e.g. Lemma C.3
of (Dobriban & Wager, 2018) which is based on Lemma B.26 of (Bai & Silverstein, 2009)). Since β is independent of the
data X with mean zero and finite variance, under the moment assumptions imposed in the theorem, we have

β>Qiβ − σ2α2/p · trQi →a.s. 0,

β>QiQjβ − σ2α2/p · trQiQj →a.s. 0,

β>Q2
iβ − σ2α2/p · trQ2

i →a.s. 0.

Let us compute the limits of v,A and R respectively.

• Limit of v: First of all, we have already known that

β>Qiβ − σ2α2/p · trQi →a.s. 0, (12)

so it is sufficient to consider the limit of trQi/p. Since

trQi/p = 1− λi tr[(Σ̂i + λiIp)
−1]/p, (13)

assuming that the spectral distribution of Σ̂i converges almost surely to Fγi , we thus have

trQi/p→a.s. 1− λiEFγi (T + λi)
−1 = 1− λimFγi

(−λi). (14)

Above we have introduced the Stieltjes transform mFγi
as a limiting object. So,

β>Qiβ →a.s. σ
2α2[1− λimFγi

(−λi)]. (15)

For the form in terms of the population spectral distribution H , if p/n→ γ and the spectral distribution of Σ converges
to H , we have by the general Marchenko-Pastur (MP) theorem of Rubio and Mestre (Rubio & Mestre, 2011), that

(Σ̂ + λI)−1 � (xpΣ + λI)−1, (16)

where xp is the unique positive solution of the fixed point equation

1− xp =
xp
n

tr
[
Σ(xpΣ + λI)−1

]
. (17)

When n, p→∞, xp → x and x satisfies the equation

1− x = γ

[
1− λ

∫ ∞
0

dH(t)

xt+ λ

]
. (18)

We remark that the assumptions made in the theorem suffice for using the Rubio-Mestre result. Moreover, we only use
a special case of their result, similar to (Dobriban & Sheng, 2018). Hence from the calculus of deterministic equivalents
(Dobriban & Sheng, 2018), we can take the traces of the matrices in question to obtain

trQi/p = 1− λi tr[(Σ̂i + λiIp)
−1]/p � 1− λi tr[(xiΣ + λiI)−1]/p→a.s. EH

xiT

xiT + λi
, (19)

where xi = x(H, γi,−λi) is the unique solution of

1− xi = γi

[
1− λi

∫ ∞
0

dH(t)

xit+ λi

]
. (20)

• Limit of A: Let us consider the cases i 6= j and i = j separately.
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– i 6= j: We begin by
β>QiQjβ − σ2α2/p · trQiQj →a.s. 0. (21)

Based on the above expression for Qi, we have

QiQj = Ip − λi(Σ̂i + λiIp)
−1 − λj(Σ̂j + λjIp)

−1 + λiλj(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1. (22)

So the key will be to find the limit of

Eij = p−1 tr{(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1}. (23)

From the general MP theorem, since p/ni → γi, we have for all i,

(Σ̂i + λiIp)
−1 � (xipΣ + λiIp)

−1. (24)

Here xip is the unique positive solution of the fixed point equation

1− xip =
xip
ni

tr
[
Σ(xipΣ + λiI)−1

]
, (25)

and xip → xi as ni, p→∞. By the product rule of the calculus of deterministic equivalents, we have for i 6= j

(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1 � (xipΣ + λiIp)
−1(xjpΣ + λjIp)

−1. (26)

Hence by the trace rule of deterministic equivalents,

Eij � p−1 tr[(xipΣ + λiIp)
−1(xjpΣ + λjIp)

−1]. (27)

Moreover, since the spectral distribution of Σ converges to H , we find for i 6= j

Eij → EH
1

(xiT + λi)(xjT + λj)
. (28)

Putting it together,

QiQj � Ip − λi(xipΣ + λiIp)
−1 − λj(xjpΣ + λjIp)

−1 + λiλj(xipΣ + λiIp)
−1(xjpΣ + λjIp)

−1. (29)

So, again by the trace rule of deterministic equivalents, we have

p−1 tr{QiQj} →a.s. 1− EH
λi

xiT + λi
− EH

λj
xjT + λj

+ EH
λiλj

(xiT + λi)(xjT + λj)

= xixjEH
T 2

(xiT + λi)(xjT + λj)
.

