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Abstract
Extreme multi-label classification (XMC) is the
problem of finding the relevant labels for an in-
put, from a very large universe of possible labels.
We consider XMC in the setting where labels are
available only for groups of samples - but not for
individual ones. Current XMC approaches are not
built for such multi-instance multi-label (MIML)
training data, and MIML approaches do not scale
to XMC sizes. We develop a new and scalable al-
gorithm to impute individual-sample labels from
the group labels; this can be paired with any ex-
isting XMC method to solve the aggregated label
problem. We characterize the statistical proper-
ties of our algorithm under mild assumptions, and
provide a new end-to-end framework for MIML
as an extension. Experiments on both aggregated
label XMC and MIML tasks show the advantages
over existing approaches.

1. Introduction
Extreme multi-label classification (XMC) is the problem
of finding the relevant labels for an input from a very large
universe of possible labels. XMC has wide applications in
machine learning including product categorization (Agrawal
et al., 2013; Yu et al., 2014), webpage annotation (Partalas
et al., 2015) and hash-tag suggestion (Denton et al., 2015),
where both the sample size and the label size are extremely
large. Recently, many XMC methods have been proposed
with new benchmark results on standard datasets (Prabhu
et al., 2018a; Guo et al., 2019; Jain et al., 2019).

XMC problem, as well as many other modern machine learn-
ing problems, often require a large amount of data. As the
size of the data grows, the annotation of the data becomes
less accurate, and large-scale data annotation with high qual-
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ity becomes growingly expensive. As a result, modern ma-
chine learning applications need to deal with certain types
of weak supervision, including partial but noisy labeling
and active labeling. These scenarios lead to exploration of
advanced learning methods including semi(self)-supervised
learning, robust learning and active learning.

In this paper, we study a typical weak supervision setting
for XMC named Aggregated Label eXtreme Multi-label
Classification (AL-XMC), where only aggregated labels are
provided to a group of samples. AL-XMC is of interest in
many practical scenarios where directly annotated training
data can not be extracted easily, which is often due to the
way data is organized. For example, Wikipedia contains a
set of annotated labels for every wiki page, and can be used
by an XMC algorithm for the task of tagging a new wiki
page. However, if one is interested in predicting keywords
for a new wiki paragraph, there is no such directly annotated
data. Similarly, in e-commerce, the attributes of a product
may not be provided directly, but the attributes of the brand
of the product may be easier to extract. To summarize,
it is often easier to get aggregated annotations belonging
to a group of samples. This is known as multi-instance
multi-label (MIML) (Zhou et al., 2012) problem in the non-
extreme label size setting.

AL-XMC raises new challenges that standard approaches
are not able to address. Because of the enormously large
label size, directly using MIML methods leads to compu-
tation and memory issues. On the other hand, standard
XMC approaches suffer from two main problems when di-
rectly applied to AL-XMC: (1) higher computation cost
due to increased number of positive labels, and (2) worse
performance due to ignoring of the aggregation structure.
In this work, we propose an Efficient AGgregated Label
lEarning algorithm (EAGLE) that assigns labels to each
sample by learning label embeddings based on the structure
of the aggregation. More specifically, the key ingredient
of EAGLE follows the simple principle that the label em-
bedding should be close to the embedding of at least one
of the sample points in every positively labeled group. We
first formulate such an estimator, then design an iterative
algorithm that takes projected gradient steps to approximate
it. As a by-product, our algorithm naturally extends to the
non-XMC setting as a new end-to-end framework for the
MIML problem. Our main contributions include:
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• We propose to study AL-XMC, which has significant
impact for modern machine learning applications. We
propose an efficient and robust algorithm EAGLE with
low computation cost ( Section 4) that can be paired
with any existing XMC method for solving AL-XMC.

• We provide theoretical analysis for EAGLE and show
the benefit of label assignment, the property of the
estimator and the convergence of our iterative update
(Section 5).

• The proposed method can be easily extended to the
regular (non-extreme) MIML setting (Section 6). Our
solution can be viewed as a co-attention mechanism
between labels and samples. We empirically show its
benefit over previous MIML framework in Section 7.

2. Related Work
Extreme multi-label classification (XMC). The most
classic and straightforward approach for XMC is based on
the One-Vs-All (OVA) method (Yen et al., 2016; Babbar &
Schölkopf, 2017; Liu et al., 2017; Yen et al., 2017), which
treats each label separately and learns a classifier for each
label. OVA has shown to achieve high accuracy, but the
computation is too expensive for extremely large label set.
Tree-based methods, on the other hand, try to improve the
efficiency of OVA by using hierarchical representations for
samples or labels (Agrawal et al., 2013; Prabhu & Varma,
2014; Jain et al., 2016; Si et al., 2017; Siblini et al., 2018;
Prabhu et al., 2018b). Among these approaches, label par-
titioning based methods, including Parabel (Prabhu et al.,
2018b), have achieved leading performances with training
cost sub-linear in the number of labels. Apart from tree-
based methods, embedding based methods (Zhang et al.,
2018; Chang et al., 2019; You et al., 2019; Guo et al., 2019)
have been studied recently in the context of XMC in or-
der to better use the textual features. In general, while
embedding based methods may learn a better representa-
tion and use the contextual information better than tf-idf,
the scalability of these approaches is worse than tree-based
methods. Recently, Medini et al. (2019) apply sketching to
learn XMC models with label size at the scale of 50 million,
and the connection between softmax and negative sampling
approach (Jain et al., 2019), hierarchical softmax with par-
titioned label trees are shown in (Bamler & Mandt, 2020;
Wydmuch et al., 2018).

Multi-instance multi-label learning (MIML).
MIML (Zhang & Zhang, 2007) is a general setting
that includes both multi-instance learning (MIL) (Dietterich
et al., 1997; Maron & Lozano-Pérez, 1998) and multi-label
learning (MLL) (McCallum, 1999; Zhang & Zhou, 2013).
AL-XMC can be categorized as a special MIML setting
with extreme label size. Recently, Feng and Zhou (2017)

propose the general deep MIML architecture with a
‘concept’ layer and two max-pooling layers to align with
the multi-instance nature of the input. In contrast, our
approach learns label representations to use them as
one branch of the input. On the other hand, Ilse et al.
(2018) adopt the attention mechanism for multi-instance
learning. Similar attention-based mechanisms are later
used in learning with sets (Lee et al., 2019) but focus on a
different problem. Our label assignment based algorithm
EAGLE can be viewed as an analogy to the attention-based
mechanisms, while having major differences from previous
work. EAGLE provides the intuition that attention truly
happens between the label representation and the sample
representation, while previous methods do not. The idea
of jointly considering sample and label space exists in the
multi-label classification problems in vision (Weston et al.,
2011; Frome et al., 2013). While sharing the similar idea of
learning a joint input-label space, our work addresses the
multi-instance learning challenges as well as scalability in
the XMC setting.

Others. AL-XMC is also related to a line of theoreti-
cal work on learning with shuffled labels and permutation
estimation (Collier & Dalalyan, 2016; Pananjady et al.,
2017b; Abid et al., 2017; Pananjady et al., 2017a; Hsu et al.,
2017; Haghighatshoar & Caire, 2017), where the labels
of all samples are provided without correspondences. Our
work uniquely focuses on an aggregation structure where we
know the group-wise correspondences. Our targeted appli-
cations have extreme label size that makes even classically
efficient estimators hard to compute. Another line of work
studies learning with noisy labels (Natarajan et al., 2013;
Liu & Tao, 2015), where one is interested in identifying
the subset of correctly labeled samples (Shen & Sanghavi,
2019b), but there is no group-to-group structure. More
broadly, in the natural language processing context, indi-
rect supervision (Chang et al., 2010; Wang & Poon, 2018)
tries to address the label scarcity problem where large-scale
coarse annotations are provided with very limited fine-grain
annotations.

