PowerNorm: Rethinking Batch Normalization in Transformers

A. Training Details
A.1. Machine Translation.

Dataset The training/validation/test sets for the IWSLT 14 dataset contain about 153K/7K/7K sentence pairs, respectively.
We use a vocabulary of 10K tokens based on a joint source and target byte pair encoding (BPE) (Sennrich et al., 2016). For
the WMT14 dataset, we follow the setup of (Vaswani et al., 2017), which contains 4.5M training parallel sentence pairs.
Newstest2014 is used as the test set, and Newstest2013 is used as the validation set. The 37K vocabulary for WMT14 is
based on a joint source and target BPE factorization.

Hyperparameter Given the unstable gradient issues of decoders in NMT (Zhang et al., 2019a), we only change all the
normalization layers in the 6 encoder layers from LN to BN/PN, and we keep all the 6 decoder layers to use LN. For
Transformerpy.v big and Transformergn big (not Transformerpy big), we use the synchronized version, where each
FP and BP will synchronize the mean/variance/quadratic mean of different batches at different nodes. For PN, we set the
o in the forward and backward steps differently, and we tune the best setting over 0.9/0.95/0.99 on the validation set. To
control the scale of the activation, we also involve a layer-scale layer (Zhang & Sennrich, 2019) in each model setting before
the normalization layer. The warmup scheme for accumulating 1) is also employed, as suggested in (Yan et al., 2020) .
Specifically, we do not tune the warmup steps, but we set it identical to the warmup steps for the learning rate schedule in
the optimizer (Vaswani et al., 2017). We set dropout as 0.3/0.0 for Transformer big/small model, respectively. We use
the Adam optimizer and follow the optimizer setting and learning rate schedule in (Wang et al., 2019). We set the maximum
number of updates following (Ott et al., 2018) to be 300k for WMT and 100k for IWSLT. We used early stopping to stop
the experiments by showing no improvement over the last 10/5 epochs. For the big model, we enlarge the batch size and
learning rate, as suggested in (Ott et al., 2019), to accelerate training. We employ label smoothing of value ¢; = 0.1 in all
experiments. We implement our code for MT using fairseq-py (Ott et al., 2019).

Evaluation We use BLEU* (Papineni et al., 2002) as the evaluation metric for MT. Following standard practice, we
measure tokenized case-sensitive BLEU and case-insensitive BLEU for WMT14 En-De and IWSLT14 De-En, respectively.
For a fair comparison, we do not include other external datasets. For inference, we average the last 10 checkpoints, and we
set the length penalty to 0.6/1.0 and beam size to 4/5 for WMT/IWSLT, following (Ott et al., 2019).

A.2. Language Modeling.

Dataset PTB (Mikolov et al., 2011) has 0.93M training tokens, 0.073M validation words, and 0.082M test word. Wikitext-
103 (Merity et al., 2017) contains 0.27M unique tokens, and 100M training tokens from 28K articles, with an average length
of 3.6K tokens per article. We use the same evaluation scheme that was provided in (Dai et al., 2019).

Hyperparameter We use three layers tensorized transformer core-1 for PTB and six layers tensorized transformer core-1
for Wikitext-103, following (Ma et al., 2019). This means there exists only one linear projection in multi-linear attention.
We replace every LN layer with a PN layer. For PN, we set the o in forward and backward differently, and we tune the best
setting over 0.9/0.95/0.99 on the validation set. The warmup scheme and layer-scale are also the same as the hyperparameter
setting introduced for machine translation. We set the dropout as 0.3 in all the datasets. The model is trained using 30
epochs for both PTB and WikiText-103. We use the Adam optimizer, and we follow the learning rate setting in (Ma et al.,
2019). We set the warmup steps to be 4000 and label smoothing to be € = 0.1 in all experiments.

B. Extra Results

B.1. Empirical Results for Lemma 2.
Under Assumption 9, mentioned in Section 4.1 and discussed in Appendix C.1, we show

L S . S S0
aX%i (,(/JB)f 8X:,7Z aAX:,i ’ B '

Given that <P§(L -, %>2 is non-negative, the Lipschitz constant of £ is smaller than that of Lif v < (¢¥B);. Here, we

*https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

PowerNorm: Rethinking Batch Normalization in Transformers

report the empirical results to show that y; < (¢p); holds for each i € {1,2,...,d} on IWSLT14; see Figure 7. Observe
that the Lipschitz constant of £ is smaller than that of £ empirically in our setting.