Therefore, for i 6= j

Aij → σ2α2

[
xixjEH

T 2

(xiT + λi)(xjT + λj)

]
. (30)

– i = j: In this case,
β>Q2

iβ − σ2α2/p · trQ2
i → 0, (31)

where Q2
i = Ip − 2λi(Σ̂i + λiIp)

−1 + λ2i (Σ̂i + λiIp)
−2. We can easily find the limit of trQ2

i /p in terms of
empirical quantities, based on our knowledge of the convergence of Stieltjes transforms and its derivatives:

trQ2
i /p→ 1− 2λimFγi

(−λi) + λ2im
′
Fγi

(−λi). (32)

Therefore, for i = j
Aii → σ2α2[1− 2λimFγi

(−λi) + λ2im
′
Fγi

(−λi)]. (33)

• Limit ofR: Recall thatRi = n−1i σ2 tr[(Σ̂i+λiIp)
−2Σ̂i]. We note p−1 tr(Σ̂+λI)−2 → m′Fγ (−λ) and Σ̂(Σ̂+λI)−2 =

(Σ̂ + λI)−1 − λ(Σ̂ + λI)−2, so

tr[Σ̂(Σ̂ + λI)−2]

n
→ γ[mFγ (−λ)− λm′Fγ (−λ)]. (34)

Hence
Rii → σ2

[
γi[mFγi

(−λi)− λm′Fγi (−λi)]
]
. (35)
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C. Proof of the asymptotical results for the identity covariance case (Theorem 3)
Here we will provide the proof of Theorem 3 and some explanation of the decoupling phenomenon via free probability
theory.

C.1. Proof of Theorem 3 and some explanation

The proof for v and R is clear by Theorem 2. For the limit of A, the diagonal case is also direct. When i 6= j, recall that

Eij = p−1 tr{(Σ̂i + λiIp)
−1(Σ̂j + λjIp)

−1} → EH
1

(xiT + λi)(xjT + λj)
. (36)

For H = δ1, the expectation decouples, we find

Eij →
1

xi + λi
· 1

xi + λj
= mγi(−λi)mγj (−λj). (37)

Therefore,
Aij → σ2α2[1− λimγi(−λi)] · [1− λjmγj (−λj)]. (38)

Now let us put everything together. Recall that the optimal risk has the form MSE∗dist = ‖β‖2 − v>(A+R)−1v. Based on
the above discussion, we have

σ2α2(A+R)→ σ2α2(A+R) = V V > +D, (39)

where D is a diagonal matrix with i-th diagonal entry σ2α2(Rii + Aii) − V 2
i . Then, by using the Sherman−Morrison

formula, we have

V >(V V > +D)−1V =
V >D−1V

1 + V >D−1V
. (40)

So the limiting distributed risk is

Mk = σ2α2 − σ2α2 V >D−1V

1 + V >D−1V
=

σ2α2

1 + V >D−1V
=

σ2α2

1 +
∑k
i=1

V 2
i

Di

, (41)

which finishes the proof.

To explain in more detail the decoupling phenomenon, let us study how the local risks are related to the distributed risks.
Define V = V (γ, λ) to be the limiting scalar V ∈ R defind above, in the special case k = 1. Explicitly, this is the limit of
the quantity β>Qβ, where Q = (Σ̂ + λIp)

−1Σ̂, as given in Theorem 1 applied for k = 1. Let D be the scalar expression
D(γ, λ) = σ2α2(R+A)− V when k = 1. With these notations, the riskM1 of ridge regression when computed on the
entire dataset equals

M1(γ, λ) =
σ2α2

1 + V (γ,λ)
D(γ,λ)