3. Problem Setup and Preliminaries
In this section, we first provide a brief overview of XMC,
whose definition helps us formulate the aggregated label
XMC (AL-XMC) problem. Based on the formulation, we
use one toy example to illustrate the shortcomings of exist-
ing XMC approaches when applied to AL-XMC.

XMC and AL-XMC formulation. An XMC problem
can be defined by {X,Y}, where X ∈ Rn×d is the feature
matrix for all n samples, Y ∈ {0, 1}n×l is the sample-to-
label binary annotation matrix with label size l (if sample
i is annotated by label k then Yi,k = 1). For the AL-
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Figure 1: A toy example of AL-XMC. Label 1 & 2 are both
tagged for each group in {s1, s2}, {s3, s4}, {s5, s6}. Sam-
ples s1, s3, s5 all have feature x, while s2, s4, s6 all have
feature −x. A good model should identify that s1, s3, s5

and s2, s4, s6 belong to two labels, respectively (order does
not matter). Ignoring the aggregation structure makes stan-
dard XMC approaches fail completely.

XMC problem, however, such a clean annotation matrix is
not available. Instead, aggregated labels are available for
subsets of samples. We use m intermediate nodes to repre-
sent this aggregation, where each node is connected to a sub-
set of samples and gets annotated by multiple labels. More
specifically, AL-XMC can be described by {X,Y1,Y2},
where the original annotation matrix is replaced by two bi-
nary matrices Y1 ∈ {0, 1}n×m and Y2 ∈ {0, 1}m×l. Y1

captures how the samples are grouped, while Y2 captures
the labels for the aggregated samples. The goal is to use
{X,Y1,Y2} to learn a good extreme multi-label classifier.
Let ḡ = nnz(Y1)/m denote the average group size. In
general, the larger ḡ is, the weaker the annotation quality be-
comes. For convenience, letN ,M,L be the set of samples,
intermediate nodes, and labels, respectively. Let Nj ,Lj
be the set of samples, labels linked to intermediate node j
respectively, ∀j ∈ M, andMk be the set of nodes inM
connected to label k ∈ L1. Let x>i be the i-th row in X
for i ∈ Nj , j ∈ M, and XS be the submatrix of X that
includes rows with index in set S ⊆ N 2.

Deficiency of existing XMC approaches. Existing XMC
approaches can be applied for AL-XMC by treating the
product Y1Y2 directly as the annotation matrix, and learn-
ing a model using {X,Y1Y2}. While using all labeling
information, this simple treatment ignores the possible in-
correct correspondences due to label aggregation. To see

1We slightly abuse the notation and use Nj ,Mk,Lj for the
corresponding index sets as well.

2We summarize all notations in the Appendix.

the problem of this treatment, we take the XMC method
Parabel (Prabhu et al., 2018b) as an example. Notice that the
deficiency generally holds for all standard XMC approaches,
but it is convenient to illustrate for a specific XMC method.
Parabel is a scalable algorithm that achieves good perfor-
mance on standard XMC datasets based on a partitioned
label tree: It first calculates label representations L = Y>X
that summarize the positive samples associated with every
label (step 1); Next, a balanced hierarchical partitioning of
the labels is learned using L (step 2); Finally, a hierarchical
probabilistic model is learned given the label tree (step 3).
Notice that the label embedding that Parabel would use for
AL-XMC if we naively use Y1Y2 as the annotation matrix
is given by:

L =
(
Y1Y2

)>
X. (1)

Consider an example where there are n samples and 2 la-
bels, with X ∈ Rn×d, Y1 ∈ {0, 1}n×n2 , Y2 ∈ {0, 1}n2×2

defined as follows:

X = 1n
2
⊗
[

x>

−x>

]
,Y1 = In

2
⊗ 12,Y

2 = 1n
2×2,

where ⊗ is the Kronecker product, 1d(1d1×d2) is an all-
ones vector(matrix) with dimension d(d1×d2) and Id is the
identity matrix with size d. A pictorial explanation is shown
in Figure 1. The embedding calculated using the above
X,Y1,Y2 leads to L = 0n×2 and loses all the information.
With this label embedding, the clustering algorithm in step
2 and the probabilistic model in step 3 would fail to learn
anything useful. However, a good model for the above
setting should classify samples with feature close to x as
label 1 and samples with feature close to −x as label 2
(or vice versa). Such a failure of classic XMC approaches
motivates us to provide algorithms that are robust for the
AL-XMC problem.

4. Algorithms
The main insight we draw from the toy example above is
that ignoring the aggregation structure may lead to serious
information loss. Therefore, we propose an efficient and
robust label embedding learning algorithm to address this.
We start with the guiding principle of our approach, and
then explain the algorithmic details.

Given an XMC dataset with aggregated labels, our key idea
for finding the embedding for each label is the following:

The embedding of label k ∈ L should be close
to the embedding of at least one of the samples in
Nj , ∀j ∈Mk.

The closeness here can be any general characterization of
similarity, e.g., the standard cosine similarity. According
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Algorithm 1 GROUP_ROBUST_LABEL_REPR (GRLR)

Inputs:Mk, {Nj}j∈Mk
, X.

Output: Label embedding ek.
Initialize: Set e0 ← Proj

(∑
j∈Mk

∑
i∈Nj xi

)
.

for t = 1, · · · , T do /* where Proj(x) := x/‖x‖ */
for j ∈Mk do
vi,j ← 〈et−1,xi〉, ∀i ∈ Nj .
ai,j←1

{
vi,j == maxi′∈Nj vi′,j

}
, ∀i ∈ Nj .

end for
gt ← Proj

(∑
j∈Mk

∑
i∈Nj ai,jxi

)
.

et ← Proj
(
et−1 + λ · gt

)
.

end for
Return: eT .

to this rule, in the previous toy example, the optimal label
embedding for both labels is either [x,−x] or [−x,x], in-
stead of [0,0]. More formally, the label embedding for label
k ∈ L is calculated based on the following:

êk = arg max
e:‖e‖=1

∑
j∈Mk

max
i∈Nj
〈xi, e〉. (2)

whereMk,Nj are as defined in Section 3.

The goal of (2) is to find label k’s representation that is
robust even when every group has samples not related to
k. However, finding the estimator in (2) is in general hard,
since the number of possible combinations for choosing the
maximum in each group is exponential in n. We provide an
iterative algorithm that alternates between the following two
steps for T times to approximate this estimator: (i) identify
the closest sample in each group given the current label
embedding, and (ii) update the label embedding based on
the direction determined by all currently closest samples.
This is formally described in Algorithm 1.

The complete algorithm Efficient AGgregated Label lEarn-
ing (EAGLE) is formally described in Algorithm 2, whose
output can be directly fed into any standard XMC solver.
Given the label embedding and a set of samples connected to
the same intermediate node, each positive label is assigned
to the sample with highest similarity. Notice that calculat-
ing the label embedding using Algorithm 1 is equivalent to
Parabel’s label embedding in (1) if ḡ = 1, i.e., the standard
XMC setting. For general ḡ,(1) may perform well if each
sample in Nj contributes equally to the label k ∈ L, for
every node j ∈Mk. However, this is not always the case.

