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Abstract
We consider the problem of allocating a fixed
budget of samples to a finite set of discrete distri-
butions to learn them uniformly well (minimizing
the maximum error) in terms of four common
distance measures: `22, `1, f -divergence, and sep-
aration distance. To present a unified treatment
of these distances, we first propose a general op-
timistic tracking algorithm and analyze its sam-
ple allocation performance w.r.t. an oracle. We
then instantiate this algorithm for the four dis-
tance measures and derive bounds on their regret.
We also show that the allocation performance of
the proposed algorithm cannot, in general, be im-
proved, by deriving lower-bounds on the expected
deviation from the oracle allocation for any adap-
tive scheme. We verify our theoretical findings
through some experiments. Finally, we show that
the techniques developed in the paper can be eas-
ily extended to learn some classes of continuous
distributions as well as to the related setting of
minimizing the average error (rather than the max-
imum error) in learning a set of distributions.

1. Introduction
Consider the problem in which a learner must allocate n
samples among K discrete distributions to construct uni-
formly good (minimizing the maximum error) estimates of
these distributions in terms of a distance measure D. De-
pending on D, certain distributions may require much fewer
samples than the others to be estimated with the same preci-
sion. The optimal sampling strategy for a given n requires
knowledge of the true distributions. The goal of this paper
is to design adaptive allocation strategies that converge to
the optimal strategy, oblivious to the true distributions.

The problem described above models several applications
which are not captured by existing works. Here, we describe
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some such applications. (1) Opinion Polling: Suppose
there are K groups of voters who have different prefer-
ence distributions over l candidates in an election. While
some groups might heavily favour a single candidate, others
might be indifferent, resulting in a more uniform distribu-
tion over the set of candidates. In this setting, how should
the polling agency allocate its sampling budget? Intuitively,
more samples should be allocated to the indifferent voter
groups to construct uniformly good estimates of their pref-
erence distributions. (2) Compression of text files: Given
a sampling budget of n bytes, consider the problem of de-
signing codes with minimum average length for text files
in K different languages. Since different languages may
have different symbol frequencies, this can be formulated
as learning K distributions uniformly well in terms of cer-
tain f -divergences. (3) Learning MDP model: In many
sequential decision-making problems, the agent’s interac-
tion with the environment is modeled as a Markov decision
process (MDP). In these problems, it is often important to ac-
curately estimate the dynamics (i.e., the transition structure
of the MDP), given a finite exploration budget. Learning the
MDP model is equivalent to estimating S ×A distributions,
where S and A are the number of states and actions of the
(finite) MDP. Therefore, assuming the existence of a known
policy that can efficiently transition the MDP between any
two states, the problem reduces to finding the optimal allo-
cation of samples to these S × A distributions. Thus, the
framework studied in this paper provides the first step to-
wards solving the general problem of constructing accurate
models for MDPs. The requirement of a known policy to
transition between states can be relaxed by employing the
techniques recently developed for efficient exploration in
MDPs (e.g., Tarbouriech & Lazaric 2019; Hazan et al. 2019;
Cheung 2019), which we leave for future work.

Antos et al. (2008) were the first to study the problem of
learning the mean of K distributions uniformly well, and
proposed and analyzed an algorithm based on forced ex-
ploration strategy. Carpentier et al. (2011) proposed and
analyzed an alternative approach for the same problem,
based on the UCB algorithm (Auer et al., 2002). Carpentier
& Munos (2011) analyzed an optimistic policy for the re-
lated problem of stratified-sampling, where the goal is to
learn K distributions in terms of a weighted average dis-
tance (instead of max). Soare et al. (2013) extended the
optimistic strategy to the case of uniformly estimating K
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linearly correlated distributions. Riquelme et al. (2017) ap-
plied the optimistic strategy to the problem of allocating
covariates (drawn in an i.i.d. manner from some distribu-
tion) for uniform estimation of K linear models. The prior
work mentioned above have focused solely on estimating
the means of distributions in squared error sense, and their
analytic techniques do not extend to learning entire distri-
butions. In this paper, we generalize the above-mentioned
prior work by considering the problem of active sampling
to uniformly learn K distributions in terms of pre-specified
distance measures on the space probability distributions.

Overview of Results. Intuitively, the optimal allocation
should equalize the expected distance between the true dis-
tribution and the resulting empirical estimate for all the K
distributions. This allocation, however, may have a complex
dependence on the true distribution, Pi, for 1 ≤ i ≤ K.
Our approach in this paper is to first identify an objective
function which (i) is a good approximation of the true ob-
jective given a distance measure D, (ii) depends on the
original distribution Pi through a single real-valued param-
eter ci, and (iii) has a decoupled dependence on ci and Ti.
In Sec. 3, we formally define an appropriate function class
F within which the objective functions for various distance
measures should lie. We then propose a generic optimistic
tracking strategy (Alg. 1) which addresses the trade-off in
constructing better estimates of the parameter ci, and using
the existing estimates of ci to drive the allocation towards
the optimal. We also obtain a general bound on its devia-
tion from an (approx-) oracle allocation (defined in Sec. 3).
In Sec. 4, we first present a road-map for designing adap-
tive sampling schemes for arbitrary loss functions using
the results of Sec. 3, and then specialize this to the case of
four widely-used distance measures: `22, `1, f -divergence,
and separation distance. For each distance measure, we ob-
tain bounds on the regret of the proposed sampling scheme
w.r.t. an oracle strategy. In Sec. 5, derive matching lower-
bounds on the expected deviation from oracle allocation
for any algorithm. Experiments with synthetic examples
in Sec. 6 validate our theoretical results. Finally, we dis-
cuss how our techniques can be extended to learning some
classes of continuous distributions as well as to the related
problem of minimizing the average error in Sec. 7.