. (42)

Moreover, the risk of optimally weighted one-shot distributed ridge over k subsets, with arbitrary regularization parameters
λi, equals

Mk(γ1, . . . , γk, λ1, . . . , λk) =
σ2α2

1 +
∑k
i=1

V 2
i (γi,λi)

Di(γi,λi)

. (43)

Then one can check that we have the following equations connecting the risk computed on the entire dataset and the
distributed risk:

σ2α2

Mk(γ1, . . . , γk, λ1, . . . , λk)
− 1 =

k∑
i=1

σ2α2

M1(γi, λi)
− k,

Mk(γ1, . . . , γk, λ1, . . . , λk) =
1∑k

i=1
1

M1(γi,λi)
+ 1−k

σ2α2

.

These equations are precisely what we mean by decoupling. The distributed risk can be written as a function of the type
1/(
∑
i 1/xi + b) of the distributed risks. Therefore, there are no ”interactions” between the different risk functions.
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Next, we discuss in more depth why the limiting risk decouples. Mathematically, the key reason is that when Σ = I , the
limit of Aij for i 6= j decouples into a product of two terms. Therefore, the distributed risk function involves a quadratic
form with zero off-diagonal terms. This is not the case for general population covariance Σ. We provide an explanation via
free probability theory.

C.2. Explaining decoupling via free probability theory

In this section, we provide an explanation via free probability theory for why the limiting distributed risk decouples.
Specifically, we explain why the limit of the quantities β>Qiβ · β>Qjβ for i 6= j becomes a product of terms depending on
i, j.

We will use some basic notions from free probability theory (Voiculescu et al., 1992; Hiai & Petz, 2006; Nica & Speicher,
2006; Anderson et al., 2010; Couillet & Debbah, 2011). Let us define our non-commutative probability space as(

A = (L∞− ⊗Mp(R)), τ =
1

p
tr

)
,

where L∞− denotes the collection of random variables with all moments finite andMp(R) is the space of p×p real matrices.
Recall that, a sequence of random variables {a1,p, a2,p, . . . , ak,p} ⊂ A is said to be asymptotically free almost surely if

τ [

m∏
j=1

Pj(aij ,p − τ(Pj(aij ,p)))]→a.s. 0,

for any positive integer m, any polynomials P1, . . . , Pm and any indices i1, . . . , im ∈ [k] with no two adjacent ij equal.
Suppose Ap, Bp are two sequences of independent random matrices and at least one of them is orthogonally invariant, then
it is well-known that {Ap, Bp} ⊂ A is asymptotically free almost surely.

Now, let us assume thatX>X is orthogonally invariant, which is the case whenX>X follows the white Wishart distribution.
Then clearly X>i Xi and X>j Xj are asymptotically free almost surely. It follows that Qi and Qj are also asymptotically free
almost surely. By using the definition of asymptotic freeness, we have for i 6= j

τ [(Qi −
1

p
tr(Qi)I)(Qj −

1

p
tr(Qj)I)]→a.s. 0,

which is equivalent to
1

p
tr(QiQj)−

1

p
tr(Qi)

1

p
tr(Qj)→a.s. 0.

Hence, under the random-effects assumption for β, the limit of β>β · β>QiQjβ (i 6= j) will decouple and is the same as
the limit of β>Qiβ · β>Qjβ.

D. Proof of Theorem 4
Recall that

V 2
i

Di
=

σ4α4(1− λimγi(−λi))2

σ4α4λ2i [m
′
γi(−λi)−m2

γi(−λi)] + σ4α2γi[mγi(−λi)− λim′γi(−λi)]

=
α2(1− λimγi(−λi))2

α2λ2i [m
′
γi(−λi)−m2

γi(−λi)] + γi[mγi(−λi)− λim′γi(−λi)]
,

and our goal is to find λi that maximizes V 2
i /Di. Luckily, from (Dobriban & Wager, 2018) it follows that for k = 1, i.e.