Complexity. Computational efficiency is one of the main
benefits of EAGLE. Notice that for each label, only the
samples belonging to its positively labeled groups are used.
Let d̄ be the average feature sparsity and assume each sam-
ple hasO(log l) labels, the positive samples for each label is
O(n log l/l · ḡ). Therefore, the total complexity for learning

Algorithm 2 EAGLE

Inputs: X,Y1 ∈ {0, 1}n×m,Y2 ∈ {0, 1}m×l.
Output: A filtered XMC dataset.
Yfilter ← 0n×l, N ← [n],M← [m],L ← [l].
Nj ← {i ∈ N|Y1

i,j == 1}, ∀j ∈M.
for k ∈ L do
Mk ← {j ∈M|Y2

j,k == 1}.
ek ←GRLR(Mk, {Nj}j∈Mk

,X).
end for
for j ∈M do

Yfilter(arg maxi∈Nj 〈ek,xi〉, k)← 1, ∀k ∈ Lj .
end for
Return: {X,Yfilter}.

all label’s embedding is O(nd̄ log l/l · ḡl) = O(nd̄ḡ log l).
On the other hand, the time complexity for Parabel (one
of the most efficient XMC solver) is O(nd̄ log l) for step
1, O(ld̄ log l) for step 2 and O(nd̄ log l) for step 3 (Prabhu
et al., 2018b). Therefore, EAGLE paired with any standard
XMC solver for solving AL-XMC adds very affordable
pre-processing cost.

5. Analysis
In this section, we provide theoretical analysis and explana-
tions to the proposed algorithm EAGLE in Section 4. We
start with comparing two estimators under the simplified
regression setting to explain when assigning labels to each
sample is helpful. Next, we analyze the statistical property
of the label embedding estimator defined in (2) in Theorem
3, and the one-step convergence result of the key step in
Algorithm 1 in Theorem 4.

In EAGLE, a learned label embedding is used to assign
each label to the ‘closest’ sample in its aggregated group.
Therefore, we start with justifying when label assignment
would help. Since the multi-label classification setting may
complicate the analysis, we instead analyze a simplified
regression scenario. Let Z ∈ Rn×l be the response of all
n samples in X. Given B? ∈ Rd×l, each group in Z is
generated according to

ZNj = Πj(XNjB
? + Ej), j ∈M

where Ej is the noise matrix, and Πj is an unknown per-
mutation matrix. For simplicity, we assume each group
includes g samples and the aggregation structure can be
described by Y1 = Im ⊗ 1g, Y2 =

(
Im ⊗ 1>g

)
· Z with

m = n/g. If each row in Z is a one-hot vector, Y2 becomes
a binary matrix and {X,Y1,Y2} corresponds to the stan-
dard AL-XMC problem. Our goal here is to recover the
model parameter B?, with ‖B?‖ = 1 for convenience. We
assume each row in Ej independently follows N (0, σ2

eIl),
each sample feature is generated according to xi = x̄j + di
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for i ∈ Nj , j ∈ M, where x̄j ∼ N (0, σ2
1Id) describes the

center of each group, and di ∼ N (0, σ2
2Id) captures the

deviation within the group. Notice that the special case of
σ1 � σ2 corresponds to all samples are i.i.d. generated
spherical Gaussians. In the other extreme, σ2 � σ1 corre-
sponds to samples within each group are clustered well. We
consider the following two estimators:

B̂NoAS = LR
(
∪j∈M

{(
1>g XNj ,1

>
g ZNj

)})
B̂AS = LR

(
∪j∈M ∪i∈Nj {(xi′ , zi)}

)
(3)

where LR
(
{(xi, zi)}i∈[n]

)
=

( ∑
i∈[n]

xix
>
i

)−1 ∑
i∈[n]

xiz
>
i

and i′ = arg minī∈Nj

∥∥∥zi − B̂>NoASxī

∥∥∥. Here, B̂NoAS corre-
sponds to the baseline approach that learns a model without
label assignment. On the other hand, B̂AS corresponds to
the estimator we learn after assigning each output in the
group to the closest instance based on the residual norm
using B̂NoAS. We have the following result that describes the
property of the two estimators:

Theorem 1. Given the two estimators in (3), let R1 =∥∥∥B̂NoAS −B?
∥∥∥, R2 =

∥∥∥B̂AS −B?
∥∥∥, σx =

√
σ2

1 + σ2
2 ,

with n ≥ c0pgd log2 d, the following holds with high proba-
bility (i.e., 1− n−c1 ):

R1 ≤ O

(√
1

p(gσ2
1 + σ2

2)
σe

)
, (4)

R2≤O

(√
1

pgσ2
x

σe

)
+O

(√
σ2
e

σ2
x

+R2
1

√
σ2
e

σ2
x

+ 1

)
. (5)

We can see the pros and cons of the two estimators from the
above theorem. The first term in (5) is the rate achieved by
the maximum likelihood estimator with all correspondences
given (known Πjs), while the second term is a bias term due
to incorrect assignment. This bias term gets smaller as the
measurement noise and the estimation error become smaller.
In (4), when σ1 � σ2, B̂NoAS achieves the same rate as the
optimal estimator, but when σ1 � σ2, the rate goes down
from n−1/2 to (n/g)−1/2. This shows that B̂NoAS is close
to optimal when the clustering quality is high (within group
deviation is small), on the other hand, B̂AS is nearly optimal
for all clustering methods, while having an additional bias
term that depends on the measurement noise.

Next, we analyze the property of the estimator in (2), since
our iterative algorithm tries to approximate it. We assume
that for each label k ∈ L, there is some ground truth em-
bedding e?k, and each sample is associated with one of the
labels. For sample i with ground truth label k, its feature
vector xi can be decomposed as: xi = e?k + εi. Without

loss of generality, we only need to focus on the recovering
of single label k ∈ L. Further, for simplicity, let us assume
that both xi and e?k have unit norm measured in Euclidean
space. We introduce the following definition that describes
the property of the data:

Definition 2. Define δ = min
k1,k2

∥∥e?k1 − e?k2
∥∥ to be the min-

imum separation between each pair of ground truth label
embeddings. Define f(γ) = max

S⊂M,|S|/|M|≤γ
1
|S|
∥∥∑

i∈S εi
∥∥

to be the maximum influence of the noise, for γ ∈ [0, 1],
and let f = f(1). Define q = max

k1,k2

|Mk1
∩Mk2

|
min{Mk1

,Mk2
} to be

the maximum overlap between the set of intermediate nodes
associated with two labels.

Given the above definition, we have the following result
showing the property of the estimator in (2):

Theorem 3. With q, δ > 0, the estimator in (2) satisfies:

〈e?k, êk〉 ≥1− rf − (
√

2r + 2)f2, (6)

where r =

([
1− q − 2f

δ

]
+

)−1

− 1.

Theorem 3 characterizes the consistency of the estimator
as noise goes to zero. It also quantifies the influence of
minimum separation as well as maximum overlap between
labels. A smaller δ and a larger q both leads to harder
identification problem, which is reflected in an increasing r
in (6). We then provide the following one-step convergence
analysis for each iteration in Algorithm 1.

Theorem 4. Given label k and current iterate et. Let Sgoodt

be the set of groups where et is closest to the sample belongs
to label k. Denote |Sgoodt |/|Mk| = αt. The next step
iterate given by Algorithm 1 has the following one-step
property:

〈e?k, et+1〉 ≥αt + (1− αt)
(
〈e?k, et〉 − ‖e?k − et‖

)
− f

and a sufficient condition for contraction is 〈e?k, et〉 ≤ 1−

2
(

1−f/2
αt
− 1
)2

.

The key idea of the proof is based on the following fact of
our algorithm: if a sample that does not come from label k is
selected by et , then the distance from the selected incorrect
sample to label k’s embedding can be controlled by the
distance to et and the distance from et to e?k, where the first
term is small because of the selection rule. Please find the
details of the proof in the Appendix. Theorem 4 shows how
each iterate gets closer to the ground truth label embedding.
Since our algorithm does not require any assumption on
the group size, we do not show the connection between αt
and et (which requires more restrictive assumptions), but
instead provide a sufficient condition to illustrate when the
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Figure 2: Illustration of extending EAGLE to standard MIML framework. The upper branch is the original deep MIML
framework (Feng & Zhou, 2017), where the Deep-MIML module converts X to V2 as in (7). In the lower branch,
EAGLE first learns label embedding using Algorithm 1 by re-organizing the MIML dataset. Then, a soft-assignment mask
is generated based on the inner product between the multi-instance inputs and the label embedding. The masked MI logit
is an element-wise multiplication of the mask and the original MI logit. A max-pooling operation over instances on the
masked MI logit gives the final logit for prediction, similar to the original deep MIML.

next iterate would improve. Notice that as the group size
becomes larger, the signal becomes smaller and α is smaller
in general.