T 1 1
--= Y=g
0.8
¢ ¢
Y 0.6-
73 ‘ ’ ¢
0.41 '
0.2
0.0- S _ 1 ry ry .

Lay'er 1 Layér 2 Lay'er 3 Lay'er 4 Layér 5 Layér 6

Figure 7. The empirical results of the distribution of T J;) € R? in different layers of Transformerpn.y on IWSLT14. Given that

~vi < (¢B); holds for each i € {1, 2, ..., d}, Lemma 2 holds as well.

B.2. Validation Results on Language Modeling.

Model PTB WikiText-103
Val PP Test PP Val PPL Test PPL

Tied-LSTM (Inan et al., 2017) 75.7 48.7 - 48.7
AWD-LSTM-MoS (Yang et al., 2018) 58.1 56.0 29.0 29.2
Adaptive Input (Baevski & Auli, 2019) 59.1 57.0 19.8 20.5
Transformer-XL,,s (Dai et al., 2019) 56.7 54.5 23.1 24.0
Transformer-XL1.rg. (Dai et al., 2019) - - - 18.3
Tensor-Transformer;coe (Ma et al., 2019) 55.4 579 23.6 20.9
Tensor-Transformer;qoe (Ma et al., 2019) 54.3 49.8 19.7 18.9
Tensor-Transformericore + LN 58.0% 53.2% 22.7%* 20.9%
Tensor-Transformericore + BN 71.7 60.7 28.4 27.2
Tensor-Transformericore + PN-V 59.7 55.3 23.6 21.3
Tensor-Transformer;core + PN 51.6 47.6 18.3 17.9

Table 3. Additional Validation and Test results with state-of-the-art results on PTB and WikiText-103. ’-* indicates no reported results in
that setting, "’ indicates that the results are from our own implementation. PN achieves 5.6/3.0 points lower testing PPL on PTB and
WikiTest-103, respectively, as compared to LN.

B.3. More Comparisons.

As shown in B.3, we present more comparison results for different normalization method including Moving Average Batch
Normalizatio (MABN) (Yan et al., 2020), Batch Renormalization (BRN) (Ioffe, 2017), and Group Normalization (GN)
(Wu & He, 2018). We can observe that BRN/MABN/PN-V is better than BN but worse than LN, which suggests the small
batch-size setting (main focus of (Yan et al., 2020; Ioffe, 2017; Wu & He, 2018)) may have similar characteristic of the
setting in NLP, where there exists large variance across batches. Obviously, GN performs the best among the previous
proposed methods given LN can be viewed as the special case of GN (group number as 1). 3 Throughout the comparisons,

>We empirically found that setting group number the same as head number leads to the best performance.

PowerNorm: Rethinking Batch Normalization in Transformers

Model IWSLT14 | PTB
Transformergn 34.4 60.7
Transformergry 34.7 58.3
Transformeryagn 34.9 57.2
Transformery n 35.5 53.2
Transformergyn 35.7 51.7
Transformerpn.y 35.5 55.3
Transformerpy 359 47.6

Table 4. (Left) NMT performance (BLEU) on IWSLT14 De-En. (Right) LM performance (Test PPL) on PTB.

PN still performs the best in the two tasks, which may validate the effectiveness of our method.

C. Theoretical Results

In this section, we discuss the theoretical results on BN and PN. We assume v and 3 to be constants for our analysis on BN,
PN-V and PN.

Since the derivative of loss £ w.r.t. Y is known as g—f,, trivially, we will have v © (f—f{ = (f—f, Also, it is not hard to get the
following fact. i

Fact 5. The derivatives of i and 0% w.r.t. T; are

opp 1 002 2
2, =5 and oz = E(EBZ—,UB)- (14)

We are now ready to show the derivative of £ w.r.t. «; under BN.
Lemma 6 (Derivative of £ w.r.t. ; in BN). Based on the Fact 5, it holds that

oL 1 oL 1 oL
= == N Z(1+x%). 15
8:ci opB 65(1 O'BB jeB af(j(xx) ()

Proof. Based on chain rule, we will have

L L oL 0%; oup | OL 2%; dop
a(Ei B 65(7, (’)(EZ jeB 65(] aﬂB (’)(CZ 0)2] 603 6:31

i(’)ﬁ 2 5£(&i+&3($.)
_O'B é’fci jeB 55(]‘ (9,uBB (90'2BB ! #B
16
_toc 1 Zﬁ(leri—quj—uB) (10
UB(’]\)VQ UBBjGBakj opB OB

1 oc 1 oL .
Z ,

OB (?xi UBBjEB

Replacing (f}% by v©® g—f,, we can get Eq. 3.
In the following, we will first discuss the theoretical properties of PN-V in Appendix C.1; and then we discuss how to use

running statistics in the forward propagation and how to modify the corresponding backward propagation in Appendix C.2.