when there is only one machine, the optimal choice of the tuning parameter λ is γ/α2. This means that the maximizer of
V 2/D is λ = γ/α2. Now, due to the decoupled structure ofMk, the optimal tuning parameters are λi = γi/α

2. Plugging
in the parameters, we have

V 2
i

Di
=

α2

γimγi(−γi/α2)
− 1.
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Then the optimal risk can be simplified to

Mk =
σ2α2

1 +
∑k
i=1

[
α2

γimγi (−γi/α2) − 1
] . (44)

When k = 1, this equals to σ2γmγ(−γ/α2) which matches the known result from (Dobriban & Wager, 2018).

E. Proof of Theorem 5
For the first property, minimizing the ARE is equivalent to maximizing the following quantity

k∑
i=1

γimγi(−γi/α2)

α2
=

k∑
i=1

φ(γi)

α2
. (45)

It is helpful to introduce r(t) = φ(γ), where t = 1/γ. We can easily compute that

r′(t) =
α2

2

(
−1 +

t− (1− 1/α2)√
(t− (1− 1/α2))2 + 4/α2

)
< 0 , r′′(t) =

2

[(t− (1− 1/α2))2 + 4/α2]3/2
> 0.

Thus, r(t) is a decreasing and convex function. We can show the ARE achieves minimum when the samples are equally
distributed by considering the following optimization problem

max
ti

k∑
i=1

r(ti)

α2

subject to
k∑
i=1

ti =
1

γ
,

ti ≥ 0, i = 1, 2, . . . , k.

We denote the objective by R(t1, . . . , tk), and the corresponding Lagrangian by Rξ = R− ξ(
∑
i ti − 1/γ). Then it is easy

to check that the condition ∂Rξ
∂ti

= 0 reduces to

r′(ti)

α2
− ξ = 0, i = 1, 2, . . . , k. (46)

Since r′(t) is also monotone, the unique solution to the stationary condition is t1 = t2 = · · · = tk = 1/(kγ). If some ti
equals to 0, then it reduces to a problem with k − 1 machines. So it remains to check the boundary case where only one ti is
non-zero and equals to 1/γ. Obviously, this is the trivial case where the ARE is 1. Therefore, we have shown that the ARE
attains its minimum when the samples are equally distributed across k machines.

Next, for fixed α2 and γ, we can check

∂ψ

∂k
=
γmγ(−γ/α2)

α2

α2

2γ
·

(
γ/α2 + γ

)2
k + γ/α2 − γ√

(γ/α2 + γ)
2
k2 + 2 (γ/α2 − γ) k + 1

− 1 + α2

2

 ≤ 0. (47)

Moreover, the limit of ψ is

h(α2, γ) = lim
k→∞

ψ(k, γ, α2) =
γmγ(−γ/α2)

α2

(
1 +

α2

γ(1 + α2)

)
=
−γ/α2 + γ − 1 +

√
(−γ/α2 + γ − 1)2 + 4γ2/α2

2γ

(
1 +

α2

γ(1 + α2)

)
.
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F. Proof of Theorem 6 and an intuitive explanation for why the weights are large
F.1. Proof of Theorem 6

Recall that the optimal weights are w∗ = (A+R)−1v and σ2α2(A+R)→ V V > +D. Denote the limit of the optimal
weights by W , so that we have

W = σ2α2(V V > +D)−1V =
σ2α2D−1V

1 + V >D−1V
.

When we choose λi = γi/α
2 for each i, we can write the limiting optimal weights as

W =Mk ·D−1V.

So, it follows from the formulas ofMk, D and V that

Wi =

(
α2

γimγi(−γi/α2)

)
·

 1

1 +
∑k
i=1

[
α2

γimγi (−γi/α2) − 1
]
 .

For the sum of the coordinates, we have

1>W =

∑k
i=1

(
α2

γimγi (−γi/α2)

)
1 +

∑k
i=1

[
α2

γimγi (−γi/α2) − 1
] =

∑k
i=1

(
α2

γimγi (−γi/α2)

)
1− k +

∑k
i=1

(
α2

γimγi (−γi/α2)

) ≥ 1.