Technical Contributions. The results of this paper require
generalizing existing techniques, as well as introducing new
methods. More specifically, the proof of Theorem 1 ab-
stracts out the arguments of Carpentier et al. (2011, Thm. 1)
to deal with a much larger class of objective functions. Prior
work with mean-squared error (Antos et al., 2008; Carpen-
tier et al., 2011) required bounding the first and second
moments of random sums that could be achieved by a direct
application of Wald’s equations (Durrett, 2019, Thm. 4.8.6).
Our results on f -divergence (Thm. 7 and Lemma 9 in Ap-
pendix F) require analyzing higher moments of random

sums for which Wald’s equations are not applicable. Deriv-
ing the approximate objective function for separation dis-
tance involves estimating the expectation of the maximum
of some correlated random variables. We obtain upper and
lower bounds on this expectation in Lemma 6 by first approx-
imating the maximum with certain sums, and then bounding
the sums using a normal approximation result (Ross, 2011,
Thm. 3.2).

2. Problem Setup
Consider K discrete distributions, (Pi)

K
i=1, that belong to

the (l − 1)-dimensional probability simplex ∆l, and take
values in the set X = {x1, . . . , xl}. Each distribution Pi
is equivalently represented by a vector Pi = (pi1, . . . , pil)

with pij ≥ 0, ∀j ∈ [l], and
∑l
j=1 pij = 1. For any in-

teger b > 0, we denote by [b], the set {1, . . . , b}. Given
a budget of n ≥ K samples, we consider the problem of
allocating samples to each of the K distributions in such a
way that the maximum (over the K distributions) discrep-
ancy between the empirical distributions (estimated from
the samples) and the true distributions is minimized. To
formally define this problem, suppose an allocation scheme
assigns (Ti)

K
i=1 samples to the K distributions, such that

Ti ≥ 0, ∀i ∈ [K], and
∑K
i=1 Ti = n. Also suppose that

P̂i is the empirical distribution with p̂ij = Tij/Ti, where
Tij denotes the number of times the output xj was observed
in the Ti draws from Pi, and D : ∆l × ∆l 7→ [0,∞) is a
distribution distance measure. Then, our problem of interest
can be defined as finding an allocation scheme (Ti)

K
i=1 that

solves the following constrained optimization problem:

min
T1,...,TK

max
i∈[K]

E
[
D(P̂i, Pi)

]
, s.t.

K∑
i=1

Ti = n. (1)

We refer to the (non-integer) solution of (1) with full knowl-
edge of (Pi)

K
i=1 as the oracle allocation (T ∗i )Ki=1. It is impor-

tant to note that (T ∗i )Ki=1 ensure that the objective functions
γi(Ti) := E

[
D(P̂i, Pi)

]
are equal, for all i ∈ [K]. How-

ever, in practice, (Pi)
K
i=1 are not known. In this case, we

refer to (1) as a tracking problem in which the goal is to
design adaptive sampling strategies that approximate the
oracle allocation using running estimates of (Pi)

K
i=1.

Choice of the Distance Measure. It is expected that the op-
timal allocation will be strongly dependent on the distance
measureD. We study four distances: `22, `1 or total variation
(TV), f -divergence, and separation distance in this paper.
These distances include all those in (Gibbs & Su, 2002) that
do not require a metric structure on X . The f -divergence
family generalizes the well-known KL-divergence (DKL)
and includes a number of other common distances, such
as total variation (DTV), Hellinger (DH ), and chi-square
(Dχ2). Applications of f -divergence include source and
channel coding problems (Csiszár, 1967; 1995), testing
goodness-of-fit (Gyorfi et al., 2000), and distribution es-
timation (Barron et al., 1992). The common f -divergences
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mentioned above satisfy the following chain of inequali-
ties: DTV ≤ DH ≤

√
DKL ≤

√
Dχ2 , that define a hier-

archy of convergence among these measures (Tsybakov,
2009, Eq. 2.27). The separation distance Ds(P,Q) (defined
formally in Sec. 4.5) arises naturally in the study of the
convergence of symmetric Markov chains to their station-
ary distribution. More specifically, if Q is the stationary
distribution of a Markov chain and (Pt)t≥1 is its state distri-
bution at time t, such that Q = PT at a random time T , then
Ds(Pt, Q) ≤ P(T > t) (Aldous & Diaconis, 1987, Sec. 3).

Choice of estimator. In this work, we fix the estimated
distribution P̂i to be the empirical distribution, i.e., P̂i =
[p̂ij ]

l
j=1 where p̂ij = Tij/Ti. While the empirical estimator

is known to be suboptimal in a min-max sense (Kamath
et al., 2015), the additional error due to the deviation of
E[D(P̂i, Pi)] for some of the above distances (`22, `1 and
f -divergence) does not change the final regret obtained. For
instance, for the `22 distance, the results of (Kamath et al.,
2015) show that E[D`22

(P̂i, Pi)] differs from the min-max
value by a O

(
n−3/2

)
term. Since this term is of the same

order as the regret we derive in Theorem 2, we conclude
that for this loss the regret cannot be improved by using the
min-max optimal estimator estimator. Similar results can be
shown for `1 distance and the f−divergence family as well.

Allocation Scheme and Regret. An adaptive allocation
scheme A consists of a sequence of mappings (πt)t≥1,
where each mapping πt :

(
N × (X × [K])t−1

)
7→ [K]

selects an arm to pull1 at time t, based on the budget n and
the history of pulls and observations up to time t. For an
allocation scheme A, a sampling budget n, and a distance
measure D, we define the risk incurred by A as

Ln(A, D) = max
i∈[K]

E
[
D(P̂i, Pi)

]
. (2)

We denote by A∗, the oracle allocation rule. The perfor-
mance of an allocation scheme A is measured by its subop-
timality or regret w.r.t. A∗, i.e.,

Rn(A, D) := Ln(A, D)− Ln(A∗, D). (3)

Notations.2 For 0 < η < 1/2, we define the η-interior of
(l − 1)-dimensional simplex ∆l, as ∆

(η)
l := {P ∈ ∆l |

η ≤ pj ≤ 1− η, ∀j ∈ [l]}. We use the Bernoulli random
variable Z(s)

ij to represent the indicator that the sth draw
from arm i is equal to xj ∈ X . Note that for any draw
s, we have E[Z

(s)
ij ] = pij . For any t ∈ [n], we define

Wij,t =
∑t
s=1 Z̃

(s)
ij , where Z̃(s)

ij := Z
(s)
ij −pij is a centered

Bernoulli variable. We also note that several terms such as
ϕ, A, B, and ẽn (to be introduced in Sec. 3) are overloaded
for different distance measures. For instance, we use ϕ for

1Each distribution can be considered as an arm, and thus, we
use the terms sampling from a distribution and pulling an arm
interchangeably throughout the paper.