6. Extensions
In the previous section, EAGLE is proposed for AL-
XMC in the extreme label setting. In the non-extreme case,
EAGLE naturally leads to a solution for the general MIML
problems.

Deep-MIML Network. Feng and Zhou (2017) propose a
general deep-MIML network: given a multi-instance input
X with shape g × d, the network first transforms it into a
g × k × l tensor V1 through a fully connected layer and a
ReLU layer, where l is the label size and k is the additional
dimension called ‘concept size’ (Feng & Zhou, 2017) to
improve the model capacity. A max-pooling operation over
all ‘concepts’ is taken on V1 to provide a g × l matrix V2

(which we call multi-instance logit). Finally, max-pooling
over all instances is taken on V2 to give the final length-l
logit prediction Ŷ. This network can be summarized as:

X
FC + ReLU
GGGGGA V1

max-pooling
GGGGGGGGGA

(over concepts)
V2

max-pooling
GGGGGGGGGA

(over samples)
Ŷ (7)

A co-attention framework. Our idea can be directly ap-
plied to modify the deep-MIML network structure, as shown
in Figure 2. The main idea is to add a soft-assignment

mask to the original multi-instance logit, where this mask
mimics the label assignment in EAGLE. After learning
the label embedding L ∈ Rl×d from the dataset using Al-
gorithm 1, the mask M ∈ Rg×l is calculated by M =
g · Softmax

(
τXMjL

>) where this softmax operation ap-
plies to each column in M. As a result, Mi,j indicates the
affinity between instance i and label j. Notice that τ con-
trols the hardness of the assignment, and the special case
of τ = 0 corresponds to the standard deep-MIML frame-
work. Interestingly, this mask can also be interpreted as
an attention weight matrix, which is then multiplied with
the multi-instance logit matrix V2. While there is other
literature using attention for MIL (Ilse et al., 2018), none of
the existing methods uses a robust calculation of the label
embedding as the input to the attention. The proposed co-
attention framework is easily interpretable since both labels
and samples lie in the same representation space, with the-
oretical justifications we have shown in Section 5. Notice
that the co-attention framework in Figure 2 can be trained
end-to-end.

7. Experimental Results
In this section, we empirically verify the effectiveness of
EAGLE from multiple standpoints. First, we run simula-
tions to verify and explain the benefit of label assignment as
analyzed in Theorem 1. Next, we run synthetic experiments
on standard XMC datasets to understand the advantages of
EAGLE under multiple aggregation rules. Lastly, for the
natural extension of EAGLE in the non-extreme setting (as
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Table 1: Statistics of 4 XMC datasets. ‘sample size’ column includes training & test set. The last column includes precisions
with the clean datasets, which can be thought of as the oracle performance given an XMC dataset with aggregated labels.

Dataset # feat. # label sample size avg samples/label avg labels/sample std. precision (P@1/3/5)

EurLex-4K 5,000 3,993 15,539 / 3,809 25.73 5.31 82.71 / 69.42 / 58.14
Wiki-10K 101,938 30,938 14,146 / 6,616 8.52 18.64 84.31 / 72.57 / 63.39
AmazonCat-13K 203,882 13,330 1,186,239 / 306,782 448.57 5.04 93.03 / 79.16 / 64.52
Wiki-325K 1,617,899 325,056 1,778,351 / 587,084 17.46 3.19 66.04 / 43.63 / 33.05

Table 2: Comparing Baseline, EAGLE-0 (EAGLE without label learning) and EAGLE on small/mid/large-size XMC
datasets with aggregated labels. ‘O’ stands for oversized model (>5GB). R-4/10 randomly selects 4/10 samples in each
group and observes their aggregated labels. C clusters samples based on hierarchical k-means. The cluster depth is
determined based on sample size (8 for EurLex-4k, Wiki-10k and 16 for AmazonCat-13k and Wiki-325k).

EurLex-4k Wiki-10k AmazonCat-13k Wiki-325k
Baseline EAGLE-0 EAGLE Baseline EAGLE-0 EAGLE Baseline EAGLE-0 EAGLE Baseline EAGLE-0 EAGLE

R-4 P1 76.58 80.16 80.87 73.07 78.28 80.38 80.62 78.83 81.34 34.09 62.45 60.60
P3 61.36 63.49 65.33 60.84 63.81 66.15 65.81 67.45 69.97 33.34 41.96 40.23
P5 49.50 51.01 52.88 53.31 54.66 57.22 54.06 54.80 56.98 26.05 31.23 29.80

R-10 P1 62.95 62.58 67.56 64.87 65.21 68.89 56.42 60.71 63.47 O 52.43 54.81
P3 47.72 44.07 48.03 51.13 50.33 53.60 47.74 49.05 51.59 O 34.02 35.80
P5 37.59 33.25 35.91 42.89 41.22 44.68 40.74 38.06 39.47 O 24.84 26.18

C P1 17.94 39.11 43.11 16.34 39.13 40.25 74.65 56.41 56.19 O 45.03 46.39
P3 16.27 28.02 30.08 16.08 30.70 31.21 64.85 48.32 48.07 O 27.98 28.96
P5 14.83 22.46 23.78 15.96 25.69 26.09 53.61 40.01 39.93 O 20.53 21.27

Figure 3: Regression task with aggregated outputs. The
advantage of AS (estimator w. label assignment) over
NoAS (estimator w.o. label assignment) matches with the re-
sult in Theorem 1. The y-axis is the root mean square (RMS)
value normalized by RMS of the maximum likelihood esti-
mator with known correspondences (lower is better).

mentioned in Section 6), we study multiple MIML tasks and
show the benefit of EAGLE over standard MIML solution.
We include details of the experimental settings and more
comparison results in the Appendix.

7.1. Simulations

We design a toy regression task to better explain the per-
formance of our approach from an empirical perspective.
Our data generating process strictly follows the setting in
Theorem 1. We set σ1 = σe = 1.0 and vary σ2 from 0.0
to 10.0, which corresponds to heterogeneity within group

changes from low to high.

Results. In Figure 3, as the deviation within each sample
group increases, AS performs much better, which is due to
the
√
g difference in the error rate between (4) and the first

term in (5). On the other hand, AS may perform slightly
worse than NoAS in the well-clustered setting, which is due
to the second term in (5). See another toy classification task
with similar observations in the Appendix.

7.2. Extreme Multi-label Experiments

We first verify our idea on 4 standard extreme classifica-
tion tasks3(1 small, 2 mid-size and 1 large), whose detailed
statistics are shown in Table 1. For all tasks, the samples
are grouped under different rules including: (i) random clus-
tering: each group of samples are randomly selected; (ii)
hierarchical clustering: samples are hierarchically clustered
using k-means. Each sample in the original XMC dataset
belongs to exactly one of the groups. As described in Sec-
tion 4, EAGLE learns the label embeddings, and assigns
every label in the group to one of the samples based on
the embeddings. Then, we run Parabel and compare the
final performance. Notice that it is possible to assign labels
more cleverly, however, we focus on the quality of the label
embedding learned through EAGLE hence we stick to this

3http://manikvarma.org/downloads/XC/XMLRepository.html
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Figure 4: Ablation study: comparing Precision@1 between Baseline (no label assignment), EAGLE-0 (EAGLE without
label learning) and EAGLE (EAGLE with label learning). The y-axis calculates the percentage of precision decrement
over the oracle performance (trained with known sample-label correspondences). We study different factors including left:
group size in random grouping; middle: hierarchical clustering depth size; right: heterogeneity within group changes from
low (hierarchical clustering) to high (random grouping).

simple assigning rule. We consider (i) Baseline: Parabel
without label assignment; (ii) EAGLE-0: EAGLE without
label learning (T = 0); and (iii) EAGLE: EAGLE with
label learning (T = 20 by default).