In the special case where all γi are equal, i.e., γi = kγ, we have all Wi equal to

Wi =

α2

kγ·mkγ(−kγ/α2)

1− k + α2

γ·mkγ(−kγ/α2)

=
1

k + (1− k) · kγ/α2 ·mkγ(−kγ/α2)
.

In terms of the optimal risk function φ(γ) = φ(γ, α) = γmγ(−γ/α2) defined before, this can also be written as the
following optimal weight function

W(k, γ, α) =
1

k − (k − 1) · φ(kγ)/α2
.

The monotonicity and the limits ofW can be checked directly.

F.2. Intuitive explanation for the need to use weights summing to greater than unity

Consider a much more simplified problem, where we are estimating a scalar parameter θ. We have an estimator θ̂, which is
generally biased, and we would like to find the scale multiple c · θ̂ that minimizes the mean squared error. A calculation
reveals that

M(c) = E(c · θ̂ − θ)2 = c2E(θ̂2)− 2c · Eθ̂ · θ + θ2

Hence the optimal scale factor is c = Eθ̂ · θ/E(θ̂2).

We can achieve a better understanding of this optimal scale if we consider the bias-variance decomposition of θ̂. Let us
define the bias and the variance as

B = Eθ̂ − θ

V = E(θ̂ − Eθ̂)2

We then see that the optimal scale factor is

c =
B + θ

V + (B + θ)2
θ = 1− V +B(B + θ)

V + (B + θ)2
.

This quantity is an ”inflation factor”, i.e., greater than or equal to unity, if V +B(B + θ) ≤ 0. This can be written as

V +B2 ≤ −Bθ
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Hence, this condition can only hold if the bias B has opposite sign with θ. This would be the case for a shrinkage estimator
θ. In that case, the condition could hold if the parameter θ has a large magnitude.

Returning to our main problem, ridge regression is a shrinkage estimator, and averages of ridge regression estimators are still
shrinkage estimators. Therefore, it makes sense that their weighted average should be inflated to minimize mean squared
error. This provides an intuitive explanation for why the weights sum to greater than one.

G. Out-of-sample prediction
In real applications, out-of-sample prediction is also of interest. We consider a test datapoint (xt, yt), generated from the
same model yt = x>t β + εt, where xt, εt are independent of X, ε. We want to use x>t β̂ to predict yt, and the out-of-sample
prediction error is defined as E(yt − x>t β̂)2.

Under the conditions of Theorem 3, the limiting out-of-sample prediction error of the optimal distributed estimator β̂dist is

Ok = σ2 +Mk.

Thus, the asymptotic out-of-sample relative efficiency, meaning the ratio of prediction errors, is

OE =
O1

Ok
=
M1 + σ2

Mk + σ2
,

and the efficiency for prediction is higher than for estimation OE ≥ ARE. Furthermore, when the samples are equally
distributed, the relative efficiency has the form

Ψ(k, γ, α2) =
1 + γmγ(−γ/α2)

1 +
α2γmkγ(−kγ/α2)

α2+(1−k)γmkγ(−kγ/α2)

,

and the corresponding infinite-worker limit (taking k →∞) is

H(α2, γ) =
1 + γmγ(−γ/α2)

1 + γα2(1+α2)
α2+γ(1+α2)

.
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Figure 1. Limit of OE: (a) surface and (b) contour plots of H(α2, γ).

The proof is straightforward. We can see Figure 1 for some plots. For the identity covariance case, the efficiency loss of
the distributed estimator in terms of the test error is always less than the loss in terms of the estimation error. When the
signal-to-noise ratio α2 is small, the relative efficiency is always very large and close to 1. This observation can be an
encouragement to use our distributed methods for out-of-sample prediction.