2See Table A.1 in App. A for a list of all the notations used.

both `1 and KL-divergence, instead of writing ϕ(`1) and
ϕ(KL). The meaning should be clear from the local context.

3. General Allocation via Optimistic Tracking
Before proceeding to the analysis of problem (1) for spe-
cific distance measures, we first study an abstract yet more
stylized class of problems similar to (1), where the depen-
dency of the objective (loss) functions on the distribution
parameter versus number of allocated samples can be ex-
plicitly decoupled. In particular, let us consider the problem
in which the objective functions satisfy certain regularity
conditions that we define next.
Definition 1. We use F to denote the class of functions ϕ :
R× R 7→ R satisfying the following properties: 1) ϕ(·, T )
is concave and non-decreasing for all T ∈ R, 2) ϕ(c, ·) is
convex and non-increasing for all c ∈ R, and 3) ϕ(c, ·) and
ϕ(·, T ) are differentiable for all c, T ∈ (0,∞).

We now can define an analog of the optimization problem (1)
with the objective function belongs to F :

min
T1,...,TK

max
i∈[K]

ϕ(ci, Ti), s.t.
K∑
i=1

Ti = n, (4)

where the parameters (ci)
K
i=1 depend solely on the distance

measure D and distributions (Pi)
K
i=1. Note that in this set-

ting the budget allocation reduces to balancing the value of
the objective function by tracking the distribution-dependent
parameter (ci)

K
i=1 (to be estimated). We refer to the solution

of (4) with full knowledge of (ci)
K
i=1 as (T̃ ∗i )Ki=1, and to

the corresponding allocation scheme as Ã∗. Similar to (1),
when parameters (ci)

K
i=1 are unknown, we refer to (4) as a

general tracking problem.

Optimistic Tracking Algorithm. We now propose and
analyze an adaptive sampling scheme, motivated by the
upper-confidence bound (UCB) algorithm (Auer et al., 2002)
in multi-armed bandits, for solving the general tracking
problem (4). The proposed scheme, whose pseudo-code is
shown in Algorithm 1, samples optimistically by plugging in
high probability upper-bounds of ci in the objective function
ϕ. Formally, for each arm i ∈ [K] and time t ∈ [n], we
denote by Ti,t, the number of times that arm i has been
pulled prior to time t. We define the (1−δ)-probability (high
probability) event E :=

⋂
t∈[n]

⋂
i∈[K]

{
|ĉi,t − ci| ≤ ei,t)

}
,

where ĉi,t is the empirical estimate of ci and ei,t is the
radius (half of the length) of its confidence interval at time t
computed using Ti,t samples. We define the upper-bound
of ci at time t as ui,t := ĉi,t + ei,t with the convention that
ui,1 = +∞. In the rest of the paper, we use P̂i,t and p̂ij,t
to represent the estimates of Pi and pij at time t, computed
by Ti,t i.i.d. samples.
We now state a theorem that bounds the deviation of the
allocation obtained by Algorithm 1 (our optimistic tracking
algorithm), (Ti)

K
i=1, from the allocation (T̃ ∗i )Ki=1, i.e., the so-

lution to (4) when the parameters (ci)
K
i=1 are known. Before
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Algorithm 1 Optimistic Tracking Algorithm

1: Input: K,n, δ
2: Initialize t← 1;
3: while t ≤ n do
4: if t ≤ K then
5: It = t;
6: else
7: It = arg maxi∈[K] ϕ(ui,t, Ti,t);
8: end if
9: Observe X ∼ PIt ; t← t+ 1;

10: Update ui,t, ∀i ∈ [K];
11: end while

stating our main theorem, we define g∗i :=
∂ϕ(c,T̃∗i )

∂c

∣∣
c=ci

and h∗i := ∂ϕ(ci,T )
∂T

∣∣
T=T̃∗i

.

Theorem 1. Define A := maxi∈[K] g
∗
i , B :=∣∣maxi∈[K] h

∗
i

∣∣, and ẽn := maxi∈[K] e
∗
i , where e∗i is the

radius of the confidence interval of arm i after T̃ ∗i pulls.
Then, under the event E , and assuming that B > 0 and
T̃ ∗i > 1, ∀i ∈ [K], we have

−2Aẽn
B
≤ Ti − T̃ ∗i ≤

2A(K − 1)ẽn
B

, ∀i ∈ [K].

The proof of Theorem 1, given in Appendix C, generalizes
the arguments used in Carpentier et al. (2011, Thm. 1) to
handle any objective function ϕ ∈ F .

The idea behind preceding discussion is the following: in
cases where the objective function γi in (1) lies inF , we can
use the result of Theorem 1 to obtain a bound on the devia-
tion of the allocation of the resulting Algorithm 1 from the
oracle deviation. In other cases, we can select an appropriate
approximation of γi within the function class F , and then
use Theorem 1 in conjunction with a regret decomposition
result (Lemma 1) to obtain the required regret bounds.

4. Adaptive Allocation Algorithms
Algorithm 1 along with the corresponding Theorem 1 pro-
vide us with a road-map to design adaptive sampling algo-
rithms for the tracking problem (1) for different choices of
distribution distance D.

4.1. Road-map
We proceed in the following steps:
• Step 1: If γi := E[D(P̂i, Pi)] 6∈ F (Def. 1), then derive

an approximation of γi(·), denoted by ϕ(ci, ·) lying in F .
If γi ∈ F , then set ϕ(ci, ·) = γi(·).

