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Appendix

A. Proof of Remark 1
Let z ∼ N (0, 1) and y = max{0, γcz + βc}. For the suffiency, when γc > 0 we have
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dt is the error function. From Eqn.(9), we have
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In the same way, we can calculate
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From Eqn.(11), we have
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When γc < 0, we have

Ez[y] = −γcexp
− β2c

2γ2c

√
2π

+
βc
2

(1− Erf[
βc√
2γc

]), (13)

and

Ez[y2] = −γcβcexp
− β2c

2γ2c

√
2π

+
γ2c + β2

c

2
(1− Erf[

βc√
2γc

]), (14)

If γc sufficiently approaches 0, we arrive at
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For necessity, we show that if Ez[y] = 0 and Ez[y2] = 0, then γc → 0 and βc ≤ 0. First, if γc > 0, combining Eqn Eqn.(9)
and Eqn.(11) gives us γc → 0 and βc ≤ 0. If γc < 0, combining Eqn Eqn.(13) and Eqn.(14), we can also obtain γc → 0 and
βc ≤ 0. This completes the proof.
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Note that Eqn.(10) and Eqn.(12) are obtained by assuming that γc → 0 and βc ≤ 0. The first condition was verified by
(Mehta et al., 2019) that showed that inhibited channels and gamma with small values would emerge at the same time. Here,
We evaluate the second assumption in various ResNets trained on the ImageNet dataset. The percentage of βc ≤ 0 in BN
after training are reported in Table 6. We see that a large amount of βc is non-positive.

CNNs ResNet18 ResNet50 ResNet101
(βc ≤ 0) 76.0 76.7 81.8

Table 6. Ratios of (βc ≤ 0) after traing on various CNNs.

B. Computation details in ’BN-CE-ReLU’ block
As discussed before, CE processes incoming features after normalization layer by combining two branches, i.e., batch
decorrelation and instance reweighting. The former computes a covariance matrix and the latter calculates instance variance.
We now take ’BN-CE-ReLU’ block as an example to show the computation details of statistics in ce. Given a tensor
x ∈ RN×C×H×W , the mean and variance in IN (Ulyanov et al., 2016) are calculated as:
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Hence, we have µIN,σ
2
IN ∈ RN×C . Then, the statistics in BN can be reformulated as follows:
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Then, we have µBN = E[µIN] and σ2
BN = E[σ2

IN] + D[µIN], where E[·] and D[·] denote expectation and variance operators
over N samples. Further, the input of IR is instance variance of features estimated by x̃, which can be calculated as follows:
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Rewritting Eqn.(19) into the vector form gives us σ̃2
n = diag(γγT) � (σ2

IN)n
σ2

BN
, where diag(γγT) ∈ RC×1 extracts the

diagonal of the given matrix. At last, the output of BN is x̃ncij = γcx̄ncij + βc, then the entry in c-th row and d-th column
of covariance matrix Σ of x̃ is calculated as follows:
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where ρcd is the element in c-th row and j-th column of correlation matrix of x̄. Thus, we can write Σ into the vector form:
Σ = γγT � 1

M x̄x̄
T if we reshape x̃ to x̃ ∈ RC×M and M = N ·H ·W .

B.1. Architecture of IR branch

We denote the subnetwork in IR branch as f̃ . Note that the activation of f̃ is the Sigmoid function, we formulate f̃ following
(Hu et al., 2018),

f̃(σ2
n) = Sigmoid(W2δ1(LN(W1σ

2
n))) (21)

where δ1 are ReLU activation function,W1 ∈ RC
r ×C andW2 ∈ RC×Cr and r is reduction ratio (r = 4 in our experiments),

f̃(σ2
n) ∈ (0, 1)C is treated as a gating mechanism in order to control the strength of the inverse square root of variance for

each channel. We see that f̃ is expressed by a bottleneck architecture that is able to model channel dependencies and limit
model complexity. Layer normalization (LN) is used inside the bottleneck transform (before ReLU) to ease optimization. It
is seen from Eqn.(8) that s−

1
2 represents the quantity of inverse square root of variance and f̃(σ2

n) regulates the extend of
instance reweighting. f̃ maps the instance variance to a set of channel weights. In this sense, the IR branch intrinsically
introduces channel dependencies conditioned on each input.