H. Additional experimental results
H.1. How much does optimal weighting help?

This allows us to compare our proposed weighting method to a ”baseline”. See Figure 2. We have plotted the risk of
distributed ridge regression for both the optimally weighted version and the simple average, as a function of the regularization
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(a) k=5 (b) k=10

Figure 2. Distributed risk as a function of the regularization parameter. We plot both the risk with optimal weights (MSE opt) and the risk
obtained from sub-optimal averaging (MSE avg). We set α = 1, γ = 0.17 and k = 5, 10.

parameter. We observe that optimal weighting can lead to a 30-40% decrease in the risk. Therefore, our proposed weighting
scheme can sometimes lead to a substantial benefit.

H.2. Experiments on general covariance structures

(a) k=1 (b) k=2 (c) k=5 (d) k=10

Figure 3. Distributed risk as a function of the regularization parameter. We plot the risk of the optimally weighted distributed estimator for
an AR-1 covariance structure. We set α = 1, γ = 0.17 and k = 1, 2, 5, 10.

How can we choose the optimal regularization parameters when the predictors have a general covariance structure Σ? In this
case, our theoretical results do not give an explicit expression for the optimal regularization parameters. Here we present
simulation results to shed light on this question. Here the regression model is Y = Xβ + ε. We generate the datapoints
independently from an autoregressive model of order one (AR-1), i.e., each datapoint xi is generated as xi ∼ N (0,Σ),
where Σij = ρ|i−j|, and ρ is the autocorrelation parameter. β is a p-dimensional random vector with i.i.d. mean 0, variance
α2/p normal entries, and ε also has i.i.d standard normal entries. For each k = 1, 2, 5, 10, we split the data equally into k
groups and do distributed ridge regression. We choose ρ = 0.9. We also choose n = 3000, p = 500, and report the results
of a simulation where we average over nmc = 20 independent realizations of β. Figure 3 shows the optimal distributed
risk M∗(k) as a function of the local regularization parameter λ. We set all local regularization parameters to equal values,
which is reasonable, since the local problems are exchangeable. We also parametrize the regularization parameters as
multiples of the optimal parameter for the isotropic case (which equals γ/α2). We observe that for k = 1, the optimal
parameter is the same as in the isotropic case. This makes sense, because the optimal regularization parameter for one
machine is always the same, regardless of the structure of the design. However for k > 1, we generally observe that the
regularization parameters are smaller than the isotropic ones. This is an insight that has apparently not been available before.
In fact, further simulations show that similar results hold for more general covariance structures, i.e. the optimal λ tends to
be smaller than the optimal one in the isotropic case. It is a topic of future work to develop an intuitive understanding.

H.3. Finite-sample comparison of relative efficiency for isotropic covariance

Figure 4 shows a comparison of the theoretical formulas for ARE and realized relative efficiency in a regression simulation.
Here the regression model is Y = Xβ + ε, where X is n × p with i.i.d. standard normal entries, β is a p-dimensional
random vector with i.i.d. mean 0, variance α2/p normal entries, and ε also has i.i.d standard normal entries. For each
k = 1, 2, 5, 10, 20, 50, we split the data equally into k groups and perform ridge regression on each group. For each group,
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(a) n=1000 (b) n=10000

Figure 4. Realized relative efficiency in a regression simulation.

we choose the same tuning parameter λi = p/(niα
2). For the global regression on the entire dataset, we choose the tuning

parameter λ = p/(nα2) optimally.

We show the results of the expression for the realized relative efficiency ‖β̂ − β‖2/‖β̂dist − β‖2 compared to the theoretical
ARE. We generate 100 independent copies of ε, perform regression, recording the realized relative efficiency ||β̂ −
β||2/||β̂dist − β||2, as well as its overall Monte Carlo mean. For the first plot, we take n = 1000, p = 100, and α = σ = 1.

As we can see in the plot, the theoretical formula is accurate only for a small number of machines. It turns out that this
is due to finite-sample effects. In the second plot, we set n = 10000, p = 1000 and α = σ = 1 such that the aspect ratio
γ = p/n is the same as before. In that case the theoretical formula becomes very accurate.
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