• Step 2: Construct an appropriate UCB for the parameter
ci for i ∈ [K], to instantiate Algorithm 1, and use Theo-
rem 1 to get a bound on the deviation of the allocation of
Algorithm 1 from optimal.
• Step 3: Derive an upper-bound on the regret by employing

the decomposition given in Lemma 1 below, along with
some distance-specific analysis.

In the sequel, we shall refer to (T̃ ∗i )Ki=1, the optimal solu-
tions to (4), as the approx-oracle allocation, and the corre-
sponding (non-adaptive) strategy, Ã∗, as the approx-oracle
allocation rule. We now present the key regret decomposi-
tion result that will be used in deriving the regret bounds
for the cases where γi 6∈ F and an approximation ϕ(ci, ·) is
used in Algorithm 1.

Lemma 1. For any allocation scheme A, a distance mea-
sure D, and sampling budget n, define R̃n(A, D) =

Ln(A, D)−Ln(Ã∗, D) and Ri(T ) := |γi(T )− ϕ(ci, T )|
for any T > 0. Then, assuming γi is non-increasing for all
i ∈ [K], we have

Rn (A, D) ≤ R̃n (A, D) + 3 max
i∈[K]

Ri(T̃
∗
i ).

This result says that if an approximate objective function
ϕ(ci, ·) is used, then the regret Rn(A, D) of an alloca-
tion scheme A can be decomposed into its tracking regret,
R̃n(A, D) and the maximum approximation error between
γi and ϕ(ci, ·) computed at (T̃ ∗i )Ki=1. Lemma 1 is proved
in Appendix B. The key step in the proof is bounding the
quantity |ϕ(ci, T̃

∗
i )− γi(T ∗i )| with 2Ri(T̃

∗
i ).

4.2. Adaptive Allocation for `22-Distance
The squared `2-distance between two distributions P and Q
is defined as D`2(P,Q) :=

∑l
j=1(pj − qj)2. In this case,

we can compute the objective function of (1) in closed-
form as

γi(Ti) = E
[
D`2(P̂i, Pi)

]
= E

[ l∑
j=1

(p̂ij − pij)2
]

=

l∑
j=1

pij(1− pij)
Ti

:=
c
(`2)
i

Ti
:= ϕ(c

(`2)
i , Ti).

Note that the function γi(Ti) = ϕ(c
(`2)
i , Ti) = c

(`2)
i /Ti

belongs to F . The oracle allocation is obtained by equal-
izing c

(`2)
i /Ti, for all i ∈ [K], and can be written as

T ∗i = T̃ ∗i = c
(`2)
i /(

∑K
k=1 c

(`2)
k )× n := λ

(`2)
i × n.

Next, we present a result on the deviation between c(`2)
i and

its empirical version ĉ(`2)
i,t = 1−

∑l
j=1 p̂

2
ij .

Lemma 2. Define δt := 6δ/(Klπ2t2), e
(`2)
i,t :=√

(l + 2)2 log(1/δt)/2Ti,t and the event E1 =

∩t∈[n] ∩i∈[K] {|c
(`2)
i − ĉ

(`2)
i,t | ≤ e

(`2)
i,t }. Then we

have P(E1) ≥ 1− δ.

Using Lemma 2 (proved in Appendix D), we can define
the required UCB for c(`2)

i as u(`2)
i,t := ĉ

(`2)
i,t + e

(`2)
i,t to be

plugged into Algorithm 1 to obtain an adaptive sampling
scheme for D`2 , which we shall refer to as A`2 .
We can now state the bound on the regret incurred by the
allocation scheme A`2 (proof in Appendix D).

Theorem 2. If we implement the algorithm A`2 with a
budget n and δ = n−5/2, then for n large enough, and
E`2 := max1≤i≤K |Ti − T̃ ∗i |, we have
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E`2 = O(
√
n), and Rn(A`2 , D`2) = Õ(n−3/2).

The precise meaning of the term ‘n large enough’, as well
as the exact expression of the hidden constants in the above
expressions are provided in Appendix D. Note that the
Õ(n−3/2) convergence rate of Thm. 2 recovers the rate
derived in Carpentier et al. (2011) for the special case of
Bernoulli (Pi)

K
i=1. Finally, note that in contrast to the adap-

tive scheme which achieves a regret of Õ
(
n−3/2

)
, em-

ploying the uniform sampling scheme results in a regret
of maxi c

(`2)
i K/n−

(∑K
i=1 c

(`2)
i

)
/n = O(1/n).

4.3. Adaptive Allocation for `1-Distance

The `1-distance between two distributions P and Q is de-
fined as D`1(P,Q) :=

∑l
j=1 |pj − qj |. Note that the total-

variation distance, DTV, is related to D`1 as DTV = 1
2D`1 .

In this case, the objective function γi can be obtained in
closed-form using the expression for mean absolute devia-
tion E[|p̂ij−pij |] given in Diaconis & Zabell (1991, Eq. 1.1).
However, since this expression does not belong to F , we
first obtain an approximation of γi in F as

γi(Ti) = E
[
D`1(P̂i, Pi)

]
:= E

[ l∑
j=1

|p̂ij − pij |
]

(a)
≤

l∑
j=1

√
E
[
(p̂ij − pij)2

]
=

1√
Ti

l∑
j=1

√
pij(1− pij)

:=
c
(`1)
i√
Ti

:= ϕ(c
(`1)
i , Ti). (5)

(a) follows from the Jensen’s inequality and the concavity
of the square-root function. We can check that the approx-
imate objective function ϕ(c

(`1)
i , Ti) = c

(`1)
i /
√
Ti with

c
(`1)
i =

∑l
j=1

√
pij(1− pij) lies in F .

The approx-oracle allocation is given by T̃ ∗i =

(c
(`1)
i )2/C2

`1
× n := λ

(`1)
i × n, where C2

`1
=
∑K
i=1(c

(`1)
i )2.

In order to obtain the adaptive allocation scheme for the
`1-distance, which we shall refer to as A`1 , we now derive
high probability upper-bounds on (c

(`1)
i )Ki=1 and then plug

them into Algorithm 1.