Results. We report the performance using the standard
Precision@1/3/5 metrics in Table 2. From the empirical re-
sults, we find that EAGLE performs better than EAGLE-0
almost consistently, across all tasks and all grouping meth-
ods, and is much better than Baseline where we ignore
such aggregation structure. Baseline performs much bet-
ter only on AmazonCat-13k with hierarchical clustering,
which is because of the low heterogeneity within each clus-
ter, as theoretically explained by our Theorem 1. Notice that
the precision on standard AmazonCat-13k achieves 93.04,
which implies that the samples are easily separated. Fur-
thermore, we also provide ablation study on EurLex-4K
in Figure 4 to understand the influence of group size and
clustering rule. We report the decrement percentage over
a model trained with known correspondences. As a sanity
check, as the size of the group gets smaller and annotation
gets finer in Figure 4-(a) & (b), all methods have 0% decre-
ment. More interestingly, in the other regime of more coarse
annotations, (a) & (b) show that the benefit of EAGLE-0
varies when the clustering rule changes while the benefit of
EAGLE is consistent. The consistency also exists when we
change the heterogeneity within group by injecting noise
to the feature representation when running the hierarchical
clustering algorithm, as shown in Figure 4-(c).

7.3. MIML Experiments

First, we run a set of synthetic experiments on the stan-
dard MNIST & Fashion-MNIST image datasets, where
we use the raw 784-dimension vector as the representa-
tion. Each ‘sample’ in our training set consists of g random
digit/clothing images and the set of corresponding labels

Table 3: Prediction accuracy on multiple MIML tasks.

MNIST Fashion Yelp
group size 4 / 50 4 / 50 4

Deep-MIML 94.70/33.33 84.70/19.00 40.69

EAGLE-0 94.82/36.10 84.89/27.62 45.82
EAGLE 94.82/38.46 85.09/28.65 46.25

(we set g = 4, 50). We then test the accuracy on the standard
test set. On the other hand, we collect the standard Yelp’s
customer review data from the web. Our goal is to predict
the tags of a restaurant based on the customer reviews. We
choose 10 labels with balanced positive samples and report
the overall accuracy. Notice that each single review can be
splitted into multiple sentences, as a result, we formulate it
as an MIML problem similar to (Feng & Zhou, 2017). We
retrieve the feature of each instance using InferSent4, an off-
the-shelf sentence embedding method. We randomly collect
20k reviews with 4 sentences for training, 10k reviews with
single sentence for validation and 10k reviews with single
sentence for testing. We report the top-1 precision.

For both the tasks, we use a two-layer feed-forward neu-
ral network as the base model, identical to the setting in
(Feng & Zhou, 2017). We compare Deep-MIML with the
extension of EAGLE-0 and EAGLE for MIML, as illus-
trated in Figure 2. We first do a hyper-parameter search
for Deep-MIML to find the best learning rate and the ideal
epoch number (the epoch number with best validation per-
formance). Then we fix those hyper-parameters and use
them for all algorithms.

Results. The performance of EAGLE in multiple MIML
tasks is shown in Table 3. We see a 5.6% absolute im-

4https://github.com/facebookresearch/InferSent
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T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot
Figure 5: Visualization of learned label embeddings on Fashion-MNIST dataset.

provement over Deep-MIML on the Yelp dataset. There is
consistent improvement for the image tasks as well. No-
tice that the improvement on the large group size is much
significant than on the small group size. This is because
the original Deep-MIML framework is able to handle the
easy MIML tasks well, but is less effective for difficult tasks.
Figure 5 visualizes the learned label embedding for Fashion-
MNIST dataset. All these results corroborate the advantage
of using label embeddings at the beginning of feed-forward
neural networks in MIML.

8. Conclusions & Discussion
In this paper, we study XMC with aggregated labels, and
propose the first efficient algorithm EAGLE that advances
standard XMC methods in most settings. Our work leaves
open several interesting issues to study in the future. First,
while using positively labeled groups to learn label em-
bedding, what would be the most efficient way to also
learn/sample from negatively labeled groups? Second, is
there a way to estimate the clustering quality and adjust the
hyper-parameters accordingly? Moving forward, we believe
the co-attention framework we proposed in Section 6 can
help design deeper neural network architectures for MIML
with better performance and interpretation.
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A. Clarifications
Notations We could not summarize all notations in the main text due to space constraint. Here, we list and summarize
important notations in Table 4 for reader’s reference.

Table 4: List of notations.

Definitions related to samples Definitions related to intermediate nodes Definitions related to labels

N set of samples M set of intermediate nodes L set of labels
n sample size m intermediate node size l label size
i element in sample set j element in intermediate node set k element in label set

( or index of a sample ) ( or index of an intermediate node ) ( or index of a label )
Nj set of samples connected to j Mi set of nodes connected to i Lj set of labels connected to j

( or set of sample indices ) ( or set of node indices ) ( or set of label indices )
Mk set of nodes connected to k

( or set of node indices )

Annotation matrix

Y1 sample-node binary matrix Y2 node-label binary matrix Y sample-label binary matrix

Others related to XMC

X data feature matrix L label embedding matrix XS submatrix of X with rows in S
g # of samples in a group ḡ avg. # of samples for each group
d feature dimension d̄ average sparsity of a feature

Math related

A general matrix a general vector a general scalar
nnz(A) # of non-zero entries in matrix A 1d all one vector with d dimension 1d1×d2 all one matrix with size d1 × d2
⊗ Kronecker product ‖A‖ spectral norm of matrix A ‖a‖ l2 norm of a

〈a1,a2〉 cosine similarity between a1, a2 Proj(a) a/‖a‖ 1{e} return 1 if e is correct else 0

Others

e?
k ground truth label k’s embedding ek/êk estimate of k’s embedding et estimate at t-th iterate

*Theorem related definitions are not listed here. Check Theorem settings for details.

On the efficiency of EAGLE In Section 4, we have discussed the complexity of EAGLE. Remind that we have
O(nd̄ḡ log l) complexity for EAGLE and O(nd̄ log l), O(ld̄ log l), O(nd̄ log l) for the three steps in Parabel (Prabhu
et al., 2018b). Notice that Parabel’s complexity is analyzed under ḡ = 1. As a result, if we directly apply
Parabel to {X,Y1Y2}, i.e., using the baseline approach (without label assignment), the time complexity becomes
O(nḡd̄ log l), O(ld̄ log l), O(nḡd̄ log l) for the three steps, which is not better than EAGLE (and slower in practice, because
step 3 costs more time than step 1). For other XMC approaches that are less efficient, the computation complexity would
also increase by a factor of ḡ. As a result, running the baseline approach (without label assignment) becomes less efficient
compared to EAGLE. From the model size perspective, due to the label assignment, EAGLE would not increase the model
size. However, for the baseline approach, models that use sparse representations will see an increase in model size with a
multiplicative factor roughly equals to ḡ.

B. Additional Plots/Tables and Experimental Details
B.1. Simulations

We run simulation to verify the results in Theorem 1. We include a linear regression experiment and a linear classification
experiment. The setting for the regression experiment is as follows 5: The input features are generated following a two-step
procedure: first, the mean (center) for samples associated with each group is generated following N (0, σ2

1Id); then, given
the center xc, the feature of each sample in this group is xc plus an additional vector that follows distribution N (0, σ2

2Id).
The response of each sample, is generated following y = B?xi + εi, where B ∈ Rl×d is the parameter to be recovered,
ε ∼ N (0, σ2

eId). This setting is identical to the setting we analyzed in Section 5. Notice that σ2/σ1 characterizes the quality

5This is the equivalent to what we described in the main paper, what state it again for clarity.
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of the clustering.