C. Proof of proposition 1
Proposition 1. Let Σ be covariance matrix of feature maps after batch normalization. Then, (1) assume that Σk =
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However, this is not the case in practice. Hence, for all c ∈ [C] we have
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Note that if other normalization methods such as IN and LN are used, the conclusion in Proposition 1 still can be drawn
when x̃ and −1 ≤ ρij ≤ 1, ∀i, j ∈ [C].
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(2) We first show that λi ∈ (0, 1),∀i ∈ [C] where λi is the i-th largest eigenvalues of Σ. Since Σ is the covariance matrix
and has full rank, we have λi > 0. Moreover,

∑C
i=1 λi = tr(Σ) = 1. Hence, we obtain that λi ∈ (0, 1). Based on this fact,
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Hence,
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2
> ‖x̃nij‖2. Here completes the proof.

D. Connection between CE block and Nash Equilibrium
We first introduce the definition of Gaussian interference game in context of CNN and then build the connection between a
CE block and Nash Equilibrium. For clarity of notation, we omit the subscript n for a concrete sample.

We suppose that each channel can transmit a power vector pc = (pc11, · · · , pcHW ) where pcij denotes the transmit power
to the neuron at location (i, j) in the c-th channel. Since normalization layer is often followed by a ReLU activation, we
restrict pcij ≥ 0. In game theory, all channels maximizes sum of maximum information rate of all neurons. We consider
dependencies among channels, then channels are thought to play a Gaussian interference game, which can be described by
the following maximization problem, for the c-th channel,

max Cc(p1,p2, · · · ,pC) =

h,W∑
i,j=1

ln

(
1 +

gccpcij∑
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where gcd represents dependencies between the c-th channel and d-th channel, and Cc is the sum of maximum information
rate with respect to to the c-th channel given transit power distributions p1,p2, · · · ,pC . We also term it pay-off of the c-th
channel. In game theory, C channels and solution space of {pcij}C,H,Wc,i,j=1 together with pay-off vector C = (C1, C2, · · · , CC)
form a Gaussian interference game G. Different from basic settings in G, here we do not restrict dependencies gcd to (0, 1).
It is known that G has a unique Nash Equilibrium point whose definition is given as below,

Definition 1. An C-tuple of strategies (p1,p2, · · · ,pC) for channels 1, 2, · · · , C respectively is called a Nash equilibrium
iff for all c and for all p (p a strategy for channel c)

Cc(p1, · · · ,pc−1,p,pc+1, · · · ,pC) ≤ Cc(p1,p2, · · · ,pC) (26)

i.e., given that all other channels d 6= c use strategies pd, channel c best response is pc. Since C1, C2, · · · , CC are concave in
p1,p2, · · · ,pC respectively, KKT conditions imply the following theorem.

Theorem 1. Given pay-off in Eqn.(25), (p∗1, · · · ,p∗C) is a Nash equilibrium point if and only if there exist v0 = (v10 , · · · , vC0 )
(Lagrange multiplier) such that for all i ∈ [H] and j ∈ [W ],
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∗
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{
= vc0 for p∗cij > 0
≤ vc0 for p∗cij = 0

(27)

Proof. The Lagrangian corresponding to minimization of −Cc subject to the equality constraint and non-negative constraints
on pcij is given by

Lc = −
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)
+ vc0(

H,W∑
i,j=1

pcij − Pc) +

H,W∑
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Differentiating the Lagrangian with respect to pcij and equating the derivative to zero, we obtain

gcc∑
d gcdpcij + σc/hcij

+ vcij1 = vc0 (29)
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Figure 6. CE blocks in MobileNetv2 (a) and ShuffleNetv2 (b). ‘Add’ denotes broadcast element-wise addition. ‘Concat’ indicates the
concatenation of channels. ‘Dwise’ represents the depthwise convolution.

Now, using the complementary slackness condition vcij1 pcij = 0 and vcij1 ≥ 0, we obtain condition (27). This completes the
proof.

By Theorem 1, the unique Nash Equilibrium point can be explicitly written as follows when p∗cij > 0,

p∗ij = G−1
(
Diag(v0)−1diag(G)−Diag(hij)

−1σ
)

(30)

where p∗ij ,hij ,σ ∈ RC×1 and v0 ∈ RC×1 are Lagrangian multipliers corresponding to equality constraints. Note that a
approximation can be made using Taylor expansion as follow: − σc

hcij
= σc(2 + hcij + O((1 + hcij)

2)). Thus, a linear
proxy to Eqn.(30) can be written as

p∗ij = G−1
(
Diag(σ)h̄ij + Diag(v0)−1diag(G) + (2 + δ)σ

)
(31)

Let G = [Dn]
1
2 ,hij = x̄ij ,γ = σ and β = Diag(v0)−1diag(G) + (2 + δ)σ, Eqn.(31) can surprisingly match CE unit

in Eqn.(2), implying that the proposed CE block indeed encourages all the channels to contribute to the layer output. In
Gaussian interference game, σ is known and v0 can be determined when budget Pc’s are given. However, γ and β are
learned by SGD in deep neural networks. Note that the Nash Equilibrium solution can be derived for every single sample,
implying that the decorrelation operation should be performed conditioned on each instance sample. This is consistent with
our design of the CE block.

E. Network Architecture
CE-MobileNetv2 and CE-ShuffleNetv2. As for CE-MobileNetv2, since the last ‘1×1’ convolution layer in the bottleneck
is not followed by a Rectified unit, we insert CE in the ‘3 × 3’ convolution layer which also has the largest number of
channels in the bottleneck, as shown in Fig.6(a). Following similar strategies, CE is further integrated into ShuffleNetv2 to
construct CE-ShuffleNetv2, as shown in Fig.6(b).

Moving average in inference. Unlike previous methods in manual architecture design that do not depend on batch estimated
statistics, the proposed CE block requires computing the inverse square root of a batch covariance matrix Σ and a global
variance scale s in Eqn.(8) in each training step. To make the output depend only on the input, deterministically in inference,
we use the moving average to calculate the population estimate of Σ̂−

1
2 and ŝ−

1
2 by following the below updating rules:

Σ̂−
1
2 = (1−m)Σ̂−

1
2 +mΣ−

1
2 , ŝ−

1
2 = (1−m)ŝ−

1
2 +m · s− 1

2 (32)

where s and Σ are the variance scale and covariance calculated within each mini-batch during training, and m denotes
the momentum of moving average. It is worth noting that since Σ̂−

1
2 is fixed during inference, the BD branch does not

introduce extra costs in memory or computation except for a simple linear transformation ( Σ̂−
1
2 ˜xnij).
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Backbone ResNet50 ResNet18
Block GN+ReLU IN+ReLU LN+ReLU BN+ReLU BN+ELU
Acc top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Baseline 75.6 92.8 74.2 91.9 71.6 89.9 70.5 89.4 68.1 87.6
Baseline+CE 76.2 92.9 76.0 92.7 73.3 91.3 71.9 90.2 68.7 88.5

Increase +0.6 +0.1 +1.8 +0.8 +1.7 +1.4 +1.4 +0.8 +0.6 +0.9

Table 7. CE improves top-1 and top-5 accuracy of various normalization methods and rectified units on ImageNet with ResNet50 or
ResNet18 as backbones.

Model and computational complexity. The main computation of our CE includes calculating the covariance and inverse
square root of it in the BD branch and computing two FC layers in the IR branch. We see that there is a lot of space to reduce
computational cost of CE. For BD branch, given an internal feature x ∈ RN×C×H×W , the cost of calculating a covariance
matrix is 2NHWC2, which is comparable to the cost of convolution operation. A pooling operation can be employed to
downsample featuremap for too large H and W . In this way, the complexity can be reduced to 2NHWC2/k2 + CHW
where k is kernel size of the window of pooling. Further, we can use group-wise whitening to improve efficiency, reducing
the cost of computing Σ−

1
2 from TC3 to TCg2 (g is group size). For IR branch, we focus on the additional parameters

introduced by two FC layers. In fact, the reduction ratio r can be appropriately chosen to balance model complexity and
representational power. Besides, the majority of these parameters come from the final block of the network. For example,
a single IR in the final block of ResNet-50 has 2 ∗ 20482/r parameters. In practice, the CE blocks in the final stages of
networks are removed to reduce additional parameters. We provide the measurement of computational burden and Flops in
Table 1.

F. Ablative Experiments
CE improves various normalization methods and rectified units. In addition to BN, CE is also effective for other
normalization technologies, as inhibited channel emerges in many well-known normalizers as shown in Fig.1. To prove
this, we conduct experiments using ResNet-50 under different normalizers including, group normalization (GN), instance
normalization (IN), and layer normalization (LN). For these experiments, we stack CE block after the above normalizers to
see whether CE helps other normalization methods. Table 7 confirms that CE generalize well over different normalization
technologies, improving their generalization on testing samples by 0.6-1.8 top-1 accuracy. On the other hand, CE is also
superior to many rectified units such as ELU (Clevert et al., 2015)

Many methods have been proposed to improve normalizers such as switchable normalization (SN) (Luo et al., 2018) and
ReLU activation such as exponential linear unit (ELU) (Clevert et al., 2015) and leaky ReLU (LReLU) (Maas et al., 2013).
The ablation approach in (Morcos et al., 2018) is used to see whether and how these methods help channel equalization. We
demonstrate the effectiveness of CE by answering the following questions.