Lemma 3. Define δt := 3δ/(Klπ2t2),
e
(`1)
ij,t :=

√
2 log(2/δt)/Ti,t, and the event E2 :=⋂

t∈[n]
⋂
i∈[K]

⋂
j∈[l]

{
|
√
p̂ij,t(1− p̂ij,t) −

√
pij(1− pij)| ≤

e
(`1)
ij,t

}
. Then, we have P(E2) ≥ 1− δ.

The proof (details in Appendix E.1) relies on an application
of a concentration inequality of the standard deviation of ran-
dom variables derived in Maurer & Pontil (2009, Thm. 10),
followed by two union bounds. Lemma 3 allows us to de-
fine high probability upper-bounds on the parameters c(`1)

i

as u(`1)
i,t := ĉ

(`1)
i,t + e

(`1)
i,t , where e(`1)

i,t =
∑l
j=1 e

(`1)
ij,t =√

2l2 log(2/δt)/Ti,t.

We now state the regret bound for the adaptive allocation
scheme A`1 (proof in Appendix E.2).

Theorem 3. If we implement the algorithmA`1 with budget
n and δ = 1/n, then for n large enough, and E`1 :=

max1≤i≤K |Ti − T̃ ∗i |, we have

E`1 = Õ(
√
n), and Rn(A`1 , D`1) = Õ(n−3/4).

The exact expressions for the hidden constants in the above
bounds are derived in Appendix E.2.

As a reference, we note that using the uniform allocation for
the `1 loss would result in a regret of O

(
n−1/2

)
which is

larger than the Õ
(
n−3/4

)
regret achieved by the adaptive

scheme.

4.4. Adaptive Allocation for f -Divergence

For a convex function f : R 7→ R satisfying f(1) = 0,
the f -divergence between two distributions P and Q is de-
fined as Df (P,Q) :=

∑l
j=1 qjf(pj/qj). Since we cannot

obtain a closed-form expression for the objective function
γi of f -divergence, we proceed by writing Df (P̂i, Pi) =

D
(r)
f (P̂i, Pi) + Ri,r+1, where D(r)

f (P̂i, Pi) is the r-term
Taylor’s approximation of Df (P̂i, Pi), i.e.,

D
(r)
f (P̂i, Pi) :=

r∑
m=1

f (m)(1)

m!

l∑
j=1

1

pm−1
ij

(p̂ij − pij)m, (6)

and Ri,r+1 =
∑l
j=1Rij,r+1 is its remainder term (assum-

ing f is analytic at 1), i.e.,

Rij,r+1 :=

∞∑
m=r+1

f (m)(1)

m! pm−1
ij

(p̂ij − pij)m. (7)

Note that in (6) and (7), f (m)(·) is the mth derivative of f .
We now define the approximate objective function for an
f -divergence as

ϕ(ci, Ti) := E[D
(r)
f (P̂i, Pi)]

=

r∑
m=1

l∑
j=1

f (m)(1)

m! pm−1
ij Tmi

E
[( Ti∑

s=1

Z̃
(s)
ij

)m]
. (8)

Note that the exact value of the parameter ci above depends
on the values of the terms f (m)(1), for 1 ≤ m ≤ r.

Next, we present a general result on the quality of the ap-
proximation of γi with ϕ(ci, Ti) under the following two
assumptions on f : (f1) f(x) is real-analytic at the point
x = 1 and (f2) f (m)(1)/m! ≤ C1 < ∞, ∀m ∈ N. Both
these assumptions are satisfied by several commonly used
f -divergences, namely KL-divergence with f(x) = x log x,
χ2-divergence with f(x) = (x−1)2, and Hellinger distance
with f(x) = 2(1−

√
x).

Lemma 4. Assume that f satisfies (f1) and (f2). Then,
there exists a constant Cf,r+1 <∞, whose exact definition
is given by Eqs. 23, 24, and 28 in Appendix F.2, such that
the following holds:

E [Rij,r+1] ≤ Cf,r+1(pijTi)
−(r+1)/2.
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To proceed further according to the roadmap of Section 4.1,
we need to construct an upper-bound of the parameter ci that
depends on the specific choice of function f . We carry out
these derivations for f(x) = x log x (i.e., KL-divergence)
in Section. 4.4.1 below.
Remark 1. An alternative approach is to proceed by assum-
ing that there exist τ0,i and τ1,i such that with probability at
least 1−δ, we have τ0,i ≤ Ti ≤ τ1,i for i ∈ [K] (analogous
to the statement of Thm. 1). Under this assumption, we can
obtain a very general regret decomposition for arbitrary f -
divergence distance measures satisfying (f1) and (f2). The
details of this approach are given in Appendix F.1, and in
particular the formal statement of regret decomposition is
in Thm. 7 in Appendix F.1.

4.4.1. ADAPTIVE ALLOCATION FOR KL-DIVERGENCE

The KL-divergence between distributions P and Q is de-
fined as DKL(P,Q) :=

∑l
j=1 pj log(pj/qj). We begin by

deriving its r-term approximation with r = 5, i.e.,

E
[
DKL(P̂i, Pi)

]
= E

[ l∑
j=1

p̂ij log(p̂ij/pij)
]

(a)
=
l − 1

2Ti
+

1

12T 2
i

l∑
j=1

( 1

pij
− 1
)

+O(1/T 3
i ), (9)

where (a) is by calculating the 5th order Taylor’s approx-
imation of the mapping x 7→ x log(x). The calculations
involved in this derivation are described in Harris (1975,
Sec. 2). The choice of r = 5 is sufficient as it is the smallest
r for which the approximation error, which is of O(n−3)
according to Lemma 4, is smaller than the tracking regret,
that as we will show in the proof of Thm. 4, is of O(n−5/2).

Eq. (9) gives us the approximate objective function
ϕ(c(KL)

i , Ti) := l−1
2Ti

+
c(KL)
i

T 2
i

, with c(KL)
i :=

(∑l
j=1 1/pij −

1
)
/12. Note that this ϕ(c(KL)

i , Ti) belongs to the class
of functions F introduced in Definition 1. Deriving the
approx-oracle allocation (T̃ ∗i )Ki=1 requires solving a cubic
equation. Instead of computing the exact form of T̃ ∗i , we
show in Lemma 5 that the deviation of T̃ ∗i from the uniform
allocation is bounded by a problem-dependent constant, im-
plying that the uniform allocation is near-optimal. This is
not surprising as the first order approximation of ϕ (the first
term on the RHS of Eq. 9) does not change with Pi.

Lemma 5. For (Pi)
K
i=1 ∈ ∆

(η)
l and (T̃ ∗i )Ki=1 denoting the

approx-oracle allocation, we have∣∣∣T̃ ∗i − T0

∣∣∣ ≤ K c
(KL)
max − c(KL)

min

l − 1
, ∀i ∈ [K],

where c(KL)
min and c(KL)

max denote the minimum and maximum
values of c(KL)

i , respectively.

Next, with eij,t :=
√

2 log(2/δt)/Ti,t, we define the fol-
lowing upper-bound for the parameters c(KL)

i ∀i ∈ [K]:

u
(KL)
i,t =

{(∑l
j=1

1
p̂ij,t−eij,t

− 1
)
/12 if p̂ij ≥ 7eij,t

2

+∞ otherwise.

The deviation of this upper-bound from the true param-
eters c(KL)

i can be computed by exploiting the convexity
of the mapping x 7→ 1/x and the exact expression of the
length of the confidence interval reported in Lemma 10
in Appendix G. These upper-bounds can then be plugged
into Algorithm 1 to obtain an adaptive allocation scheme
for KL-divergence, denoted by AKL. Finally, we state the
regret bound for AKL in the following theorem (proof in
Appendix G):

Theorem 4. Let (Pi)
K
i=1 ∈ ∆

(η)
l and the adaptive scheme

AKL is implemented with δ = (3K/n)6. Then for large
enough n and with EKL := maxi∈[K] |Ti − T̃ ∗i |, we have

EKL = Õ(n−1/2), and Rn(AKL, DKL) = Õ(n−5/2).

As we showed in Lemma 5, the approx-oracle allocation
for DKL is close, although not identical to, the uniform
allocation. This is due to the fact that the first order term in
the approximation given in (9) only depends on the support
size of the distributions, which is assumed to be the same
for all K distributions in our setting. Thus, the uniform
allocation is the approx-oracle allocation for the first order
allocation for DKL and it achieves an upper bound on the
regret of O

(
n−2

)
. However, as shown in Theorem 4 above,

consideration of the higher order terms allows us to achieve
a Õ

(
n−5/2

)
regret (see Eq. 45 in Appendix G for exact

expression)

4.5. Adaptive Allocation for Separation Distance
The separation distance (Gibbs & Su, 2002) between distri-
butions P and Q is defined as Ds(P,Q) := maxj∈[l](1 −
pj/qj). We start by introducing new notations. Given a
probability distribution Pi ∈ ∆l and a non-empty set S ⊂
[l], we define pi,S :=

∑
j∈S pij . We also define the func-

tions ρ1(p) :=
√

(1− p)/p and ρ2(p) := ρ1(p)+ρ1(1−p),
and introduce the terms c(s)i :=

∑l
j=1 ρ1(pij) and c̃(s)i :=

maxS⊂[l]{ρ2(pi,S)}. Note that c̃(s)i = c
(s)
i for l = 2. Be-

cause of the max operation in the definition of Ds, in gen-
eral, we cannot obtain a closed-form expression for the
objective function γi(Ti) = E[Ds(P̂i, Pi)]. We now state a
key lemma (proof in Appendix H) that provides an approxi-
mation of E[Ds(P̂i, Pi)].
Lemma 6. For a distribution Pi ∈ ∆l, let P̂i = (p̂ij)

l
j=1 be

the empirical distribution constructed from Ti i.i.d. draws
from Pi. Then, we have

c̃
(s)
i

√
1

2πTi
− C̃

(s)
i

Ti
≤ E

[
Ds(P̂i, Pi)

]
≤ c(s)i

√
1

2πTi
+
C

(s)
i

Ti
,

where C(s)
i and C̃(s)

i are Pi-dependent constants defined
by (47) and (50) in Appendix H.
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The proof of the upper bound in Lemma 6 proceeds by
first upper bounding the term inside the expectation with
a normalized sum of random variables, and then using a
non-asymptotic version of the Central Limit Theorem (Ross,
2011, Thm. 3.2). For deriving the lower bound, we first
show (Lemma 12 in Appendix H) that ‘bunching together’
probability masses can only reduce the separation distance
between two distributions, and then proceed by another
application of (Ross, 2011, Thm. 3.2).

Lemma 6 gives us an interval that contains the true objec-
tive function we aim to track. To implement the adaptive
scheme, we employ the approximate objective function
ϕ(c

(s)
i , Ti) := c

(s)
i

√
1/2πTi. In order to instantiate Algo-

rithm 1 for Ds, we require to derive high probability confi-
dence intervals for the terms

√
(1− pij)/pij in the defini-

tion (c
(s)
i )Ki=1. We use the event E1 defined in Lemma 2 and

prove the following result:

Lemma 7. Let Pi ∈ ∆
(η)
l , and the event E1 and the terms

δt and eij,t defined as in Lemma 2. Define the terms ai,t :=(
8 log(2/δt)/Ti,t

)1/4
and bi,t :=

( l ai,t
η

)
max

{
1,

ai,t
2η3/2

}
.

Then, under the high probability event E1, we have

l∑
j=1

√
1

pij
− 1 ≤

l∑
j=1

√
1

p̂ij,t − eij,t
− 1 ≤

l∑
j=1

√
1

pij
− 1+bi,t.

Using the concentration result of Lemma 7, we can now
implement Algorithm 1 with the upper-bound u

(s)
i,t =(∑l

j=1

√
1

p̂ij,t−eij,t − 1
)
/(
√

2π), if p̂ij,t ≥ 7eij,t/2, and

u
(s)
i,t = +∞, otherwise. This will give us an adaptive alloca-

tion scheme for the separation distance, which we shall refer
to it as As. Finally, we prove the following regret bound for
As (proof in Appendix H.3).