For the classification experiment, we first generate the ground truth for each label. Then, the feature of each sample is one
of the ground truth label with an additional noise, and the label of the feature is the arg maxi〈e?k,xi〉 + εi. Note that in
regression setting, we used σ2/σ1 to describe how good the clustering quality is, here, we control the clustering quality
by changing the ground truth labels in each group from evenly generated (p = [1/l, · · · , 1/l]) to unevenly generated with
probability vector p = 1

l−1+exp(σ2) · 1 + exp(σ2)
l−1+exp(σ2)hk for some random label index k ∈ L, where hk is the one-hot vector

with non-zero index at the kth position.

Figure 6: Simulation results for a regression task (left) and a classification task (right). Rel. RMS stands for relative root
mean square error, which calculates the ratio between RMS using the estimator over RMS using the oracle estimator with
known correspondences. Rel. Error stands for relative error, which calculates the ratio between prediction error of the
estimator over the error using the oracle estimator with known correspondences. For both plots, lower y-value corresponds
to a better estimator.

The parameters used for the experiments are as follows: g = 10, n = 1000, d = 10, l = 5, σ2 ∈ [0.0, 0.1, 1.0, 5.0, 10.0].
For regression, σ1 = σe = 1.0. For classification, σ1 = 0.1, σe = 0.0. The results are shown in Figure 6. For both tasks, AS
becomes significantly better than NoAS as the heterogeneity within the group becomes higher.

B.2. Experiments for XMC datasets

Details. We use a default learning rate λ = 0.1 and iteration number T = 20 for all the experiments. When generating the
AL-XMC dataset, we aggregate label set of each sample in every group by simple list merge operation, and there may be
repetitions in the list of aggregated labels. One can also use set merge that guarantees no repetitions in each aggregated
group, and the results should not be significantly different. Nevertheless, this is an experimental detail we did not point out in
the main text due to space constraint. For the optimal iteration number T , we find that increasing T does not always increase
the final performance. From the theoretical perspective, Theorem 4 only shows contraction when the previous iterate is out
of the noise region. In other words, we have converge up to a noise ball. As a result, the quality of the learned embedding
may get slightly worse (up to the noise level) as T increase. For Wiki-10k experiments with hierarchical clustering, the
reported results use T = 5.

Additional plots. We include here additional tables / plots for the XMC experiments. Table 5 presents the detailed values
we got on the EurLex-4k dataset, with standard deviation calculated on 5 random runs. Figure 7 and 8 show the comparison
under random grouping and hierarchical clustering setting, respectively. Figure 9 shows how the improvement changes
when the heterogeneity within group gradually changes from low to high. Low heterogeneity corresponds to hierarchical
clustering while high heterogeneity corresponds to random grouping. For all three figures, we include the Precision @1/3/5
metrics (whereas in the main text, only Precision @1 is shown). Notice that cluster depth equals d corresponds to 2d groups
in total. We can see consistent improvement in all plots, while we can also see that Precision @5 performs relatively worse
than Precision @1. Part of the reason is because our algorithm does not take into account the fact that each sample may
have multiple labels with different importance. Improving the quality of improvement for less important labels would be an
interesting problem to study in the future.
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Table 5: EurLex-4k detailed performance results. We list the standard deviation for each precision score, calculated over the
result of 5 random seeds.

Oracle Baseline EAGLE-0 EAGLE

random grouping

group size

2 P1 82.71± 0.25 79.90± 0.33 81.94± 0.17 82.00± 0.18
P3 69.42± 0.07 66.59± 0.14 68.10± 0.09 68.52± 0.20
P5 58.14± 0.06 55.16± 0.09 56.37± 0.13 56.63± 0.09

4 P1 - 76.58± 0.23 80.16± 0.26 80.87± 0.07
P3 - 61.36± 0.16 63.49± 0.22 65.33± 0.12
P5 - 49.50± 0.21 51.01± 0.08 52.88± 0.04

6 P1 - 72.31± 0.31 75.06± 0.17 77.80± 0.08
P3 - 56.66± 0.18 57.31± 0.10 60.20± 0.09
P5 - 44.94± 0.08 44.63± 0.12 47.57± 0.17

8 P1 - 67.71± 0.30 69.54± 0.29 73.02± 0.22
P3 - 51.66± 0.24 50.76± 0.12 54.11± 0.21
P5 - 41.07± 0.26 38.57± 0.18 41.53± 0.05

10 P1 - 62.95± 0.32 62.58± 0.39 67.56± 0.30
P3 - 47.72± 0.35 44.07± 0.14 48.03± 0.15
P5 - 37.59± 0.20 33.25± 0.17 35.91± 0.20

hierarchical clustering

cluster depth

8 P1 - 17.94± 0.43 39.11± 0.54 43.11± 0.35
P3 - 16.27± 0.10 28.02± 0.37 30.08± 0.21
P5 - 14.83± 0.17 22.46± 0.29 23.78± 0.09

9 P1 - 34.43± 0.28 52.22± 0.43 56.70± 0.26
P3 - 30.50± 0.22 37.63± 0.30 39.92± 0.15
P5 - 27.29± 0.17 30.07± 0.29 31.83± 0.26

10 P1 - 49.45± 0.58 61.92± 0.29 63.50± 0.12
P3 - 43.17± 0.25 46.99± 0.27 48.06± 0.15
P5 - 37.55± 0.12 38.06± 0.22 38.83± 0.18

11 P1 - 62.32± 0.44 67.64± 0.18 68.80± 0.29
P3 - 52.90± 0.05 54.34± 0.08 54.79± 0.14
P5 - 44.87± 0.05 44.68± 0.18 45.00± 0.11

12 P1 - 72.07± 0.14 73.76± 0.35 74.36± 0.25
P3 - 60.19± 0.20 60.61± 0.16 60.98± 0.07
P5 - 50.66± 0.07 50.43± 0.10 50.81± 0.07
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Figure 7: The effect of random grouping size to the performance.
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Figure 8: The effect of cluster depth to the performance.
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Figure 9: The effect of within group heterogeneity to the performance.
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Table 6: Hyper-parameter search for Deep-MIML on the Yelp dataset. We search over batch size (bs) in {32, · · · , 512}, and
learning rate (lr) in {1e− 4, · · · , 0.2}. We select bs= 64, lr=1e− 4 for our experiments.

Acc. lr = 0.1 lr = 0.05 lr = 0.01 lr = 0.005 lr = 0.001 lr = 0.0005 lr = 0.0001

bs = 32 10.96± 0.41 10.82± 0.49 11.53± 0.85 14.44± 2.69 27.62± 3.55 37.65± 2.85 40.70± 1.02
bs = 64 11.20± 0.34 10.95± 0.62 12.08± 1.89 15.87± 2.92 27.06± 4.42 38.70± 2.77 40.69± 1.43
bs = 128 11.30± 0.28 11.17± 0.70 11.33± 0.80 11.81± 1.41 24.86± 5.94 31.48± 3.52 40.71± 0.65
bs = 256 11.60± 0.41 11.44± 0.82 11.46± 0.63 17.92± 3.38 20.43± 5.50 32.97± 2.65 39.44± 1.52
bs = 512 11.28± 0.33 11.76± 0.78 11.19± 1.13 15.40± 2.96 25.20± 4.87 32.29± 2.74 38.36± 0.88

T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot
Figure 10: Visualization of learned label embedding on Fashion-MNIST dataset.