Do other ReLU-like activation functions help channel equalization? Two representative improvements on ReLU
function, i.e. ELU (Clevert et al., 2015) and LReLU (Maas et al., 2013), are employed to see whether other ReLU-like
activation functions can help channel equalization. We plot the cumulative ablation curve that depicts ablation ratio versus
the top-1 accuracy on CIFAR10 dataset in Fig.7(a). The baseline curve is ’BN+ReLU’. As we can see, the top-1 accuracy
curve of ’BN+LReLU’ drops more gently, implying that LReLU helps channel equalization. But ’ELU+ReLU’ has worse
cumulative ablation curve than ’BN+ReLU’. By contrast, the proposed CE block improves the recognition performance of
’BN+ReLU’ (higher top-1 accuracy) and promotes channel equalization most (the most gentle cumulative ablation curve).

Do the adaptive normalizers help channel equalization? We experiment on a representative adaptive normalization
method (i.e. SN), to see whether it helps channel equalization. SN learns to select an appropriate normalizer from IN, BN
and LN for each channel. The cumulative ablation curves are plotted on ImageNet dataset with ResNet-50 under blocks
of ’BN+ReLU’, ‘SN+ReLU’ and ’BN+CE+ReLU’. As shown in Fig.7(b), SN even does damage to channel equalization
when it is used to replace BN. However, ’BN+CE+ReLU’ shows the most gentle cumulative ablation curve, indicating the
effectiveness of CE block in channel equalization. Compared with SN, ResNet-50 with CE block also achieves better top-1
accuracy (78.2 vs 76.9), showing that channel equalization is important for block design in a CNN.
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(a) (b)

Figure 7. (a) compares the cumulative ablation curves of ’BN+ReLU’, ’BN+ELU’, ’BN+LReLU’ and ’BN+CE+ReLU’ with VGGNet on
CIFAR-10 dataset. We see that the Both LReLU and CE can improve the channel equalization in ’BN+ReLU’ block. (b) compares the
cumulative ablation curves of ’BN+ReLU’, ’SN+ReLU’ and ’BN+CE+ReLU’ with ResNet-50 on ImageNet dataset. The proposed CE
consistently improves the channel equalization of ’BN+RelU’ block. Note that ’BN+CE+ReLU’ achieves the highest top-1 accuracy on
both two datasets compared to its counterparts (when drop ration is 0).

G. Experimental Setup
ResNet Training Setting on ImageNet. All networks are trained using 8 GPUs with a mini-batch of 32 per GPU. We train
all the architectures from scratch for 100 epochs using stochastic gradient descent (SGD) with momentum 0.9 and weight
decay 1e-4. The cross entropy loss with label smooth (smooth ratio 0.1) is employed. The base learning rate is set to 0.1
and is multiplied by 0.1 after 30, 60 and 90 epochs. Besides, the covariance matrix in BD branch is calculated within each
GPU. Since the computation of covariance matrix involves heavy computation when the size of feature map is large, a 2× 2
maximum pooling is adopted to down-sample the feature map after the first batch normalization layer. Like (Huang et al.,
2019), we also use group-wise decorrelation with group size 16 across the network to improve the efficiency in the BD
branch. By default, the reduction ratio r in IR branch is set to 4.

MobileNet V2 training setting on ImageNet. All networks are trained using 8 GPUs with a mini-batch of 32 per GPU for
150 epochs with cosine learning rate. The base learning rate is set to 0.05 and the weight decay is 4e-5. The cross entropy
loss with label smooth (smooth ratio 0.1) is employed.

ShuffleNet V2 training setting on ImageNet. All networks are trained using 8 GPUs with a mini-batch of 128 per GPU
for 240 epochs with poly learning rate. The base learning rate is set to 0.5 and weight decay is 4e-5. We also adopt warmup
and label smoothing tricks.

VGG networks training setting on CIFAR10. We adopt CIFAR10 that contains 60k images of 10 categories, where 50k
images for training and 10k images for test. We train VGG networks with a batch size of 256 on a single GPU for 160
epochs. The initial learning rate is 0.1 and is decreased by 10 times every 60 epochs. The inhibited channel ratios in Fig. 1
and Fig.4(c) is measured by the average ratio for the first six layers. For inference drop experiments in Fig.1(c), we randomly
drop channels of the output in the third layer with different dropout ratio. For each ratio, we run the experiment 5 times and
average the top 1 accuracy.

Mask-RCNN training setting on COCO. We fine-tune the ImageNet pretrained model in COCO for 24 epoch with base
learning rate 0.02 and multiply it by 0.1 after 16 and 22 epochs. All the models are trained using 8 GPUs with a mini-batch
of 2 images. The basic backbone structure is adopted from the ResNet50/ResNet101 trained on ImageNet.