Theorem 5. Let Pi ∈ ∆
(η)
l and the adaptive scheme As is

implemented with δ = η/n. Then, for large enough n and
with Es := max1≤i≤K |Ti − T̃ ∗i |, we have

Es = Õ(
√
n), and

Rn(As, Ds) = Õ
(maxi∈[K]

(
c
(s)
i − c̃

(s)
i

)
√
n

+

√
Es
n

)
. (10)

The exact condition for n, and the expressions for Es and
the higher-order terms in (10) are given in Appendix H.3.

Remark 2. Note that the second term on the RHS of (10)
is the approximation error term in the regret decomposition
introduced in Lemma 1, while the second term is the tracking
regret w.r.t. the approx-oracle allocation scheme. In general,
the approximation error, which is Õ(n−1/2), dominates the
tracking regret term, which is Õ(n−3/4). However, for the
special case of l = 2, the approximation error term becomes
Õ(1/n) using the fact that c̃(s)i = c

(s)
i in Lemma 6, and we

achieve an overall regret of Õ(n−3/4).

5. Lower Bound
Lemma 1 provided a general high probability bound on the
deviation of the adaptive allocation (Ti)

K
i=1 from the approx-

oracle allocation (T̃ ∗i )Ki=1. In Sec. 4, we observed that when
specialized to the objective functions corresponding to D`2 ,
D`1 and Ds, we have |Ti − T̃ ∗i | = Õ(

√
n). A natural

question to ask is whether there exists any other adaptive
scheme that can achieve a smaller deviation from the approx-
oracle allocation. We now show that this is not the case by
deriving a lower-bound on the expected deviation of any
allocation scheme A.

To derive the lower-bound, we consider a specific class of
problems with two arms, K = 2, Bernoulli distributions,
l = 2, and objective functions of the form ϕ(ci, Ti) =
ci/T

α
i , for some α > 0. For some p0 ∈ (1/2, 1) and ε > 0,

we define two Bernoulli distributions P1 ∼ Ber (p0) and
P2 ∼ Ber (p0 − ε). We consider two problem instances P1

and P2 with K = 2 and distributions P1 and P2, but with
orders swapped, i.e., P1 = (P1, P2) and P2 = (P2, P1).
Finally, we introduce the notation κ (p) to represent the
distribution dependent constant in the objective function ϕ
corresponding to a Ber (p) distribution. We now state the
lower bound result.
Theorem 6. For some p0 ∈ (1/2, 3/4] and 0 < ε < p0 −
1/2, consider two tracking problems P1 = (P1, P2) and
P2 = (P2, P1), with P1 ∼ Ber (p0) and P2 ∼ Ber (p0 − ε)
and objective function ϕ(c, T ) = c/Tα for α > 0 where
the constant c = κ (p) for Ber (p) distributions. Fi-
nally, introduce the notation τ = (n/2)(|κ (p0)

1/α −
κ (p0 − ε)1/α |)/(|κ (p0)

1/α
+ κ (p0 − ε)1/α |). If (Ti)

2
i=1

denotes the allocation of any allocation schemeA, we have

max
P1,P2

max
i=1,2

E
[
|Ti − T̃ ∗i |

]
≥ sup

0<ε<p0−1/2

Γε(κ, p0),

where Γε(κ, p0) =
τ

2

(
1− ε

√
n/(1− p0)

)
.

As an immediate corollary of Theorem 6, we can observe
that the deviation of the optimistic tracking scheme from
the approx-oracle for D`2 , D`1 and Ds cannot be improved
upon by any adaptive scheme.

Corollary 1. For p0 = 3/4, ε = 1/(4
√
n) and the κ aris-

ing in the study of D`2 , D`1 and Ds, we have Γε(κ, p0) =
Ω(
√
n).

The proofs of Theorem 6 and Corollary 1 are provided in
Appendix I.

Remark 3. Note that in Theorem 6, we present an algo-
rithm independent lower bound on the allocation and not
on the regret. The main reason is that our problem does not
admit a straightforward regret decomposition as in the case
of multi-armed bandit problems (Lattimore & Szepesvári,
2018, Lemma 4.5). Nevertheless, Theorem 6 establishes the
optimality of our proposed algorithm in terms of the devi-
ation from the optimal allocation for `2, `1 and separation
distances. Furthermore, it also establishes a similar sense
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of optimality of the algorithms of (Antos et al., 2008) and
(Carpentier et al., 2011) for the problem of learning the
mean of K distributions in squared error sense.

6. Experiments
Setup. We study the performance of the proposed adaptive
schemes on a problem with K = 2, and l = 10. We
set P1 as the uniform distribution in ∆l and P2 = Pε for
ε ∈ {0.1, 0.2, . . . , 0.9}, where Pε = (pj)

l
j=1 with p1 = ε

and pj = (1− ε)/(l − 1) for 1 < j ≤ l.
To compare the performance of the adaptive schemes, we
used three baseline schemes:
(i) Uniform allocation, in which each arm is allocated n/K
samples. Note that the uniform allocation is the oracle
scheme for Dχ2 (see Appendix G.4),
(ii) Greedy allocation, in which the arms are pulled by plug-
ging in the current empirical estimate (ĉi,t)

K
i=1 of (ci)

K
i=1 in

the objective function, and
(iii) Forced Exploration, in which the arms are pulled ac-
cording to the greedy scheme, while also ensuring that at
any time t, each arm is pulled at least

√
t times. This scheme

is motivated by the strategy of Antos et al. (2008).
For every value of ε, we ran 500 trials of all the alloca-
tion schemes with the budget n = 5000. We focus our
experiments on the `22, `1 and separation distances, since
we observed no statistically significant difference in the per-
formance of the different schemes for KL-divergence. To
compare the performance of the allocation schemes, we plot
the term ϕ(ci, Ti)− ϕ(ci, T̃

∗
i ).