B.3. MIML experiments

Yelp dataset6 The labels we used for the Yelp review dataset are: ’ Beauty & Spas’, ’ Burgers’, ’ Pizza’, ’Food’, ’ Coffee
& Tea’, ’ Mexican’, ’ Arts & Entertainment’, ’ Italian’, ’ Seafood’, ’ Desserts’, ’ Japanese’. These labels have balanced
number of samples, which makes precision the correct metric to use. The original sentence embedding has dimension 4096.
For the convenience of the experiment, we reduce the dimension to 512 for all the embeddings through random projection.

MNIST/Fashion-MNIST dataset We use the 784-dimension raw input as the feature, and subtract the average over all
training samples. We generate the MIML dataset following the same principle as the AL-XMC experiments. Notice that for
group size being 50, we observe a list of possibly repetitive labels. Doing the set merge operation when aggregating the
labels does not make a lot of sense here, since with very high probability, each group will be labeled by all 10 labels, and
there is nothing to be learned from. We also visualize the learned label embeddings for the Fashion-MNIST experiment
(with group size 4) in Figure 10.

C. Proofs
Proof of Theorem 1. We have n samples splitted into m = n/g groups, each with g samples. In the regression setting, both
Nj and Lj refer to the same set of samples, so we use Nj for clarity. We follow the close form solution of linear regression
and the NoAS estimator can be written as:

B̂NoAS =LR
(
∪j∈M

{(
1>g XNj ,1

>
g ZNj

)})
=

[XN1

>1g · · · XNm
>1g

] 1>g XN1

. . .
1>g XNm

−1 [
XN1

>1g · · · XNm
>1g

] 1>g YN1

. . .
1>g YN1

 .
6https://www.yelp.com/dataset
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Re-organizing the above equation we get:

B̂NoAS =

∑
j∈M

XNj
>1g1

>
g XNj

−1 ∑
j∈M

XNj
>1g1

>
g YNj

=

∑
j∈M

XNj
>1g1

>
g XNj

−1 ∑
j∈M

XNj
>1g1

>
g Πj

(
XNjB

? + Ej
)

=B? +

∑
j∈M

XNj
>1g1

>
g XNj

−1 ∑
j∈M

XNj
>1g1

>
g Ej ,

where the last equation uses the fact that 1>g Πj = 1g for any permutation matrix Πj . Therefore,

∥∥∥B̂NoAS −B?
∥∥∥2

=

∥∥∥∥∥∥∥
∑
j∈M

XNj
>1g1

>
g Ei

>∑
j∈M

XNj
>1g1

>
g XNj

−2 ∑
j∈M

XNj
>1g1

>
g Ej

∥∥∥∥∥∥∥ . (8)

Based on how XNj is generated, we know that X̄j := 1
g1gXNj ∼ N (0, (σ2

1 + σ2
2/g)Id). Moreover, {X̄j}j∈M are

independent and identically distributed. Based on concentration property, we know that the middle term in (8) is lower and
upper bounded by[

n−2g−2(σ2
1 + σ2

2/g)−2

(
1−O

(√
d

n

))
, n−2g−2(σ2

1 + σ2
2/g)−2

(
1 +O

(√
d

n

))]
.

Therefore,∥∥∥B̂NoAS −B?
∥∥∥2

≤n−2g−2(σ2
1 + σ2

2/g)−2

(
1 +O

(√
d

n

))
×
(
ng3

(
σ2

1 +
σ2

2

g

)
dσ2

e

g

)(
1 +O

(√
d

n

))

=
dσ2

e

n
(
σ2

1 +
σ2
2

g

) (1 +O

(√
d

n

))
.

Next, let us analyze B̂AS. We use Aj to denote a binary square matrix with size g such that each row has a unique non-zero
entry (Aj does not need to be a permutation matrix, each column may include multiple non-zero entries or none). This
Aj matrix describes the assignment happening within each group j ∈ M. For convenience, let us assume Πi = Ig. By
definition, we have:

B̂AS =

[XN1

>A1> · · · XNm
>Am>

] A1XN1

. . .
AmXNm

−1 [
XN1

>A1> · · · XNm
>Am>

]YN1

. . .
YNm

 .
Re-organizing the expression, we have:

B̂AS =

∑
j∈M

XNj
>Aj>AjXNj

−1 ∑
j∈M

XNj
>Aj>(XNjB

? + Ej)

=B? +


∑
j∈M

XNj
>XNj︸ ︷︷ ︸

T0

+
∑
j∈M

XNj
>FjXi

Nj︸ ︷︷ ︸
T1


−1

∑
j∈M

XNj
>Fj

>
(XNjB

? + Ej)︸ ︷︷ ︸
T2

+
∑
j∈M

XNj
>Ei

︸ ︷︷ ︸
T3

 .
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Here, Fj is the residual matrix that quantifies the accuracy of the assignment Aj , i.e., Fj = Aj − Ig. The number of
non-zero rows/columns in Fj is the number of incorrect assignment in group Nj . For convenience of the analysis, we
separate the expression into terms T0, T1, T2, T3. With these notations, we have∥∥∥B̂AS −B?

∥∥∥2

= 2
(∥∥T >3 T3

∥∥+
∥∥T >2 T2

∥∥) ∥∥∥(T0 + T1)
−1
∥∥∥2

. (9)

Where T0, T3 are relatively easy to be controlled. We first analyze T0, T3 here. Notice that different from the above analysis
for B̂NoAS, the random vectors in ∪j∈M ∪i∈Nj {xi} are not independent. However, we notice that the set of all vectors can
be splitted into g groups, where the vectors within each group are i.i.d. generated. Therefore, with n ≥ O(gd log2 d), we
still have

∥∥T >3 T3

∥∥ ≤ O (ndσ2
xσ

2
e

)
, and σmin (T0) = σmax (T0) = O

(
nσ2

x

)
. Plug in the result of T0, T3 into the previous

expression (9), we have:

∥∥∥B̂AS −B?
∥∥∥2

2
≤ O

(
ndσ2

xσ
2
e +

∥∥T >2 T2

∥∥
(nσ2

x + σmin (T1))
2

)
.

We next control T1 and T2. Let r̃ be the total number of samples incorrectly assigned by B̂NoAS, and we focus on l = 1
(Notice that with l = 1, the residual for a fixed predictor follows Gaussian distribution, which is easier to describe. For larger
l, the residual for a fixed predictor would follow χ2 distribution. The dependency on l is not the focus of our analysis here.
As a result, we stick to this simple setting. ). Similar to the analysis for T0, where we separate the vectors into groups and
bound each group, we apply Lemma 5 in (Shen & Sanghavi, 2019a) to get σmin(T1) = Θ(r̃σ2

x), σmax(T2) = O(r̃(σ2
x+σ2

e)).
As a result, bounding r̃ is the key to controlling both T1 and T2.

Notice that for any previous estimator B̂NoAS with upper bound R1 (R1 := ‖B̂NoAS − B?‖), we know the residual for
correct correspondences has variance at most σ2

e +R2
1σ

2
x. On the other hand, for incorrect correspondences, the variance is

σ2
e + 2σ2

x. As a result, using the result of Lemma 6 in (Shen & Sanghavi, 2019a) for each group of vectors, we know that

r̃ ≤ c
√

σ2
e+R2

1σ
2
x

σ2
e+2σ2

x

n
g · g.

As a result, the denominator is not dominated by σmin(T1). Therefore,

∥∥∥B̂AS −B?
∥∥∥

2
≤O

(√
ndσ2

xσ
2
e +

∥∥T >2 T2

∥∥
(nσ2

x + σmin (T1))
2

)

=O


√
ndσ2

xσ
2
e +

∥∥T >2 T2

∥∥
nσ2

x


=O

(√
ndσ2

xσ
2
e + n

√
σ2
e +R2

1σ
2
x

√
σ2
x + σ2

e

nσ2
x

)

=O

(√
d

nσ2
x

σe

)
+O

(√
σ2
e

σ2
x

+R2
1

√
σ2
e

σ2
x

+ 1

)
.