C.1. Proof of PN-V

Before showing the gradient of £ w.r.t. ; under PN-V, we note the following fact, which is not hard to establish.

PowerNorm: Rethinking Batch Normalization in Transformers

Fact 7. The derivatives of 1) w.r.t. ; are,

ot 2
g’j = S (17)

With the help of Fact 7, we can prove the following lemma

Lemma 8 (Derivative of £ w.r.t. «; in PN-V). Based on the Fact 7, it holds that that

oL 1oL 1 0Ly as)

ox; Ypox; DBig JeBKj I

Proof. Based on chain rule, we will have

T e
ox; B 0x%; 0x; ieB &f(] (91/}32 ox;

= — + - (—*7) 19
0x; 0x; oy an 2 1/13‘5 B (19)
1 oc 1 oL . .
= 1)[}738&1 — 7B/¢)B ; a?jxjxl.
O

Replacing s)% by v©® gf, , we can get Eq. 6.
In order to show the effect of PN-V on the Lipschitz constant of the loss, we make the following standard assumption, as

in (Santurkar et al., 2018).

Assumption 9. Denote the loss of the non-normalized neural network, which has the same architecture as the PN-V
normalized neural network, as L. We assume that

oL oL

= 2
2y; omi’ (20)

where y; is the i-th row of Y.

Based on these results, we have the following proof of Lemma 2, which was stated in Section 4.

Proof of Lemma 2. Since all the computational operator of the derivative is element-wise, here we consider d = 1 for
notational simplicity®. When d = 1, Lemma 8 can be written as

1o 1% s @)

Therefore, we have

oL _ 1ok 1k pX. (22)

0X Ypox Bip ox

Since
HX\HQ _ 122’53 XiA - B
5 Diep Xi

SFor d > 2, we just need to separate the entry and prove them individually.

(23)

)

PowerNorm: Rethinking Batch Normalization in Transformers

the following equation can be obtained

L= Hﬁ—@—ﬁ X X
w2 0X aX’\/Ex/E
”27< <a£ X X, o X X

%% \/»>\ﬁ> I A,T>\ﬁ>ll)
or X

(

1 (3£

:f(u(ﬁn? (2= 27 9
- L 05r -G X5
- L (A ji>2>

O

C.2. Proof of PN

In order to prove that after the replacement of with Eq. 12, the gradient of the input is bounded, we need the

oL
X @)
following assumptions.

Assumption 10. We assume that

N oL
%l < C1 and [Z| < Co, 25)
X

Sfor all input datum point and all iterations. We also assume that the exponentially decaying average of each element of X; is
bounded away from zero,

t
1-a)) o' 7x%; > C5 > 0, Vt, (26)
§=0

where we denote « as the decay factor for the backward pass. In addition, we assume that « satisfies

1
2
. 27
(C1) - (27)
W.l.o.g., we further assume that every entry of ¥)(*) is bounded below, i.e.
Co <™, vt (28)

If we can prove or () is bounded by some constant C (the official proof is in Lemma 11), then it is obvious to prove the
each datum point of X" is bounded.

Based on these results, we have the following proof of Theorem 4, which was stated in Section 4.

PowerNorm: Rethinking Batch Normalization in Transformers

Proof of Theorem 4. 1t is easy to see that

1X:.1° AR
_ (B g 25 angy
ox\t C ok '
/j oL
(-1 (t 2 (t—1) 4 (t)
+‘| ” 2<6ﬁ0)’y X >
< + [V X v X
n ;@ 2+ D RO 1030
Xz i
oL
pecol il e S u2+2n HH =05
XZ
oL
<l I + PP \|2+2H(9 5%

%
< (C2)? 4 (C1)*(Ca)® + C1C2Cy

All these inequalities come from Cauchy-Schwarz inequity and the fact that
(a1b1)?® + ... + (agba)® < (af + ... + aZ) (b + ... + b7).
O

In the final step of Theorem 4, we directly use that v is uniformly bounded (each element of v is bounded) by Cy. The
exact proof is shown in below.

Lemma 11. Under Assumption 10, v") is uniformly bounded.

Proof. For simplicity, denote as x;. It is not hard to see,
L b 2040
() 5 (t
[T = ﬁn 2 &%
B B
- OO, S
<3 <BQmax{<x<” SRES)

Similarly, we will have |[A®) | < C1Cy as well as (1 — «) Z;:O aITUITU) > C3. We have
v = (1—-1—a)PO)tD 4 (1-a)A®
—(1-1=-a)TO)((1 -1 -2 4 (1 —a)A®Y) 4 (1 —a)A®

7=0 kzO
Then,
1 t j-1 - »
WHV@HQ :<Z ((1—(1—)p(f k+1) A(t) Z H p(f k+1)))A(t J)>_
j=0 k=0 i=0 k=0

PowerNorm: Rethinking Batch Normalization in Transformers

Notice that with the definition,

F(m _ m) (m) (29)

||Mm

we will have that all entries of I'("™) are positive, for m € {O7 1,...,t}. Tt is clear that when all entries of A(™), for
m € {0,1, ..., t}, have the same sign (positive or negative), the above equation achieves its upper bound. W.1.o.g., we assume
they are all positive.

Since 0 < « < 1, it is easy to see that, when K = [(log((120%03) /log(a))], then the following inequality holds,

0
(1-a) ; 20101 (30)

Since HF(’“) | < C1, the value of any entry of I'(%) is also bounded by C. Therefore, based on this and Eq. 30, when ¢t > K,
we will have

t t —-K
1-a) > oFTWr® =1 —a)) o FTEI® —(1-q) Z =k pp®)
k=t—K+1 k=0 k=0

—K
> O3l = (1-a) Z R r®r®)

t—K
> Cgf— (]. — a)Clle Z Cvtik
k=0
t
= Cgf— (1 — oz)Clle Z Oék (31)
k=K
[ee]
> C3T— (1 — a)C1C'1T Z Oék
k=K
Cs1
> Cg]. B)
Cs1
= 5

where 1 is the unit vector. Then, for ¢ > K, we can bound from below the arithmetic average of the K corresponding items
of I',

K— 1 K-1
Z t k) P(t k) > K_l Z akl—\(t—k)l—\(t—k)
k=0

k=0
1 t
Ly aiptre (32)
@ k=t—K+1
Cs
——— =5 > 0.
~ 2(1 — a)akK-1 57

This inequality shows that after the first K items, for any K consecutive F(k), the average of them will exceeds a constant
number, C5. Therefore, for any ¢ > T > K, we will have

T-K 1 C
PR > | = (K o) C5 > (33)

Let us split Z;:O (TTAZ6(1 — (1 — a)DE=F+D)) AC=9) into two parts: (i) Z] x (T2 — (1 — @)DU=RD)) A=),
and (ii) ZJK;OI (TTZ6(1 — (1 — a)TER+D) A=) From so on, we will discuss how we deal with these two parts
respectively.

PowerNorm: Rethinking Batch Normalization in Transformers

Case 1: Z;ZK (Hf;lo(l —(1- a)F(t*kH)))A(t*J‘) Notice that for 0 < a; < 1, the following inequality can be proven
with simply induction,

_ =

1:[(1—ay) - g (34)

Replacing a; with (1 — a)I'*=7+1) we will have

zt: 1:[o) k+1)))A(7 < Zt: ((1_(1;.Cy)jir(t—k+l)))jA(t—j)

j=K k=0 j=K k=0
t Cs Vi A=)
<) (1-a-a)7)) A
=K (35)
< i ((1_(1_a)05)) C,C.
< ‘ 2 1v2
j=K
2 CCy = C
x (1 — O()C5 1v2 = Lé6-

Here the second inequality comes from Eq. 33, and the third inequality comes form the the fact each entry of A is smaller
than C; Cy, given |A™) | < C1Cs. The final inequality comes from Eq. 31, where 0 < C5 < (C;)? < 1/(1 — «), then we
canhave 0 < (1 — (1 —a)C5/2) < 1.

Case 2: Zj (IHZ6(1 = (1 — a)DER+D)) A=) [tis easy to see

K—1 j-1 K-1 j—1 '
> H (1— (1= a)DEFDN)ACED < N (TT(ID)AED
j=0 k=0 3=0 k:O (36)
< KC1Cs.
Combining Case 1 and 2, we have
1 ot gl 4
72“ D)2 = <Z H — @)D=k TD)) A=), (TTa-qa-) D=k +1D)) A (=3
(1 j=0 k=0 =0 k=0 (37)

< <061 + KOngl, 06T+ K0102T> < 07,

which indicates |v(*)|| is bounded and Cy = (1 — a)/C7.