Observations. We plot the ϕ(ci, Ti) − ϕ(ci, T̃
∗
i ) values

for the different allocation schemes and loss functions in
Figs. 1, 2 and 3. As we can see from Fig. 1, the adaptive
scheme outperforms the uniform allocation for the three
distance metrics for both ε = 0.5 and ε = 0.9. Note that
as ε increases, the optimal allocation get more skewed, and
hence the gap in performance between uniform and adaptive
also increases. The greedy and forced exploration schemes,
both perform comparably to our proposed adaptive scheme
for ε = 0.5, although their resulting allocations have higher
variability especially for `22 and `1 distances. For the case of
ε = 0.9 however, the adaptive scheme performs significantly
better than both greedy and forced exploration methods for
`22 and `1 distances, and result in a lower variance solution
for separation distance.

7. Extensions
We now discuss two extensions of the results of the previous
sections.
Continuous Distributions. The results presented in this
paper can be extended to some classes of continuous distri-
butions and some distance measures. For instance, assume
that (Pi)

K
i=1 are continuous distributions on [0, 1] which

admit density functions (νi)
K
i=1 which can be expanded in

terms of a finite number of orthonormal basis functions

Figure 1: Comparison of Algorithm 1 with Uniform Alloca-
tion for `22 (top), `1 (middle) and separation distance (bot-
tom) for ε = 0.5 (left) and ε = 0.9 (right).

Figure 2: Comparison of Algorithm 1 with Greedy Alloca-
tion for `22 (top), `1 (middle) and separation distance (bot-
tom) for ε = 0.5 (left) and ε = 0.9 (right).

(ψj)
l
j=1, i.e., νi =

∑l
j=1 aijψj . By using appropriate basis

functions, such as Fourier Basis and wavelet basis, a large
class of density functions can be modeled under this as-
sumption. For constructing an estimate of νi, denoted by ν̂i,
we can employ the projection estimator (Tsybakov, 2009,
§ 1.7) which estimates the coefficients of the basis expansion
using the observations. By exploiting the orthonormality
of (ψj)

l
j=1, we can show that the expectation of integrated

mean-squared error, i.e., E[
∫

(ν̂i − νi)2dx], belongs to F .
With this objective function available, we can instantiate
the optimistic tracking algorithm and derive bounds on the
regret similar to the discrete case. The details about the
estimator construction and the objective function derivation
are provided in Appendix J.
Minimizing Average Discrepancy. In this paper, our fo-
cus has been on minimizing the maximum distance between
the estimate and true distributions, i.e., optimization prob-
lems (1) and (4). An important alternative formulation that
has been studied in the bandit literature involves minimiz-
ing the average discrepancy (Carpentier & Munos, 2011;
Riquelme et al., 2017). Our results, in particular our gen-
eral tracking scheme, can be extended to this case and we
are able to provide adaptive allocation strategies to min-
imize the average distance between distributions, for all
distances studied in this paper. Consider the following track-
ing/optimization problem, which is the equivalent of (4) for
the average case:

min
T1,...,TK

1

K

K∑
i=1

ϕi(ci, Ti) s.t.
K∑
i=1

Ti = n. (11)

If ϕi’s are convex in Ti, then the optimal solution must
satisfy 1

K
∂ϕi(ci,Ti)

∂Ti
− λ = 0, for all i ∈ [K] and for some
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Figure 3: Comparison of Algorithm 1 with Forced Alloca-
tion for `22 (top), `1 (middle) and separation distance (bot-
tom) for ε = 0.5 (left) and ε = 0.9 (right).

λ ∈ R. Thus, if the Ti-derivatives of ϕi are in the function
class F (Definition 1), then (11) can be solved using the
tools developed in Section 3. It is easy to show that the dis-
tances studied in this paper (i.e., `2, `1, KL, and separation)
satisfy this condition.

Wasserstein Distances. An important class of distance met-
rics between two probability measures µ, ν is the Wasser-
stein family of distances, denoted by Wp(µ, ν) for p ≥ 1.
These distance metrics have recently been used in several
problems in machine learning and statistics. Some existing
results, such as (Weed et al., 2019, Proposition 1), derive
sharp relations between Wp(µ, ν) and the `1 distance be-
tween the discrete distributions obtained by restricting µ and
ν to a given partition Q of the input space. Thus for a fixed
partition Q, our analysis of `1 distance can be used to get
an upper bound on the regret of learning two distributions
in Wp distance. Such an upper bound would depend on
the properties of the partition Q (such as cardinality and
diameter of its elements) in addition to the sampling bud-
get n. An interesting question for future work is designing
an adaptive method of constructing the partition Q given
n in order to achieve the tightest bounds on the regret for
learning distributions in terms of Wp.

8. Conclusion
We studied the problem of allocating a fixed budget of sam-
ples to learnK discrete distributions uniformly well in terms
of four distance measures: `22, `1, f -divergence, and separa-
tion. We proposed a general optimistic tracking strategy for
problems with concave-convex and differentiable objective
functions and then showed that this class of functions is
rich enough to either contain or well approximate the true
objective functions of all the considered distances. We then
derived regret bounds for the proposed algorithm for all
four distances. We showed that the allocation performance
of the proposed scheme cannot in general be improved, by
deriving lower-bounds. We also empirically verified our the-
oretical findings through numerical experiments. Finally, we
ended with a discussion on extending our results to certain
classes of continuous distributions and to a related setting
of average error minimization.
Following the style of results presented in the related works

of (Antos et al., 2008; Carpentier et al., 2011), we derived
upper-bounds on the regret in terms of the budget n and in
the large n regime, with l and K fixed. However, there are
several interesting directions not considered in this paper,
which can be explored in future work, such as 1) improving
the performance of the adaptive algorithms and the hid-
den constants in the regret-bounds by employing stronger
concentration results, 2) handling the large l case by using
appropriate estimators such as the estimator of Santhanam
et al. (2007), and the large K case by imposing some ad-
ditional similarity assumptions among the different arms
similar to Bubeck et al. (2011), and 3) extending the results
of the paper to the general problem of learning the dynamics
(model) of a finite MDP, as discussed in Section 1.
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