�

Proof of Theorem 3. We study the property of the estimator in (2) for each label k ∈ L. According to the definition, we
know that for each intermediate node j ∈Mk, there exists a sample connected to j that belongs to label k, and we denote
this sample to be x(j,0). On the other hand, let x(j,êk) be the sample connected to node j that is closest to êk. Let Sk ⊆Mk

be the set of intermediate nodes with x(j,êk) = x(j,0). We have:∑
j∈Mk

〈êk,x(j,êk)〉 =
∑
j∈Sk

〈êk,x(j,0)〉+
∑
j∈SCk

〈êk,x(j,êk)〉 (10)

≥
∑
j∈Mk

〈e?k,x(j,0)〉, (11)
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where the first equality follows by definition, and the inequality holds because of the optimality of the estimator. Reorganizing
both sides of the inequality, we get∑

j∈Sk

〈êk,x(j,0)〉+
∑
j∈SCk

〈êk,x(j,êk)〉 ≥
∑
j∈Mk

〈e?k,x(j,0)〉 (12)

∑
j∈Sk

〈êk,x(j,0)〉 ≥
∑
j∈Sk

〈e?k,x(j,0)〉+
∑
j∈SCk

(
〈e?k,x(j,0)〉 − 〈êk,x(j,êk)〉

)
. (13)

Now, let us use the definition of x(j,0), and the fact that 〈êk,x(j,ê′)〉 ≤ 1,∀j, ê′. We have:∑
j∈Sk

(
〈êk, e?k〉+ 〈êk,−ε(j,0)〉

)
≥
∑
j∈Sk

〈e?k, e?k − ε(j,0)〉+
∑
j∈SCk

(
〈e?k, e?k − ε(j,0)〉 − 1

)
. (14)

Rearrange the terms and normalize by |Sk|, we have:

〈êk, e?k〉 ≥1− 1

|Sk|
∑
j∈Mk

〈e?k, ε(j,0)〉+
1

|Sk|
∑
i∈Sk

〈êk, ε(j,0)〉, (15)

which gives us the following:

〈êk, e?k〉 ≥1− 1

|Sk|
∑
j∈Mk

〈e?k, ε(j,0)〉+
1

|Sk|
∑
j∈Sk

〈e?k, ε(j,0)〉+ 〈êk − e?k, ε(j,0)〉. (16)

Based on the definition of f(·) in Definition 2,

〈êk, e?k〉 ≥1− |S
C
k |
|Sk|

f(|SCk |/|Mk|)− f(|Sk|/|Mk|) ‖êk − e?k‖ (17)

〈êk, e?k〉+ f(1) ‖êk − e?k‖ ≥1− 1−∆

∆
f(1−∆). (18)

We next show the minimum value ∆ = |Sk|/|Mk| for the estimator êk. By definition, all true embeddings are separated by
at least δ, and samples from other labels at most counts for q proportion among all groups. Then, ∆ ≤ α means at least
(1−α)|Mk| groups match to other labels, which means that at least (1−α− q)|Mk| samples do not come from the second
label. As a result, the maximum value is upper bounded by:

|Mk| − (1− α− q)|Mk|δ + f(1)|Mk|, (19)

while the lower bound for e? is

|Mk| − f(1)|Mk|. (20)

We can find out that if α ≤ 1− q − 2f(1)
δ , then we get contradictory. As a result, ∆ > 1− q − 2f(1)

δ . Plug in the property
of ∆ back to the above inequality, we have:

〈êk, e?k〉+ f(1) ‖ê− e?‖ ≥ 1−
(

1

∆
− 1

)
f(1−∆) ≥ 1−

(
1

1− q − 2f(1)
δ

− 1

)
f(1). (21)

Re-organize the above inequality and use basic algebra, we get

〈êk, e?k〉 ≥min

1− ε,
1−

(
1

1−q− 2f
δ

− 1
)
f −
√

2f(
1−
√

2f 1
1−
√
ε

)
 (22)

⇒ 〈êk, e?k〉 ≥1− rf − (
√

2r + 2)f2, (23)

where r =
(

1− q − 2f
δ

)−1

− 1. �



Extreme Multi-label Classification from Aggregated Labels

Proof of Theorem 4. For conciseness, we ignore the subscript k in the following proof. Our goal is to characterize the
behavior of 〈e?k, et+1〉. Define sample index function

I(j, et) := argmax
i∈Nj

〈et,xi〉, (24)

as the index of the sample selected by et in group j (for notation simplicity, we assume this instance is unique). Furthermore,
let

Sgoodt = {j ∈M | T (I(j, et)) = k} , Sbadt = {j ∈M | T (I(j, et)) 6= k} . (25)

Now, we can express the next iterate as:

et+1 =

∑
j∈Sgoodt

x(j,et) +
∑
i∈Sbadt

x(j,et)

‖
∑
j∈Sgoodt

x(j,et) +
∑
i∈Sbadt

x(j,et)‖
(26)

〈e?, et+1〉 =

∑
j∈Sgoodt

〈e?,x(j,et)〉+
∑
j∈Sbadt

〈e?,x(j,et)〉
‖
∑
j∈Sgoodt

x(j,et) +
∑
i∈Sbadt

x(j,et)‖
(27)

=

∑
j∈Sgoodt

〈e?, e? + ε(j,et)〉+
∑
j∈Sbadt

〈e?,x(j,et)〉
‖
∑
j∈Sgoodt

x(j,et) +
∑
i∈Sbadt

x(j,et)‖
(28)

=
|Sgoodt |+

∑
j∈Sgoodt

〈e?, ε(j,0)〉+
∑
j∈Sbad

t
〈e?,x(j,et)〉

‖
∑
j∈Sgoodt

x(j,et) +
∑
i∈Sbadt

x(j,et)‖
. (29)

According to the property of Sbadt ,

〈x(j,et), et〉 ≥ 〈x(j,0), et〉 = 〈e?, et〉+ 〈ε(j,0), et〉. (30)

Therefore,

〈e?,x(j,et)〉 =〈et,x(j,et)〉+ 〈e? − et,x(j,et)〉 (31)
≥〈e?, et〉+ 〈ε(j,0), et〉+ 〈e? − et,x(j,et)〉 (32)
≥〈e?, et〉 − ‖e? − et‖+ 〈ε(j,0), et〉. (33)

Plug in the result into (29), we have

〈e?, et+1〉 (34)

≥
|Sgoodt |+

∑
j∈Sgoodt

〈e?, ε(j,0)〉+
∑
j∈Sbadt

(
〈e?, et〉 − ‖e? − et‖+ 〈ε(j,0), et〉

)
‖
∑
j∈Sgoodt

x(j,et) +
∑
i∈Sbadt

x(j,et)‖
(35)

≥
|Sgoodt |+ |Sbadt | (〈e?, et〉 − ‖e? − et‖) +

∑
j∈Sgoodt

〈e?, ε(j,0)〉+
∑
j∈Sbadt

〈ε(j,0), et〉
n

. (36)

Denote |Sgoodt |/n = αt, as a result, we have:

〈e?, et+1〉 ≥αt + (1− αt) (〈e?, et〉 − ‖e? − et‖) +

∑
j∈Sgood

t
〈e?, ε(j,0)〉+

∑
i∈Sbad

t
〈ε(j,0), et〉

n
(37)

≥αt + (1− αt) (〈e?, et〉 − ‖e? − et‖)− αtf(αt)− (1− αt)f(1− αt) (38)
≥αt + (1− αt) (〈e?, et〉 − ‖e? − et‖)− f. (39)

�


