
Lookahead-Bounded Q-Learning

Appendix to Lookahead-Bounded Q-Learning

A Proofs

A.1 Proof of Proposition 2

Proof. We provide a proof that is similar to that of Proposition 2.3 (iv) of (Brown et al., 2010) but for the case of the
absorption time formulation of an infnite horizon problem. Here, we defne a policy π := {πt}t≥0 as a sequence of
functions, that maps from {wt}t≥1 to feasible actions. We may also use stationary policies where πt is the same for all t
and only depends on the current state st. Let G = {Gt}t≥0 be the perfect information relaxation of the natural fltration
F = {Ft}t≥0. Under G, we have Gt = F , i.e., we have access to the entire future uncertainties at each t. Defne by ΠG the
set of policies that includes the policies that have access to future uncertainties in addition to nonanticipative policies. Let Ĝ

πϕbe a relaxation of G such that in addition to what is known under G the estimate penalty terms ζ̂
t (st, at, wt+1 | ϕ) are

revealed at time t.

We frst prove E[Q̂
0
L(s, a)] ≤ Q∗(s, a). For an admissible policy π, we have

" #
τ −1X(a)

E[Q̂L
0 (s, a)] = E r(st, π(st)) − ζ̂π(st, at, wt+1 | ϕ) | s0 = s, a0 = at "t=0 #

τ−1X(b)
ζπ = E (r(st, π(st)) − ˆ (st, at, wt+1 | ϕ)) 1{τ<∞} | s0 = s, a0 = at

t=0⎡ ⎤
∞ τ 0−1X X(c)

= E ⎣ (r(st, π(st)) − ζ̂π(st, at, wt+1 | ϕ)) 1{τ =τ 0 } | s0 = s, a0 = a⎦
t

τ 0 =1 t=0 ⎡ ⎤
∞ τ 0−1X X(d)

= E ⎣ (r(st, π(st)) − E[ζ̂π(st, at, wt+1 | ϕ) | Gt]) 1{τ =τ 0} | s0 = s, a0 = a⎦
t

τ 0=1 t=0 ⎡ ⎤
∞ τ 0−1X X(e) ⎣ ⎦= E (r(st, π(st)) − ζπ(st, at, wt+1 | ϕ)) 1{τ =τ 0 } | s0 = s, a0 = at

τ 0 =1 t=0 " #
τ −1X(f)

= E (r(st, π(st)) − ζπ(st, at, wt+1 | ϕ)) 1{τ<∞} | s0 = s, a0 = at "t=0 #
τ−1X(g)

= E (r(st, π(st)) − ζπ(st, at, wt+1 | ϕ)) | s0 = s, a0 = at
t=0

≤ Q ∗ (s, a)

Equality (a) follows from the defnition of Q̂
0(s, a) and equality (b) follows since τ has fnite mean and r and ϕ are uniformly

bounded. Equalities (c) and (d) follow from the law of total expectations. Equality (e) follows from Lemma A.1 in (Brown
π ∗ π ∗
G Get al., 2010) and from the estimated penalty terms being unbiased, i.e., E[ζ̂ (st, at, wt+1 | ϕ) | Gt] = ζ (st, at, wt+1 | ϕ).t t

Equalities (f) and (g) follow by the law of total expectation and τ being almost surely fnite stopping time, respectively. The
inequality follows since the expected value of the penalty terms for a feasible policy is zero and the action-value function of
a feasible policy, Qπ (s, a), is less than Q∗(s, a).

Now, we prove Q∗(s, a) ≤ E[Q̂
0
U (s, a)]. Let π∗ be the optimal solution for the dual problem, G

" #
τ−1X

max E (r(st, πG) − ζπG (st, at, wt+1 | ϕ)) | s0 = s, a0 = a . (18)t
πG∈ΠG

t=0

Lookahead-Bounded Q-Learning

We have, " () #
τ −1X(a) πϕE[Q̂

0
U (s, a)] = E max r(st, at) − ζ̂ (st, at, wt+1 | ϕ) | s0 = s, a0 = at

a "t=0 #
τ −1X(b)

ζπG= max E (r(st, πG) − ˆ (st, at, wt+1 | ϕ)) | s0 = s, a0 = at
πG∈Πˆ "

G t=0 #
τ−1X

π ∗
G≥ E (r(st, πG

∗) − ζ̂ (st, at, wt+1 | ϕ)) | s0 = s, a0 = at "t=0 #
τ−1X(c) π ∗

G= E (r(st, πG
∗) − ζ̂ (st, at, wt+1 | ϕ)) 1{τ<∞} | s0 = s, a0 = at

t=0⎡ ⎤
∞ τ 0−1X X(d) π ∗ ⎣ G ⎦= E (r(st, πG

∗) − ζ̂ (st, at, wt+1 | ϕ)) 1{τ =τ 0} | s0 = s, a0 = at
τ 0=1 t=0 ⎡ ⎤
∞ τ 0 −1X X(e) π ∗ ⎣ G ⎦= E (r(st, πG

∗) − E[ζ̂ (st, at, wt+1 | ϕ) | Gt]) 1{τ =τ 0} | s0 = s, a0 = at
τ 0=1 t=0 ⎡ ⎤
∞ τ 0 −1X X(f) π ∗ ⎣ G ⎦= E (r(st, πG

∗) − ζ (st, at, wt+1 | ϕ)) 1{τ=τ 0} | s0 = s, a0 = at
τ 0=1 t=0 " #

τ −1X(g) π ∗
G= E (r(st, πG

∗) − ζt (st, at, wt+1 | ϕ)) 1{τ<∞} | s0 = s, a0 = a "t=0 #
τ −1X(h) π ∗

G= E (r(st, πG
∗) − ζ (st, at, wt+1 | ϕ)) | s0 = s, a0 = at

t=0 " #
τ −1X(i)

= max E (r(st, πG) − ζπG (st, at, wt+1 | ϕ)) | s0 = s, a0 = at
πG∈ΠG

t=0

≥ Q ∗ (s, a).

Equality (a) and (b) follow from the defnition of Q̂
0
U (s, a) and since Ĝ is a relaxation of the perfect information relaxation

G, which allows us to interchange the maximum and the expectation. The frst inequality follows because π∗ ∈ ΠĜ sinceG
ΠG ⊆ ΠĜ . Equality (c) follows since r and ϕ are uniformly bounded and τ has fnite mean. Equalities (d) and (e) follow
from the law of total expectations. Equality (f) follows from Lemma A.1 in (Brown et al., 2010) and from the estimated

π ∗ π ∗
G Gpenalty terms being unbiased, i.e., E[ζ̂ (st, at, wt+1 | ϕ) | Gt] = ζ (st, at, wt+1 | ϕ). Equalities (g) and (h) follow by the t t

law of total expectation and τ being almost surely fnite stopping time, respectively. Equality (i) follows since by defnition
π∗ is the optimal solution of (18). The last inequality follows by weak duality (Proposition 1(i)).G

First, we state a technical lemma that is used in the proof of Proposition 3 and Lemma 1.

Lemma A.1. For all n = 1, 2, . . ., if Ln−1(s, a) ≤ Un−1(s, a) and Q0 ∈ Q then Ln(s, a) ≤ Un(s, a) for alln−1
(s, a) ∈ S ×A.

Proof. Fix an (s, a) ∈ S ×A. Note that the optimal values of the inner problems in (9) and (10), Q̂
0
U (s, a) and Q̂

0
L(s, a)

respectively, are computed using the same sample path w and for each period within the inner DP, the same batch of samples
is used for estimating the expectation in both the upper and lower bound problems. For clarity, let us denote the values of
Q̂L QU QL QU
0 (s, a) and ˆ 0 (s, a) at iteration n = 1, 2, . . . by ˆ n,0(s, a) and ˆ n,0(s, a), respectively. Assume αn(s, a) ≤ 1 for all n.

We provide a proof by induction. For n = 1, we have: h i
Q1(s0, a0) = Q0 0(s0, a0) + α0(s0, a0) r(s0, a0) + γ max Q0

0 (s1, a) − Q0 0(s0, a0) .
a

	

Lookahead-Bounded Q-Learning

Since the rewards r(s, a) are uniformly bounded, 0 < γ < 1 and |Q0 0(s, a)| ≤ ρ then Q1 is bounded. Set ϕ = Q1, since the
actions selected by the policy πQ1 are feasible in (9), we have

Q̂U
1,0(s, a) − Q̂L

1,0(s, a) ≥ 0,

and with L0(s, a) ≤ U0(s, a), it follows that L1(s, a) ≤ U1(s, a). A similar proof can be used to show the inductive case
also holds at iteration n,

Qn(sn−1, an−1) = Q0 n−1(sn−1, an−1)h i
+ αn−1(sn−1, an−1) r(sn−1, an−1) + γ max Q0 n−1(sn, a) − Q0 n−1(sn−1, an−1) .

a

By the inductive hypothesis, we have Q0 n−1 ∈ Q and Ln−1(s, a) ≤ Un−1(s, a). Then, similar to the base case, we have
Qn ∈ Q and Q̂

n,
U
0(s, a) − Q̂

n,
L
0(s, a) ≥ 0. Therefore, Ln(s, a) ≤ Un(s, a). Since our choice of (s, a) was arbitrary then

the result follows for all (s, a) ∈ S ×A.

A.2 Proof of Proposition 3

Proof. Part (i): First, note that by (12) and (13) the upper and lower bound estimates Un(s, a) and Ln(s, a) are bounded
below and above by ρ and −ρ respectively for all (s, a) ∈ S ×A and for all n, where ρ = Rmax/(1 − γ). We assume in
this proof that αn(s, a) ≤ 1 for all n. Let L̃

n = max(s,a) Ln(s, a) and Ũ
n = max(s,a) Un(s, a). We claim that for every

iteration n, we have that for all (s, a),

¯ ¯ L̄0 ≤ Q0 Ū 0Ln ≤ Qn(s, a) ≤ Un and (s, a) ≤ (19)n n n

where n oP Pn−1 n¯ ˜ ˜ γi γiLn = min Un−1(1 + γ), . . . , U1 , −M (20)i=0 i=0 n oP Pn−1 n
Ū
n = max L̃

n−1(1 + γ), . . . , L̃1 γi,M γi , (21)i=0 i=0 n oP Pn−1 n
L̄0 ˜ ˜ ˜ γi γi= min Un, Un−1(1 + γ), . . . , U1 , −M , (22)n i=0 i=0 n oP Pn−1 n
Ū 0 = max L̃

n, L̃
n−1(1 + γ), . . . , ˜ γi,M γi , (23)n L1 i=0 i=0 �

and M is a fnite positive scalar defned as M = max Rmax, max(s,a) Q0(s, a) .

The result follows from the claim in (19). To see this note that at any iteration n, L̄
n and L̄0 are bounded below bynP Pn n−ρ γi since each term inside the minimum of (20) and (22) is bounded below by −ρ γi . As n →∞, we have i=0 i=0

−ρ −ρ¯ L̄0≤ lim inf Ln and ≤ lim inf . (24)n1 − γ n→∞ 1 − γ n→∞

An analogous argument yields

¯ ¯lim sup Un ≤
ρ

and lim sup U 0 ≤
ρ

. (25)n
n→∞ 1 − γ n→∞ 1 − γ

Boundedness of Qn(s, a) and Q0 (s, a) for all (s, a) ∈ S ×A follows from (19), (24) and (25).n

Now, we prove our claim in (19) by induction. Since Algorithm 1 is asynchronous, at the nth iteration, the updates for the
action-value iterates for (s, a), Qn+1(s, a) and Q0 n+1(s, a), are either according to (11) and (14) (case 1) or set equal to
Qn(s, a) and Q0 (s, a) respectively (case 2). n

We frst focus on Q0 (s, a) ≤ Ū
n part of (19), since L̄0 ≤ Q0 (s, a) and L̄

n ≤ Qn(s, a) ≤ Ū
n proceed in an analogousn n n

manner. For n = 1, we have Q0 0(s, a) = Q0(s, a), so if the update is carried out as in case 1,

Q0 0Q1(s, a) = (1 − α0(s, a)) Q0 0(s, a) + α0(s, a) [r(s, a) + γ maxa 0(s , a)]

≤ (1 − α0(s, a))M + α0(s, a)M + α0(s, a)γM

≤ M(1 + γ)

Lookahead-Bounded Q-Learning

so Q0 1(s, a) ≤ max{L1(s, a), min{U1(s, a),M(1 + γ)}}. Now consider the case where U1(s, a) ≤ M(1 + γ). Since Q0

is bounded by ρ and L0(s, a) ≤ U0(s, a) then by Lemma A.1, we have L1(s, a) ≤ U1(s, a), so

Q0 1(s, a) ≤ U1(s, a) ≤ M(1 + γ). (26)

Otherwise, if U1(s, a) ≥ M(1 + γ), we then have

Q0 1(s, a) ≤ max{L1(s, a),M(1 + γ)}. (27)

From (26) and (27), we have

Q0 1(s, a) ≤ max{L1(s, a),M(1 + γ)}
(28)

≤ max{L̃
1,M(1 + γ)}.

If the update is carried out as in case 2, we have,

Q0 1(s, a) = Q0 0(s, a)

≤ M

< M(1 + γ)

≤ max{L̃1,M(1 + γ)}.

Thus Ū 0 (s, a) part of (19) is true for n = 1. Suppose that it is true for n = 1, 2, . . . , k. We will show it for n = k + 1.n
Consider frst the instance where the update is carried out according to case 1. We do casework on the inequality n Pk−1 Pk

o
Q0 (s, a) ≤ max L̃k, L̃k−1(1 + γ), . . . , L̃1 γi,M γi , (29)k i=0 i=0 Pk−k0 which holds for all (s, a). First, let us consider the case where the right-hand-side of (29) is equal to L̃k0 γi for some i=0

k0 such that 1 ≤ k0 ≤ k. Then, we have

Q0 0Qk+1(s, a) = (1 − αk(s, a))Q0 (s, a) + αk(s, a)[r(s, a) + γ maxa (s , a)]k k Pk−k0 Pk−k0 ≤ (1 − αk(s, a))L̃
k0 γi + αk(s, a)M + αk(s, a)γL̃

k0 γi i=0 i=0 Pk−k0 Pk−k0+1≤ (1 − αk(s, a))L̃
k0 γi + αk(s, a)L̃

k0 + αk(s, a)L̃
k0 γi i=0 i=1

(30)Pk−k0 Pk−k0 +1= (1 − αk(s, a))L̃
k0 γi + αk(s, a)L̃

k0 γi + αk(s, a)L̃
k0 γ

k−k0

i=0 i=0 Pk−k0 +1≤ L̃
k0 γi + L̃

k0 γ
k−k0

i=0

˜ Pk−k0+1
γi= Lk0 i=0

The frst inequality holds by the induction assumption (29). The second inequality holds since in this case we have the
right-hand-side of (29) is equal to L̃

k0 (1 + γ + . . . + γk−k0). It follows that

L̃k0 (1 + γ + . . . + γk−k0) ≥ M(1 + γ + . . . + γk),

which implies that L̃k0 ≥ M . Finally, the third inequality holds by the assumption that αn(s, a) ≤ 1 for all n. We have

Q0 k+1(s, a) = max{Lk+1(s, a), min{Uk+1(s, a), Qk+1(s, a)}}

≤ max{Lk+1(s, a), min{Uk+1(s, a), L̃
k0 (1 + γ + . . . + γk−k0+1)}}.

Now, consider the case where Uk+1(s, a) ≤ L̃
k0 (1 + γ + . . . + γk−k0+1). By the induction assumption, Q0 (s, a) is bounded nP Pn nbelow by −ρ γi and above by ρ γi for all (s, a) ∈ S ×A and all n = 1, 2, . . . , k. Since L0(s, a) ≤ U0(s, a),i=0 i=0

Lemma A.1 can be applied iteratively on n = 1, . . . , k + 1 to obtain that LK+1(s, a) ≤ Uk+1(s, a) for all (s, a) ∈ S ×A.
Thus, we have

+1).Q0 k+1(s, a) ≤ Uk+1(s, a) ≤ L̃k0 (1 + γ + . . . + γk−k0 (31)

Lookahead-Bounded Q-Learning

Otherwise, if Uk+1(s, a) ≥ L̃k0 (1 + γ + . . . + γk−k0 +1), we have

Q0 k+1(s, a) ≤ max{Lk+1(s, a), L̃k0 (1 + γ + . . . + γk−k0+1)}
˜≤ max{L̃

k+1, Lk0 (1 + γ + . . . + γk−k0+1)}. (32)

Moving on to the case where the right-hand-side of (29) is equal to M(1 + γ + . . . + γk):

0Qk+1(s, a) = (1 − αk(s, a)) Q
0
k(s, a) + αk(s, a) [r(s, a) + γ max Qk

0 (s , a)]
aPk Pk≤ (1 − αk(s, a))M γi + αk(s, a)M + αk(s, a)γM γi i=0 i=0Pk Pk+1

= (1 − αk(s, a))M γi + αk(s, a)M + αk(s, a)M γi (33)
i=0 i=1Pk Pk Pk≤ M γi − αk(s, a)M γi + αk(s, a)M γi + Mγk+1

i=0 i=0 i=0

= M(1 + γ + . . . + γk+1).

We have

Q0 k+1(s, a) = max{Lk+1(s, a), min(Uk+1(s, a), Qk+1(s, a))}
≤ max{Lk+1(s, a), min(Uk+1(s, a),M(1 + γ + . . . + γk+1)}}.

Now if Uk+1(s, a) ≤ M(1 + γ + . . . + γk+1), then by applying Lemma A.1 as before,

Q0 k+1(s, a) ≤ Uk+1(s, a) ≤ M(1 + γ + . . . + γk+1). (34)

Otherwise, if Uk+1(s, a) ≥ M(1 + γ + . . . + γk+1), we have

Q0 k+1(s, a) ≤ max{Lk+1(s, a),M(1 + γ + . . . + γk+1)}
≤ max{L̃

k+1,M(1 + γ + . . . + γk+1)}. (35)

Now, if the update is carried out according to case 2,

Q0 k+1(s, a) = Q0 K (s, a)

˜ ˜ Pk−1 Pk≤ max{L̃
k, Lk−1(1 + γ), . . . , L1 γi,M γi} (36)i=0 i=0

˜ Pk Pk+1≤ max{L̃
k+1, (1 + γ)L̃

k, . . . , γi,M γi}.L1 i=0 i=0

By (31), (32), (34), (35) and (36), we have Q0 (s, a) ≤ Ū 0 k+1. A similar argument can be made to show L̄
n ≤ Q0 (s, a)k+1 n

¯and L̄
n ≤ Qn(s, a) ≤ Un, which completes the inductive proof.

Proof. Part (ii): Fix an (s, a) ∈ S ×A. By part (i) we have the action-value iterates Qn and Q0 are bounded for all n. We n
denote the “sampling noise” term using

ξL(s, a) = Q̂L QL
n,0(s, a) − E[ˆ n,0(s, a)].n

We also defne an accumulated noise process started at iteration ν by W L
ν,ν (s, a) = 0, and

Wn
L
+1,ν (s, a) = (1 − αn(s, a)) W L (s, a) ξL ∀ n ≥ ν, n,ν (s, a) + αn n+1(s, a)

which averages noise terms together across iterations. Note that τ is an almost surely fnite stopping time, the rewards r(s, a)
are uniformly bounded, and Qn+1 is also bounded (by part (i)). Then, Q̂L is bounded by some random variable and so isn,0

the conditional variance of ξL(s, a). Hence, Corollary 4.1 in (Bertsekas & Tsitsiklis, 1996) applies and it follows thatn

lim n,ν (s, a) = 0 ∀ ν ≥ 0.W L

n→∞

Let ν̃ be large enough so that αn(s, a) ≤ 1 for all n ≥ ν̃. We also defne

Y L(s, a) = ρ,ν̃

Lookahead-Bounded Q-Learning

Yn
L
+1(s, a) = (1 − αn(s, a)) Y L(s, a) + αn(s, a) Q ∗ (s, a), ∀ n ≥ ν.˜n

It is easy to see that the sequence Y L(s, a) → Q∗(s, a). We claim that for all iterations n ≥ ν̃, it holds that n

Ln(s, a) ≤ min{ρ, Y L(s, a) + W Lν (s, a)}.n n,˜

To prove this claim, we proceed by induction on n. For n = ν̃, we have

Y L(s, a) = ρ and W Lν (s, a) = 0,ν̃ ν,˜ ˜

so it is clear that the statement is true for the base case. We now show that it is true for n + 1 given that it holds at n:

Ln+1(s, a) = min{ρ, (1 − αn(s, a)) Ln(s, a) + αn(s, a) (Q̂
L
n,0(s, a) − E[Q̂L

n,0(s, a)] + E[Q̂L
n,0(s, a)])}

= min{ρ, (1 − αn(s, a)) Ln(s, a) + αn(s, a) ξ
L(s, a) + αn(s, a) E[Q̂

n,
L
0(s, a)]}n

≤ min{ρ, (1 − αn(s, a)) (Y L(s, a) + W L (s, a)) + αn(s, a) ξ
L(s, a) + αn(s, a) Q ∗ (s, a)}n n,νk n

≤ min{ρ, YnL
+1(s, a) + W L ν (s, a)},n+1,˜

where the frst inequality follows by the induction hypothesis and E[Q̂
n,
L
0(s, a)] ≤ Q∗(s, a) follows by Proposition 2. Next,

since Y L(s, a) → Q∗(s, a), W L (s, a) → 0 and Q∗(s, a) ≤ ρ, we have n n,νk

lim sup Ln(s, a) ≤ Q ∗ (s, a).
n→∞

Therefore, since our choice of (s, a) was arbitrary, it follows that for every η > 0, there exists some time n0 such that
0Ln(s, a) ≤ Q∗(s, a) + η for all (s, a) ∈ S ×A and n ≥ n .

Using Proposition 2, Q∗(s, a) ≤ E[Q̂
n,
U
0(s, a)], a similar argument as the above can be used to establish that

Q ∗ (s, a) ≤ lim inf Un(s, a).
n→∞

00Hence, there exists some time n00 such that Q∗(s, a) − η ≤ Un(s, a) for all (s, a) and n ≥ n . Take n0 to be some time
greater than n0 and n00 and the result follows.

A.3 Proof of Lemma 1

Proof. We use induction on n. Since for all (s, a) ∈ S × A, L0(s, a) ≤ U0(s, a) and −ρ ≤ Q0 0(s, a) ≤ ρ then
L1(s, a) ≤ U1(s, a) by Lemma A.1. Suppose that Ln(s, a) ≤ Un(s, a) holds for all (s, a) for all n = 1, . . . , k. For
all (s, a) ∈ S × A, we have Q0 (s, a) is bounded since by Proposition 3(i) Q0 (s, a) is bounded for all n. We alsok n
have Lk(s, a) ≤ Uk(s, a) for all (s, a) by the induction assumption. Applying Lemma A.1 again at n = k + 1 yields
Lk+1(s, a) ≤ Uk+1(s, a) and the inductive proof is complete.

A.4 Proof of Theorem 1

Proof. We frst prove part (i). We start by writing Algorithm 1 using DP operator notation. Defne a mapping H such that

0(HQ0)(s, a) = r(s, a) + γE [maxa0 Q0(s , a0)] ,

0where s = f(s, a, w). It is well-known that the mapping H is a γ-contraction in the maximum norm. We also defne a
random noise term

0 0ξn(s, a) = γ maxa0 Q0 (s , a0) − γE [maxa0 Q0 (s , a0)] . (37)n n

The main update rules of Algorithm 1 can then be written as

Qn+1(s, a) = (1 − αn(s, a)) Q
0 (s, a) + αn(s, a) [(HQ

0)(s, a) + ξn+1(s, a)] ,n nh i
Un+1(s, a) = Π[−ρ, ∞] (1 − βn(s, a)) Un(s, a) + βn(s, a) Q̂

0
U (s, a) , h i

Ln+1(s, a) = Π[∞, ρ] (1 − βn(s, a)) Ln(s, a) + βn(s, a) Q̂
0
L(s, a)} ,

Lookahead-Bounded Q-Learning

Q0 n+1(s, a) = Π[Ln+1(s,a), Un+1(s,a)] [Qn+1(s, a)] . (38)

Assume without loss of generality that Q∗(s, a) = 0 for all state-action pairs (s, a). This can be established by shifting
the origin of the coordinate system. Note that by (38) at any iteration n and for all (s, a), we have Ln(s, a) ≤ Q0 (s, a) ≤n
Un(s, a).

We proceed via induction. First, note that by Propostion 3(i) the iterates of Algorithm 1 Q0 (s, a) are bounded in the n
sense that there exists a constant D0 such that |Q0 (s, a)| ≤ D0 for all (s, a) and iterations n. Defne the sequencen
Dk+1 = (γ + �) Dk, such that γ + � < 1 and � > 0. Clearly, Dk → 0. Suppose that there exists some time nk such that for
all (s, a),

max{−Dk, Ln(s, a)} ≤ Q0 (s, a) ≤ min{Dk, Un(s, a)}, ∀n ≥ nk.n

We will show that this implies the existence of some time nk+1 such that

max{−Dk+1, Ln(s, a)} ≤ Q0 (s, a) ≤ min{Dk+1, Un(s, a)} ∀ (s, a), n ≥ nk+1.n

This implies that Q0 (s, a) converges to Q∗(s, a) = 0 for all (s, a). We also assume that αn(s, a) ≤ 1 for all (s, a) and n.n
Defne an accumulated noise process started at nk by Wnk ,nk (s, a) = 0, and

Wn+1,nk (s, a) = (1 − αn(s, a)) Wn,nk (s, a) + αn(s, a) ξn+1(s, a), ∀ n ≥ nk, (39)

where ξn(s, a) is as defned in (37). We now use Corollary 4.1 in (Bertsekas & Tsitsiklis, 1996) which states that under
the assumptions of Theorem 1 on the step size αn(s, a), and if E[ξn(s, a) | Fn] = 0 and E[ξ2 (s, a) | Fn] ≤ An, where the n
random variable An is bounded with probability 1, the sequence Wn+1,nk (s, a) defned in (39) converges to zero, with
probability 1. From our defnition of the stochastic approximation noise ξn(s, a) in (37), we have

2 0E[ξn(s, a) | Fn] = 0 and E[ξ2 (s, a) | Fn] ≤ C(1 + maxs0,a0 Q
0
(s , a0)),n n

where C is a constant. Then, it follows that

lim Wn,nk (s, a) = 0 ∀ (s, a), nk.
n→∞

Now, for the sake of completeness, we restate a lemma from (Bertsekas & Tsitsiklis, 1996) below, which we will use to
bound the accumulated noise.

0Lemma A.2 (Lemma 4.2 in (Bertsekas & Tsitsiklis, 1996)). For every δ > 0, and with probability one, there exists some n
0such that |Wn,n0 (s, a)| ≤ δ, for all n ≥ n .

Using the above lemma, let nk0 ≥ nk such that, for all n ≥ nk0 we have

|Wn,nk0 (s, a)| ≤ γ�Dk < γDk.

Furthermore, by Proposition 3(ii) let νk ≥ nk0 such that, for all n ≥ νk we have

Ln(s, a) ≤ γDk − γ�Dk and γ�Dk − γDk ≤ Un(s, a).

Defne another sequence Yn that starts at iteration νk.

Yνk (s, a) = Dk and Yn+1(s, a) = (1 − αn(s, a)) Yn(s, a) + αn(s, a) γ Dk (40)

Note that it is easy to show that the sequence Yn(s, a) in (40) is decreasing, bounded below by γDk, and converges to γDk

as n →∞. Now we state the following lemma.

Lemma A.3. For all state-action pairs (s, a) and iterations n ≥ νk, it holds that:

(1) Q0 (s, a) ≤ min{Un(s, a), Yn(s, a) + Wn,νk (s, a)},n

(2) max{Ln(s, a), −Yn(s, a) + Wn,νk (s, a)} ≤ Q0 (s, a).n

Lookahead-Bounded Q-Learning

Proof. We focus on part (1). For the base case n = νk, the statement holds because Yνk (s, a) = Dk and Wνk ,νk (s, a) = 0.
We assume it is true for n and show that it continues to hold for n + 1:

Qn+1(s, a) = (1 − αn(s, a))Q
0 (s, a) + αn(s, a) [(HQ

0)(s, a) + ξn+1(s, a)]n n

≤ (1 − αn(s, a)) min{Un(s, a), Yn(s, a) + Wn,νk (s, a)}
+ αn(s, a) (HQ

0)(s, a) + αn(s, a) ξn+1(s, a)n

≤ (1 − αn(s, a)) (Yn(s, a) + Wn,νk (s, a)) + αn(s, a) γDk + αn(s, a) ξn+1(s, a)

≤ Yn+1(s, a) + Wn+1,νk (s, a),

where we used (HQ0) ≤ γkQ0 k ≤ γDk. Now, we have n n

Q0 n+1(s, a) = Π[Ln+1(s,a), Un+1(s,a)] [Qn+1(s, a)]

≤ Π[Ln+1(s,a), Un+1(s,a)] [Yn+1(s, a) + Wn+1,νk (s, a)]

≤ min{Un+1(s, a), Yn+1(s, a) + Wn+1,νk (s, a)}.

The frst inequality holds because
Qn+1(s, a) ≤ Yn+1(s, a) + Wn+1,νk (s, a).

The second inequality holds because Yn+1(s, a) + Wn+1,νk (s, a) ≥ γDk − γ�Dk, Ln(s, a) ≤ γDk − γ�Dk, and
Ln(s, a) ≤ Un(s, a) by Lemma 1. Symmetrically, it can be shown that

max{Ln+1(s, a), −Yn+1(s, a) + Wn+1,νk (s, a)} ≤ Q0 n+1(s, a),

which completes the proof.

Since Yn(s, a) → γDk and Wn,νk (s, a) → 0, we have

lim supn→∞kQ0 nk ≤ γDk < Dk+1.

Therefore, there exists some time nk+1 such that

max{−Dk+1, Ln(s, a)} ≤ Q0 (s, a) ≤ min{Dk+1, Un(s, a)} ∀ (s, a), n ≥ nk+1,n

completing thus the induction.

For part (ii) of the theorem: we fx (s, a) and focus on the convergence analysis of Un(s, a) to Q∗(s, a). A similar analysis
can be done to show Ln(s, a) → Q∗(s, a) almost surely. First note that we can write (12) the update equation of Un(s, a)
as: � � ��

Un+1(sn, an) = Π[−ρ, ∞] Un(sn, an) + βn(sn, an) ψn(Un(sn, an), Qn+1(sn, an))

where ψn(Un(sn, an), Qn+1(sn, an)) is the stochastic gradient and in this case is equal to Q̂U
0 (sn, an) − Un(sn, an). We

defne the noise terms

�̄ n+1(sn, an) = ψn(Un(sn, an), Q ∗ (sn, an)) − E[ψn(Un(sn, an), Q ∗ (sn, an))] (41)
ε̄ n+1(sn, an) = ψn(Un(sn, an), Qn+1(sn, an)) − ψn(Un(sn, an), Q ∗ (sn, an)). (42)

Note here that �̄ n+1(sn, an) represents the error that the sample gradient deviates from its mean when computed using the
optimal action-value Q∗ and ε̄ n+1(sn, an) is the error between the two evaluations of ψn due only to the difference between
Qn+1(sn, an) and Q∗(sn, an). Thus, we have

ψn(Un(sn, an), Qn+1(sn, an)) = E[ψn(Un(sn, an), Q ∗ (sn, an))] + �̄ n+1(sn, an) + ε̄ n+1(sn, an).

Since Qn → Q∗ by part (i) of the Theorem, then ε̄ n(sn, an) → 0 almost surely. It is now convenient to view Un(s, a) as a
stochastic process in n, adapted to the fltration {Fn}n≥0. By defnition of �̄ n+1(s, a), we have that

E[�̄n+1(s, a)|Fn] = 0 a.s.

Since �̄n+1(s, a) is unbiased and ε̄ n+1(s, a) converges to zero, we can apply Theorem 2.4 of (Kushner & Yin, 2003), a
standard stochastic approximation convergence result, to conclude that Un(s, a) → Q∗(s, a) almost surely. Since our choice
of (s, a) was arbitrary, this convergence holds for all (s, a) ∈ S ×A.

Lookahead-Bounded Q-Learning

A.5 Proof of Lemma 2

Proof. First note that Lemma A.1 still holds in this case. To see this, note that if the requirements of the lemma are satisfed
(i.e., if we are at iteration n = 1, 2, . . . , and in the previous iteration, we had Ln−1(s, a) ≤ Un−1(s, a) for all (s, a) and
Q0 n−1 ∈ Q), then Qn is bounded using the same argument as before. Since the rewards r(s, a) are uniformly bounded and
τ is an almost surely fnite stopping time, then Q̃L QU QL and Q̃Uand ˜ are fnite. Moreover, since ˜ n,0 are computed using n,0 n,0 n,0
the same sample path w, it follows that

Q̃U QL
n,0(s, a) − ˜ n,0(s, a) ≥ 0, for all (s, a) ∈ S ×A.

This can be easily seen if we subtract (17) from (16). Notice that the reward and the penalty will both cancel out and we
have Q̃U QL QU QL− ˜ ≥ 0 for all t = 0, 1, . . . , τ − 1. With Ln−1(s, a) ≤ Un−1(s, a) and ˜ n,0(s, a) ≥ ˜ n,0(s, a) it follows n,t n,t
that Ln(s, a) ≤ Un(s, a) for all (s, a).

Now, we prove Proposition 3 again for the experience replay buffer case.

For part (i): our original proof still holds since Lemma A.1 still holds.

For part (ii): frst note that since the experience replay buffer is updated with a new observation of the noise at every iteration,
then by Borel’s law of large numbers, we have our probability estimate p̂(w) for the noise converges to the true noise
distribution p(w) as n →∞, i.e.,

lim p̂n(w) = p(w) for all w ∈ W. (43)
n→∞

Fix an (s, a) ∈ S ×A. By part (i) we have the action-value iterates Qn and Q0 are bounded for all n. Now we write the n
iterate Q̃

n,
L
0(s, a) in terms of a noise term and a bias term as follows,

Q̃L Q̃L QL QL
n,0(s, a) = n,0(s, a) − E[˜ n,0(s, a)] + E[˜ n,0(s, a)] − E[QL

n,0(s, a)] +E[Q
L
n,0(s, a)]. | {z } | {z }

noise bias

Now, we defne the noise term using

ξL Q̃L QL(s, a) = n,0(s, a) − E[˜ n,0(s, a)].n

Also, similar to the original proof we defne an accumulated noise process started at iteration ν by W L
ν,ν (s, a) = 0, and

Wn
L
+1,ν (s, a) = (1 − αn(s, a)) W L (s, a) ξL ∀ n ≥ ν, n,ν (s, a) + αn n+1(s, a)

which averages noise terms together across iterations. We have E[Q̃
n,
L
0(s, a) − E[Q̃

n,
L
0(s, a)]|Fn] = 0, so Corollary 4.1

applies and it follows that

W Llim n,ν (s, a) = 0 ∀ ν ≥ 0.
n→∞

Let ν̃ be large enough so that αn(s, a) ≤ 1 for all n ≥ ν̃. We denote the bias term by

χn(s, a) = E[Q̃
n,
L
0(s, a)] − E[QL

n,0(s, a)].

Since as n →∞, we have p̂n(w) → p(w), the bias due to sampling from the experience buffer χn(s, a) → 0. Let η > 0
and ν̄ ≥ ν̃ be such that |χ(s, a)| ≤ η for all n ≥ ν̄ and all (s, a). We also defne 2

Y L(s, a) = ρ,ν̃

Yn
L
+1(s, a) = (1 − αn(s, a)) Y L(s, a) + αn(s, a) Q ∗ (s, a) + αn(s, a)

η
, ∀ n ≥ ν.¯ n 2

It is easy to see that the sequence Y L(s, a) → Q∗(s, a) + η . Now we show that the following claim holds. Claim: for all n 2
iterations n ≥ ν̄, it holds that

Ln(s, a) ≤ min{ρ, Y L(s, a) + W Lν (s, a)}.n n,¯

Lookahead-Bounded Q-Learning

To prove this claim, we proceed by induction on n. For n = ν̄, we have

Y L(s, a) = ρ and W Lν (s, a) = 0,ν̄ ν,¯ ¯

so the statement is true for the base case. We now show that it is true for n + 1 given that it holds at n:

Ln+1(s, a) = min{ρ, (1 − αn(s, a)) Ln(s, a) + αn(s, a) (Q̃
n,
L
0(s, a) − E[Q̃

n,
L
0(s, a)]

+ E[Q̃L
n,0(s, a)] + E[QL

n,0(s, a)] − E[QL
n,0(s, a)])}

= min{ρ, (1 − αn(s, a)) Ln(s, a) + αn(s, a) ξ
L(s, a) + αn(s, a) χn(s, a)n

+ αn(s, a) E[Q
L
n,0(s, a)]}

≤ min{ρ, (1 − αn(s, a)) (Y L(s, a) + W L (s, a)) + αn(s, a) ξ
L(s, a)n n,νk n

η
+ αn(s, a) + αn(s, a) Q ∗ (s, a)}

2
≤ min{ρ, YnL

+1(s, a) + W L ν (s, a)},n+1,˜

where the frst inequality follows by the induction hypothesis and E[QL
n,0(s, a)] ≤ Q∗(s, a). Next, since Y L(s, a) →n

Q∗(s, a) + η , W L (s, a) → 0, then if Q∗(s, a) + η ≤ ρ, we have 2 n,νk 2

lim sup Ln(s, a) ≤ Q ∗ (s, a) +
η
.

n→∞ 2

Otherwise, if ρ < Q∗(s, a) + η , then 2

lim sup Ln(s, a) ≤ ρ < Q ∗ (s, a) +
η
.

n→∞ 2

Therefore, since our choice of (s, a) was arbitrary, it follows that for every η > 0, there exists some time n0 such that
0Ln(s, a) ≤ Q∗(s, a) + η for all (s, a) ∈ S ×A and n ≥ n .

Using Proposition 1(i), Q∗(s, a) ≤ E[QU
n,0(s, a)], a similar argument as the above can be used to establish that

Q ∗ (s, a) −
η ≤ lim inf Un(s, a).
2 n→∞

00Hence, there exists some time n00 such that Q∗(s, a) − η ≤ Un(s, a) for all (s, a) and n ≥ n . Take n0 to be some time
greater than n0 and n00 and the result follows.

The proof of Lemma 1 when using an experience buffer is similar to that given in appendix A.3 so it is omitted.

A.6 Proof of Theorem 2

Proof. The proof of both parts (i) and (ii) are similar to that of Theorem 1, so we omit them.

Lookahead-Bounded Q-Learning

B LBQL with Experience Replay Algorithm

Algorithm 2 LBQL with Experience Replay

Input: Initial estimates L0 ≤ Q0 ≤ U0, batch size K, stepsize rules αn(s, a), βn(s, a), and noise buffer B.
Output:Approximations {Ln}, {Q0 }, and {Un}.n
Set Q0 = Q0 and choose an initial state s0.0
for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., �-greedy). Observe wn+1.
Store wn+1 in B and update p̂n(wn+1).
Perform a standard Q-learning update: h i

Qn+1(sn, an) = Q0 (sn, an) + αn(sn, an) rn(sn, an) + γ max Q0 (sn+1, a) − Q0 (sn, an) .n n n
a

Sample randomly a sample path w = (w1, w2, . . . , wτ) from B, where τ ∼ Geom(1 − γ).
Set ϕ = Qn+1. Using w and the current p̂n compute Q̃

0
U (sn, an) and Q̃

0
L(sn, an), using (16) and (17), respectively.

Update and enforce upper and lower bounds: h � �i
˜Un+1(sn, an) = Π[−ρ, ∞] Un(sn, an) + βn(sn, an) Q0
U (sn, an) − Un(sn, an) , h � �i

˜Ln+1(sn, an) = Π[∞, ρ] Ln(sn, an) + βn(sn, an) Q0
L(sn, an) − Ln(sn, an) ,

Q0 n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)]

end for

Lookahead-Bounded Q-Learning

C Implementation Details of LBQL with Experience Replay

We use a noise buffer B of size κ to record the noise values w that have been previously observed. The buffer B is used to
generate the sample path w and the batch sample {w1, . . . , wK } used to estimate the expectation in the penalty function.
Here, it is not necessary that the noise space W is fnite. This is also convenient in problems with a large noise support
such as the car-sharing problem with four stations where we have two sources of noise. Specifcally, the noise due to the
distribution of the rentals among the stations has a very large support.

In order to reduce the computational requirements of LBQL, the lower and upper bounds updates are done every m steps
and only if the difference between the current values of the bounds is greater than some threshold δ.

Since we can easily obtain inner DP results for all (s, a) each time the DP is solved, we perform the upper and lower bound
updates for all (s, a) whenever an update is performed (as opposed to just at the current state-action pair). However, only
the action-value of the current (s, a) is projected between the lower and upper bounds, so the algorithm is still asynchronous.
The pseudo-code of LBQL with experience replay with these changes, is shown in Algorithm 3.

Algorithm 3 LBQL with Experience Replay (Full Details)

Input:Initial estimates L0 ≤ Q0 ≤ U0, batch size K, stepsize rules αn(s, a), βn(s, a), noise buffer B of size κ, number
of steps between bound updates m, and threshold δ.
Output:Approximations {Ln}, {Q0 }, and {Un}.n
Set Q0 = Q0 and choose an initial state s0.0
for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., �-greedy). Observe wn+1.
Store wn+1 in B.
Perform a standard Q-learning update:

Qn+1(sn, an) = Q0 (sn, an)n h i
+ αn(sn, an) rn(sn, an) + γ max Qn

0 (sn+1, a) − Qn
0 (sn, an) .

a

if n ≥ κ and n mod m = 0 and |Un(sn, an) − L(sn, an)| > δ then
Sample randomly a batch D = {w1, w2, . . . , wK } and a sample path w = {w1, w2, . . . , wτ } from B, where
τ ∼ Geom(1 − γ).
Set ϕ = Qn+1. Using w and D, compute Q̂

0
U (s, a) and Q̂

0
L(s, a) for all (s, a) ∈ S × A, using (9) and (10),

respectively.
For all (s, a) ∈ S ×A, update upper and lower bounds:h � �i

Q̂UUn+1(sn, an) = Π[−ρ, ∞] Un(sn, an) + βn(sn, an) 0 (sn, an) − Un(sn, an) , h � �i
Ln+1(sn, an) = Π[∞, ρ] Ln(sn, an) + βn(sn, an) Q̂

L
0 (sn, an) − Ln(sn, an) ,

end if
Enforce upper and lower bounds:

Q0 n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)]

end for

Lookahead-Bounded Q-Learning

D Numerical Experiments Details

Let ν(s, a) and ν(s) be the number of times state-action pair (s, a) and state s, have been visited, respectively. For all
algorithms, a polynomial learning rate αn(s, a) = 1/νn(s, a)r is used, where r = 0.5. Polynomial learning rates have been
shown to have a better performance than linear learning rates (van Hasselt, 2010).

We use a discount factor of γ = 0.95 for the pricing car-sharing/stormy gridworld problems, γ = 0.9 for the windy
gridworld problem and γ = 0.99 for the repositioning problem. Moreover, we use an �-greedy exploration strategy
such that �(s) = 1/ν(s)e , where e is 0.4 for the four-stations pricing car-sharing problem and 0.5 for all the other
problems. For the car-sharing/windy gridworld problems, the initial state-action values are chosen randomly such that
L0(s, a) ≤ Q0(s, a) ≤ U0(s, a) where

L0(s, a) = −Rmax/(1 − γ) and U0(s, a) = Rmax/(1 − γ)

for all (s, a). For the stormy gridworld problem, we set the initial state-action values to zero (we fnd that a random
initialization caused all algorithms except LBQL to perform extremely poorly).

We report LBQL parameters used in our numerical experiments in Table 1. Note that for a fair comparison, the parameter
K of bias-corrected Q-learning algorithm is taken equal to K of LBQL in all experiments. In addition, the κ steps used
to create the buffer for LBQL are included in the total number of steps taken. Results of the gridworld and car-sharing
problems are averaged over 50 and 10 runs, respectively. All experiments were run on a 3.5 GHz Intel Xeon processor with
32 GB of RAM workstation.

Table 1: LBQL parameters.

Parameter

Problem β κ K m δ

2-CS-R
2-CS
4-CS
WG
SG

0.01
0.01
0.01

0.2
0.2

40
40

1000
100
500

20
20
20
10
20

10
15

200
10
20

0.01
0.01
0.01
0.01
0.05

A detailed description of the environments is given in the next two sections.

D.1 Gridworld Examples

First we consider, windy gridworld, a well-known variant of the standard gridworld problem discussed in (Sutton & Barto,
2018). Then we introduce, stormy gridworld, a new environment that is more complicated than windy gridworld. The
environments are summarized below.

Windy Gridworld. The environment is a 10 × 7 gridworld, with a cross wind pointing upward, (Sutton & Barto, 2018).
The default wind values corresponding to each of the 10 columns are {0, 0, 0, 1, 1, 1, 2, 2, 1, 0}. Allowable actions are {up,
right, down, left}. If the agent happens to be in a column whose wind value is different from zero, the resulting next states
are shifted upward by the “wind” whose intensity is stochastic, varying from the given values in each column by {−1, 0, 1}
with equal probability. Actions that corresponds to directions that takes the agent off the grid leave the location of the agent
unchanged. The start and goal states are (3, 1) and (3, 8), respectively. The reward is −1 until the goal state is reached,
where the reward is 0 thereafter.

Stormy Gridworld. Consider the stochastic windy gridworld environment. Now, however, we allow the wind to blow
half the time as before and the other half it can blow from any of the three other directions. The horizontal wind values
corresponding to each row from top to bottom are given by {0, 0, 1, 1, 1, 1, 0}. Also, it can randomly rain with equal
probability in any of the central states that are more than two states away from the edges of the grid. The start and goal
states are (3, 1) and (3, 10) respectively. Rain creates a puddle which affects the state itself and all of its neighboring states.
The reward is as before except when the agent enters a puddle state the reward is −10.

	

Lookahead-Bounded Q-Learning

D.2 Car-sharing Benchmark Examples

In this section, we give the detailed formulations of the two variants of the car-sharing benchmark, repositioning and pricing.
The essential difference is that in the pricing version, the decision maker “repositions” by setting prices to induce directional
demand (but does not have full control since this demand is random).

D.2.1 REPOSITIONING BENCHMARK FOR CAR-SHARING

We consider the problem of repositioning cars for a two stations car-sharing platform, (He et al., 2019). The action is the
number of cars to be repositioned from one station to the other, before random demand is realized. Since repositioning in
both directions is never optimal, we use r > 0 to denote the repositioned vehicles from station 1 to 2 and r < 0 to denote
repositioning from station 2 to 1. The stochastic demands at time t are D1,t and D2,t for stations 1 and 2 respectively,
are i.i.d., discrete uniform, each supported on {3, . . . , 9}. The rental prices are p1 = 3.5 and p2 = 4 for stations 1 and 2,
respectively. All rentals are one-way (i.e., rentals from station 1 end up at station 2, and vice-versa). The goal is to maximize
proft, where unmet demands are charged a lost sales cost ρ1 = ρ2 = 2 and repositioning cost c1 = 1 for cars reposition
from station 1 to 2 and c2 = 1.5 for cars repositioned from station 2 to 1. We assume a total of s̄ = 12 cars in the system
and formulate the problem as an MDP, with state st ∈ S = {0, 1, . . . , 12} representing the number of cars at station 1 at
beginning of period t. We denote by V ∗(st) the optimal value function starting from state st. The Bellman recursion is: � X X � �

V ∗ (st) = max E pi ωit(Di,t+1) − ρi Di,t+1 − ωit(Di,t+1)
st−s̄≤rt≤st

i∈{1,2} i∈{1,2} �

− c1 max(rt, 0) + c2 min(rt, 0) + γV ∗ (st+1) , (44)

ω1t(D1,t+1) = min(D1,t+1, st − rt),

ω2t(D2,t+1) = min(D2,t+1, s̄ − st + rt),

st+1 = st − rt + ω2t(D2,t+1) − ω1t(D1,t+1),

where γ ∈ (0, 1) is a discount factor. The repositioning problem for two stations is illustrated in Figure 6A. The nodes
represent stations, solid arcs represent fulflled demands, and dashed arcs represent repositioned vehicles.

D.2.2 PRICING BENCHMARK FOR CAR-SHARING

Suppose that a vehicle sharing manager is responsible for setting the rental price for the vehicles at the beginning of each
period in an infnite planning horizon. We model a car sharing system with N stations. The goal is to optimize the prices
to set for renting a car at each of the N stations; let the price at station i and time t be pit for i ∈ [N] := {1, 2, . . . , N}.
Demands are nonnegative, independent and depends on the vehicle renting price according to a stochastic demand function

Dit(pit, �i,t+1) := κi(pit) + �i,t+1,

where Dit(pit, �i,t+1) is the demand in period t, �i,t+1 are random perturbations that are revealed at time t + 1 and κi(pit)
is a deterministic demand function of the price pit that is set at the beginning of period t at station i ∈ [N]. The random
variables �i,t+1 are independent with E[�i,t+1] = 0 without loss of generality. Furthermore, we assume that the expected
demand E[Dit(pit, �i,t+1)] = κi(pit) < ∞ is strictly decreasing in the rental price pit which is restricted to a set of feasible
price levels [p , pi] for all i ∈ [N], where p , pi are the minimum and the maximum prices that can be set at station i,

i i
respectively. This assumption implies a one-to-one correspondence between the rental price pit and the expected demand
dit ∈ D := [di, di] for all pit ∈ [p , pi] where di = κi(pi) and di = κi(p).

i i

The problem can be formulated as an MDP with state st, which is a vector whose components represent the number of
available cars at each of the N stations at beginning of period t. The state space is SN−1 with S = {0, 1, . . . , s̄} and s̄
is the maximum number of cars in the vehicle sharing system. We assume that a customer at station i goes to station j
with probability φij for all i, j ∈ [N]. Let Yik,t+1 be a random variable taking values in [N] that represents the random
destination of customer k at station i, which is only observed at the beginning of period t + 1. We have Yik,t+1 = j with
probability φij , so Yik,t+1 are i.i.d. for each customer k. Denote by lij the distance from station i to j, for all i, j ∈ [N].
We penalize unmet demands by a lost sales unit cost ρi, i ∈ [N]. The decision vector is pt = {pit ∈ [p , pi], ∀i ∈ [N] .

i

Lookahead-Bounded Q-Learning

Let V ∗(st) be the revenue-to-go function with number of available vehicles st. Thus, we have the Bellman recursion � X �X X � �
V ∗ (st) = max E pit lij ωijt(�i,t+1) − ρi κi(pit) + �i,t+1 − ωit(�i,t+1) + γV ∗ (st+1)

pt
i∈[N] j∈[N] i∈[N]

ωit(�i,t+1) = min (κi(pit) + �i,t+1, sit) ∀ i ∈ [N],
ωit(�i,t+1) (45)X

ωijt(�i,t+1) = 1{Yik,t+1 =j} ∀ i, j ∈ [N], Xk=1

si,t+1 = sit + ωjit(�i,t+1) − ωit(�i,t+1), ∀ i ∈ [N],
j∈[N]

where γ ∈ (0, 1) is a discount factor. Note that the MDP in (45) can be reformulated using the action-value function
Q(st, pt) instead of V (st). The quantity ωit(�i,t+1) represents the total fulflled customer trips from station i at time t for a
given realization of the noise �i,t+1. Notice that in (45) there are two sources of randomness: the noise due to stochastic
demand represented by �i, for all i ∈ [N] and the noise due to the random distribution of fulflled rentals between the
stations, i.e., due to the random variables Yi1, . . . , Yiωit(�i,t+1) for all i ∈ [N]. Due to the high dimensionality involved in
the state, action, and noise spaces, solving (45) is computationally challenging.

Spatial Pricing in Two-Location Car-sharing. We frst consider the pricing problem on two stations and 12 cars in total.
The state space is S = {0, 1, . . . , 12} representing the number of cars at station 1. All rentals are one-way. The prices,
at each period t, are restricted to p1t ∈ [1, 6] and p2t ∈ [1, 7]. The stochastic demand functions at period t are given by:
D1t(p1t, �1,t+1) := 9 − p1t + �1,t+1 and D2t(p2t, �2,t+1) := 10 − p2t + �2,t+1 for stations 1 and 2 respectively. The random
variables �1,t+1 and �2,t+1 are independent, discrete uniform, each supported on {−3, −2, . . . , 3}. We use the discretized
expected demands, as our actions: d1t ∈ {3, . . . , 8} and d2t ∈ {3, . . . , 9}. The lost sales cost is 2 at both stations.

Spatial Pricing in Four-Location Car-sharing. Consider the car-sharing problem for four stations with s̄ = 20 cars and
dit ∈ {3, 4} for each station. In total there are 1771 states and 16 actions. The random variables �i,t+1 are independent,
discrete uniform, each supported on {−3, −2, . . . , 3}. We consider both one way and return trips at each station. Figure 6B
shows an illustration of the stations (nodes) and the rentals between the stations (arcs). The probabilities φij = 0.25 for all
i, j ∈ {1, 2, 3, 4} and the lost sales costs (ρi) are 1.7, 1.2, 1.5, 2 at stations 1, 2, 3, 4, respectively. The distance between the
stations are taken such that lij = 1 if i = j, and the other distances being symmetrical, meaning lij = lji with l12 = 1.8,
l13 = 1.5, l14 = 1.4, l23 = 1.6, l24 = 1.1, and l34 = 1.2.

1 2

r > 0

r < 0

ω1

ω2
3 4

1

2

(A) Repositioning problem with 2 stations. (B) Pricing problem with 4 stations.

Figure 6: Illustrations of the repositioning and pricing car-sharing problems.

Lookahead-Bounded Q-Learning

D.3 Sensitivity Analysis

We also perform sensitivity analysis on the fve algorithms with respect to the learning rate and exploration parameters r
and e for the car-sharing problem with two stations. Here, r controls the polynomial learning rate defned by, αn(s, a) =
1/νn(s, a)r and e controls the �-greedy exploration strategy, where � is annealed according to �(s) = 1/ν(s)e . We use
ν(s, a) and ν(s) to denote the number of times a state-action pair (s, a) and state s, have been visited, respectively. We
report our results in Table 2. These results show the average number of iterations and CPU time until each algorithm frst
reach 50%, 20%, 5%, 1% relative error for each case of the parameters e and r while keeping all other parameters as before.
The “-” indicates that the corresponding % relative error for the corresponding case was not achieved during the course of
training. The values in the table are obtained by averaging fve independent runs for each case. Except for the few cases
where BCQL performs slightly better, LBQL once again drastically outperforms the other algorithms and exhibits robustness
against the learning rate and exploration parameters, an important practical property that the other algorithms seem to lack.

The effect of varying parameters m and K of LBQL is presented in Figure 7. These plots are obtained by tuning parameters
m ∈ {1, 10, 50, 150, 200} and K ∈ {1, 5, 10, 100, 1000} of LBQL algorithm in the car-sharing problem with two stations.
All other parameters are kept the same as before. Figures 7A and 7C show the mean total reward with a 95% CI. Figures 7B
and 7D show the mean and 95% CI of the relative error given by: kVn − V ∗k2/kV ∗k2. The results are obtained from 10
independent runs. Using larger values of m reduces the strength of LBQL in both the performance and relative error metrics,
as shown in Figures 7A and 7B. This is expected since the effect of the bounds fades as we update the bounds less frequently.
Interestingly, we can see from the performance plot that m = 10 strikes a good balance between how often to do the bounds
and Q-learning updates and achieves a performance that is slightly better and more stable than that of m = 1 after about half
of the training process (50,000 steps). In terms of the sample size K, Figures 7C and 7D clearly show that larger values of
K improve the performance of LBQL in terms of performance and relative error measures. This is not unexpected because a
larger sample yields a better approximation of the penalty.

(A) Performance (2-CS) (B) Relative Error (2-CS)

(C) Performance (2-CS) (D) Relative Error (2-CS)

Figure 7: Plots showing the effect of tuning the parameters m and K of LBQL algorithm.

Lookahead-Bounded Q-Learning

Table 2: Computational results for different exploration & learning rate parameters. Bold numbers indicate the best performing algorithm.

% Relative error
e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)
S
Q
L

B
C
Q
L

L
B
Q
L

0.4 0.5 3,672.6 1.9 9,323.6 4.6 18,456.6 8.9 33,054.0 15.7
0.6 3,632.0 1.7 9,147.4 4.4 18,270.0 8.6 39,624.8 18.6
0.7 3,725.2 1.8 9,087.4 4.3 18,217.8 8.6 41,941.2 19.7
0.8 3,698.2 1.8 9,321.8 4.4 20,860.0 9.9 53,752.6 25.6
0.9 3,992.2 1.9 10,119.2 4.9 23,070.2 11.0 80,252.8 38.4

0.5 0.5 3,316.0 1.6 8,040.2 3.8 15,050.2 7.2 27,912.8 13.2
0.6 3,514.4 1.7 8,529.4 4.0 16,595.6 7.9 36,100.2 17.0
0.7 3,531.8 1.7 8,712.8 4.1 17,835.6 8.6 46,010.0 21.9
0.8 3,449.2 1.6 8,571.8 4.0 18,152.6 8.5 65,007.6 30.4
0.9 3,398.4 1.6 8,346.4 3.9 18,844.8 8.8 99,820.2 46.6

0.6 0.5 2,877.4 1.3 7,129.0 3.3 13,046.0 6.2 23,822.0 11.2
0.6 3,182.8 1.5 8,066.0 3.8 15,421.4 7.3 33,286.0 15.6
0.7 2,979.4 1.4 7,625.6 3.6 15,414.6 7.2 34,238.0 15.9
0.8 3,272.6 1.6 8,431.0 4.1 17,809.2 8.5 114,032.8 54.2
0.9 3,185.6 1.5 8,480.0 4.1 19,242.4 9.2 123,331.2 58.8

0.4 0.5 3,200.8 1.0 22,455.0 7.0 65,329.0 20.3 107,785.6 33.7
0.6 4,618.2 1.5 43,724.6 13.6 159,662.6 49.6 292,421.0 34.9
0.7 8,059.4 2.5 123,484.2 38.4 - - - -
0.8 17,287.0 5.3 - - - - - -
0.9 67,162.2 20.9 - - - - - -

0.5 0.5 2,209.6 0.7 15,604.0 4.9 48,715.6 15.3 80,317.4 25.2
0.6 3,274.2 1.0 31,422.8 9.8 124,319.6 38.7 243,101.4 75.6
0.7 5,619.6 1.8 89,857.0 27.8 - - - -
0.8 11,417.0 3.6 - - - - - -
0.9 42,605.4 13.1 - - - - - -

0.6 0.5 1,830.4 0.6 11,639.6 3.6 35,763.0 11.1 61,249.0 19.0
0.6 2,612.4 0.8 23,571.6 7.4 92,101.4 28.8 177,127.6 55.5
0.7 4,371.2 1.3 66,526.0 20.5 - - - -
0.8 9,028.2 2.8 297,368.6 17.9 - - - -
0.9 31,673.6 9.8 - - - - - -

0.4 0.5 7,750.6 1.9 37,889.8 9.1 93,820.0 22.5 141,171.0 33.8
0.6 11,329.4 2.8 75,364.0 18.3 233,422.0 56.4 - -
0.7 20,131.4 4.8 212,767.0 51.0 - - - -
0.8 46,986.8 11.3 - - - - - -
0.9 182,890.0 43.8 - - - - - -

0.5 0.5 6,122.2 1.5 30,944.8 7.4 79,167.4 19.0 120,527.8 29.0
0.6 9,166.6 2.2 62,540.6 14.9 201,822.4 48.2 - -
0.7 15,835.6 3.8 174,233.6 42.0 - - - -
0.8 36,548.8 8.7 - - - - - -
0.9 157,029.0 37.7 - - - - - -

0.6 0.5 4,984.0 1.2 24,989.0 6.0 64,605.4 15.4 98,554.6 23.6
0.6 7,396.2 1.8 50,282.4 12.0 165,574.2 39.8 - -
0.7 13,018.8 3.1 143,142.6 34.1 - - - -
0.8 29,201.0 6.9 - - - - - -
0.9 122,335.6 29.2 - - - - - -

(continued on next page)

Lookahead-Bounded Q-Learning

Table 2: (continued)

% Relative error
e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)

0.4 0.5 7,743.0 1.7 38,114.2 8.2 93,303.4 20.2 136,851.4 29.6
0.6 11,644.0 2.5 76,625.0 16.6 232,679.4 50.9 - -
0.7 20,181.6 4.4 212,401.4 46.3 - - - -
0.8 45,987.2 10.1 - - - - - -
0.9 191,442.2 41.9 - - - - - -

0.5 0.5 6,143.6 1.3 30,996.2 6.8 78,131.8 16.9 116,361.2 25.3
0.6 9,331.6 2.0 63,998.2 13.9 204,593.6 44.6 - -
0.7 16,247.0 3.5 178,842.8 38.4 - - - -
0.8 38,297.0 8.2 - - - - - -
0.9 165,835.8 35.7 - - - - - -

0.6 0.5 5,005.2 1.1 24,877.2 5.4 63,777.8 13.7 96,402.0 20.8
0.6 7,547.0 1.9 51,369.4 13.1 166,179.2 42.3 289,882.8 46.1
0.7 13,288.2 3.1 144,318.2 33.1 - - - -
0.8 30,172.6 6.5 - - - - - -
0.9 139,952.6 30.3 - - - - - -

0.4 0.5 224,490.2 51.2 - - - - - -
0.6 - - - - - - - -
0.7 - - - - - - - -
0.8 - - - - - - - -
0.9 - - - - - - - -

0.5 0.5 - - - - - - - -
0.6 - - - - - - - -
0.7 - - - - - - - -
0.8 - - - - - - - -
0.9 - - - - - - - -

0.6 0.5 - - - - - - - -
0.6 - - - - - - - -
0.7 - - - - - - - -
0.8 - - - - - - - -
0.9 - - - - - - - -

D
o
u
b
l
e
-
Q
L

Q
L

