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Abstract

We investigate the connections between neural
networks and simple building blocks in kernel
space. In particular, using well established fea-
ture space tools such as direct sum, averaging, and
moment lifting, we present an algebra for creating
“compositional” kernels from bags of features. We
show that these operations correspond to many
of the building blocks of “neural tangent kernels”
(NTK). Experimentally, we show a correlation in
test error between neural network architectures
and the associated kernels. We construct a simple
neural network architecture using only 3⇥ 3 con-
volutions, 2⇥ 2 average pooling, ReLU, and opti-
mized with SGD and MSE loss that achieves 96%
accuracy on CIFAR10, and whose correspond-
ing compositional kernel achieves 90% accuracy.
We also use our constructions to investigate the
relative performance of neural networks, NTKs,
and compositional kernels in the small dataset
regime. In particular, we find that compositional
kernels outperform NTKs and neural networks
outperform both kernel methods.

1. Introduction

Recent research has drawn exciting connections between
neural networks and kernel methods, providing new in-
sights into training dynamics, generalization, and express-
ibility (Daniely et al., 2016; Jacot et al., 2018; Du et al.,
2019b;a; Ghorbani et al., 2019; Allen-Zhu et al., 2019; Lee
et al., 2019). This line of work relates “infinitely wide”
neural networks to particular kernel spaces, showing that
infinite limits of random initializations of neural networks
lead to particular kernels on the same input data. Since
these initial investigations, some have proposed to use these
kernels in prediction problems, finding promising results
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on many benchmark problems (Li et al., 2019; Arora et al.,
2020). However, these kernels do not match the perfor-
mance of neural networks on most tasks of interest, and
the kernel constructions themselves are not only hard to
compute, but their mathematical formulae are difficult to
even write down (Arora et al., 2019).

In this paper, we aim to understand empirically if there are
computationally tractable kernels that approach the expres-
sive power of neural networks, and if there are any practical
links between kernel and neural network architectures. We
take inspiration from both the recent literature on “neural
tangent kernels” (NTK) and the classical literature on com-
positional kernels, such as ANOVA kernels. We describe a
set of three operations in feature space that allow us to turn
data examples presented as collections of small feature vec-
tors into a single expressive feature-vector representation.
We then show how to compute these features directly on
kernel matrices, obviating the need for explicit vector repre-
sentations. We draw connections between these operations,
the compositional kernels of Daniely et al. (2016), and the
Neural Tangent Kernel limits of Jacot et al. (2018). These
connections allow us to relate neural architectures to kernels
in a transparent way, with appropriate simple analogues of
convolution, pooling, and nonlinear rectification (Sec. 3).

Our main investigation, however, is not in establishing these
connections. Our goal is to test whether the analogies be-
tween these operations hold in practice: is there a correlation
between neural architecture performance and the perfor-
mance of the associated kernel? Inspired by simple net-
works proposed by David Page (2018), we construct neural
network architectures for computer vision tasks using only
3⇥ 3 convolutions, 2⇥ 2 average pooling, and ReLU non-
linearities. We show that the performance of these neural ar-
chitectures on CIFAR-10 strongly predicts the performance
of the associated kernel. The best architecture achieves 96%
accuracy on CIFAR-10 when trained with SGD on a mean
squared error (MSE) loss. The corresponding compositional
kernel achieves 90% accuracy, which is, to our knowledge,
the highest accuracy achieved thus far by a kernel machine
on CIFAR-10. We emphasize here that we compute an ex-
act kernel directly from pixels, and do not rely on random
feature approximations often used in past work.
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On CIFAR-10, we observe that compositional kernels pro-
vide dramatically better results than Neural Tangent Kernels.
We also demonstrate that this trend holds in the “small data”
regime (Arora et al., 2020). Here, we find that compositional
kernels outperform NTKs and neural networks outperform
both kernel methods when properly tuned and trained. On
a benchmark of 90 UCI tabular datasets, we find that sim-
ple, properly tuned Gaussian kernels perform, on aggregate,
slightly better than NTKs. Taken together, our results pro-
vide a promising starting point for designing practical, high
performance, domain specific kernel functions. We suggest
that while some notion of compositionality and hierarchy
may be necessary to build kernel predictors that match the
performance of neural networks, NTKs themselves may not
actually provide particularly useful guides to the practice of
kernel methods.

2. Related Work

We build upon many prior efforts to design specialized ker-
nels that model specific types of data. In classical work on
designing kernels for pattern analysis, Shawe-Taylor et al.
(2004) establishes an algebra for constructing kernels on
structured data. In particular, we recall the construction of
the ANOVA kernels, which are defined recursively using
a set of base kernels. Many ideas from ANOVA kernels
transfer naturally to images, with operations that capture the
similarities between different patches of data.

More recent work Mairal et al. (2014); Mairal (2016) pro-
poses a multi-layer “convolutional kernel network” (CKN)
for image classification that iterates convolutional and non-
linear operations in kernel space. However, CKNs approx-
imate the iterative kernel map using monte-carlo and opti-
mization based approaches. While our compositional ker-
nels also perform similar convolutional operations in kernel
space, we compute our kernel functions exactly, and the
computational complexity of our kernel functions is worst-
case linear in depth, enabling us to explore deep kernel
compositions and achieve high test accuracy.

Another line of recent work investigates the connection
between kernel methods and infinitely wide neural networks.
Jacot et al. (2018) posits that least squares regression with
respect to the neural tangent kernel (NTK) is equivalent to
optimizing an infinitely wide neural network with gradient
flow. Similarly, it has been shown that optimizing just the
last layer of an infinitely wide neural network is equivalent
to a Gaussian process (NNGP) based on the neural network
architecture (Lee et al., 2018). Both of these equivalences
extend to convolutional neural networks (CNNs) (Li et al.,
2019; Novak et al., 2019). The compositional kernels we
explore can be expressed as NNGPs.

To construct our compositional kernel functions, we rely

on key results from Daniely et al. (2016), which explicitly
studies the duality between neural network architectures and
compositional kernels.

3. Compositional kernels for bags of features

A variety of data formats are naturally represented by col-
lections of related vectors. For example, an image can be
considered a spatially arranged collection of 3-dimensional
vectors. A sentence can be represented as a sequence of
word embeddings. Audio can be represented as temporally
ordered short-time Fourier transforms. In this section, we
propose a generalization of these sorts of data types, and
a set of operations that allow us to compress these repre-
sentations into vectors that can be fed into a downstream
prediction task. We then show how these operations can
be expressed as kernels and describe how to compute them.
None of the operations described here are novel, but they
form the basic building blocks that we use to build classifiers
to compare to neural net architectures.

A bag of features is simply a generalization of a matrix
or tensor: whereas a matrix is a list of vectors indexed
by the natural numbers, a bag of features is a collection
of elements in a Hilbert space H with a finite, structured
index set B. As a canonical example, we can consider an
image to be a bag of features where the index set B is the
pixel’s row and column location and H is R3: at every pixel
location, there is a corresponding vector in R3 encoding the
color of that pixel. In this section we will denote a generic
bag of features by a bold capital letter, e.g., X , and the
corresponding feature vectors by adding subscripts, e.g.,
Xb. That is, for each index b 2 B, Xb 2 H.

If our data is represented by a bag of features, we need
to map it into a single Hilbert space to perform linear (or
nonlinear) predictions. We describe three simple operations
to compress a bag of features into a single feature vector.

Concatenation. Let S1, . . . ,SL ✓ B be ordered subsets
with the same cardinality, s. We write each subset as an
ordered set of indices: Sj = {ij1, . . . , ijs}. Then we can
define a new bag of features c(X) with index set {1, . . . , L}
and Hilbert space Hs as follows. For each j = 1, . . . , L, set

c(X)j = (Xij1 ,Xij2 , . . . ,Xijs) .

The simplest concatenation is setting S1 = B, which corre-
sponds to vectorizing the bag of features. As we will see,
more complex concatenations have strong connections to
convolutions in neural networks.

Downsampling. Again let S1, . . . ,SL ✓ B be subsets,
but now let them have arbitrary cardinality and order. We
can define a new bag of features p(X) with index set
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{1, . . . , L} and Hilbert space H. For each j = 1, . . . , L
set

p(X)j =
1

|Sj |

X

i2Sj

Xi .

This is a useful operation for reducing the size of B. Here
we use the letter p for the operation as downsampling is
commonly called “pooling” in machine learning.

Embedding. Embedding simply means a isomorphism of
one Hilbert space to another. Let ' : H ! H

0 be a map.
Then we can define a new bag of features �(X) with index
set B and Hilbert Space H

0 by setting

�(X)b = '(Xb) .

Embedding functions are useful for increasing the expres-
siveness of a feature space.

3.1. Kernels on bags of features

Each operation on a bag of features can be performed di-
rectly on the kernel matrix of all feature vectors. Given two
bags of features with the same (B,H), we define the kernel
function

k(X, a,Z, b) = hXa,Zbi .

Note that this implicitly defines a kernel matrix between
two bags of features: we compute the kernel function for
each pair of indices in B ⇥ B to form a |B| ⇥ |B| matrix.
Let us now describe how to implement each of the above
operations introduced in Section 3.

Concatenation. Since

hc(X)j , c(Z)ki =
sX

`=1

hXij` ,Zik`i ,

we have

k(c(X), j, c(Z), k) =
sX

`=1

k(X, ij`,Z, ik`) .

Downsampling. Similarly, for downsampling, we have

k(c(X), j, c(Z), k) =
1

|Sj ||Sk|

X

i2Sj

X

`2Sk

k(X, i,Z, `) .

Embedding. Note that the embedding function ' induces
a kernel on H. If x and z are elements of H, define

k'(x, z) = h'(x),'(z)i .

Then, we don’t need to materialize the embedding function
to compute the effect of embedding a bag of features. We
only need to know k':

k(�(X), j,�(Z), k) = k'(Xj ,Zk) . (1)

We will restrict our attention to ' where we can compute
k'(x, z) only from hx, zi, kxk and kzk. This will allow us
to iteratively use Equation (1) in cascades of these primitive
operations.

3.2. Kernel operations on images

In this section, we specialize kernel operations to operations
on images. As described in Section 3, images are bags of
three dimensional vectors indexed by two spatial coordi-
nates. Assuming that our images have D1 ⇥ D2 pixels,
we create a sequence of kernels by composing the three
operations described above.

Input kernel. The input kernel function k0 relates all
pixel vectors between all pairs of images in our dataset.
Computationally, given N images, we can use an image
tensor T of shape N ⇥D1⇥D2⇥ 3 to represent the whole
dataset of images, and map this into a kernel tensor Kout

of shape N ⇥D1 ⇥D2 ⇥N ⇥D1 ⇥D2. The elements of
Kout = k0(T ) can be written as:

Kout[i, j, k, `,m, n] = hT [i, j, k], T [`,m, n]i .

All subsequent operations operate on 6-dimensional tensors
with the same indexing scheme.

Convolution. The convolution operation cw maps an in-
put tensor Kin to an output tensor Kout of the same shape:
N ⇥D1 ⇥D2 ⇥N ⇥D1 ⇥D2. w is an integer denoting
the size of the convolution (e.g. w = 1 denotes a 3 ⇥ 3
convolution).

The elements of Kout = cw(Kin) can be written as:

Kout[i, j, k, `,m, n] =
wX

dx=�w

wX

dy=�w

Kin[i, j + dx, k + dy, `,m+ dx, n+ dy]

For out-of-bound location indexes, we simply zero pad the
Kin so all out-of-bound accesses return zero.

Average pooling. The average pooling operation pw

downsamples the spatial dimension, mapping an input ten-
sor Kin of shape N ⇥ D1 ⇥ D2 ⇥ N ⇥ D1 ⇥ D2 to an
output tensor Kout of shape N⇥(D1/w)⇥(D2/w)⇥N⇥

(D1/w)⇥ (D2/w). We assume D1 and D2 are divisible by
w.

The elements of Kout = pw(Kin) can be written as:

Kout[i, j, k, `,m, n] =
1

w4

wX

a=1

wX

b=1

wX

c=1

wX

d=1✓
Kin[i, wj + a,wk + b, `, wm+ c, wn+ d]

◆
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Embedding. The nonlinearity layers add crucial nonlin-
earity to the kernel function, without which the entire map
would be linear and much of the benefit of using a kernel
method would be lost. We first consider the kernel counter-
part of the ReLU activation.

The ReLU embedding, krelu, is shape preserving, mapping
an input tensor Kin of shape N⇥D1⇥D2⇥N⇥D1⇥D2

to an output tensor Kout of shape N ⇥ D1 ⇥ D2 ⇥ N ⇥

D1 ⇥ D2. To ease the notation, we define two auxiliary
tensors: A with shape N ⇥ D1 ⇥ D2 and B with shape
N ⇥D1⇥D2⇥N ⇥D1⇥D2, where the elements of each
are:

A[i, j, k] =
p
Kin[i, j, k, i, j, k]

B[i, j, k, `,m, n] = arccos

✓
Kin[i, j, k, `,m, n]

A[i, j, k]A[`,m, n]

◆

The elements of Kout = krelu(Kin) can be written as:

Kout[i, j, k, `,m, n]

=
1

⇡

✓
A[i, j, k]A[`,m, n] sin(B[i, j, k, `,m, n])+

(⇡ �B[i, j, k, `,m, n]) cos(B[i, j, k, `,m, n])

◆

The relationship between the ReLU operator and the ReLU
kernel is covered in Subsection 3.3.

In addition to the ReLU kernel, we also work with a
normalized Gaussian kernel. The elements of Kout =
kgauss(Kin) can be written as:

Kout[i, j, k, `,m, n]

= A[i, j, k]A[`,m, n] exp(B[i, j, k, `,m, n]� 1)

The normalized Gaussian kernel has a similar output re-
sponse to the ReLU kernel (shown in Figure 1). Experimen-
tally, we find the Gaussian kernel to be marginally faster
and more numerically stable.

3.3. Relating compositional kernels to neural network

architectures

Each of these compositional kernel operations is closely
related to neural net architectures, with close ties to the liter-
ature on random features (Rahimi & Recht, 2008). Consider
two tensors: U of shape N ⇥ D1 ⇥ D2 ⇥ D3 and W of
shape (2w + 1) ⇥ (2w + 1) ⇥ D3 ⇥ D4. U is the input,
which can be N images, w is an integer denoting the size of
the convolution (e.g. w = 1 denotes a 3⇥ 3 convolution),
and W is a tensor contains the “weights” of a convolution.
Consider a simple convolutional layer followed by a ReLU
layer in a neural network:

 (U) = relu(W ⇤U)

Figure 1. Comparison of the ReLU (arccosine) and Gaussian ker-
nels (� = 1), as a function of the angle # between two examples.

where “⇤” denotes the convolution operation and relu de-
notes elementwise ReLU nonlinearity.

A convolution operation can be rewritten as a matrix multi-
plication with a reshaping of input tensors. We first flatten
the weights tensor W to a matrix W 0 of D4 rows and
D3(2w + 1)2 columns. For the input tensor U , given
the convolution size (2w + 1) ⇥ (2w + 1), we consider
the “patch” of each entry U [n, d1, d2, c] , which includes
the (2w + 1) ⇥ (2w + 1) entries U [n, i, j, c], where i 2

[d1 � w, d1 + w], j 2 [d2 � w, d2 + w]. Therefore,
we can flatten the input tensor U to a matrix U 0 of size
D3(2w + 1)2 ⇥D1D2N by padding all out-of-bounds en-
tries in the patches to zero.

The ReLU operation is shape preserving, applying the ReLU
nonlinearity '(x) elementwise to the tensor. Thus we can
rewrite the above convolution and ReLU operations into

 (U) = relu(W 0U 0) = relu(W ⇤U)

Therefore, a simple convolution layer and a ReLU layer give
us an output tensor  (U) of shape N ⇥D1 ⇥D2 ⇥D4.

With the help of random features, we are able to relate
the above neural network architecture to kernel operations.
Suppose the entries of W are appropriately scaled random
Gaussian variables. We can evaluate the following expec-
tation according to the calculation in Daniely et al. (2016),
thereby relating our kernel construction to inner products
between the outputs of random neural networks:

E
 D4X

c=1

 (U)[i, j, k, c] (U)[`,m, n, c]

�
=

krelu

⇣
cw

�
k0(U)

�⌘
[i, j, k, `,m, n]

(2)

where k0 is the input kernel defined in Subsection 3.2. We
include the proof for the above equality in the appendix.
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Similar calculations can be made for the pooling operation,
and for any choice of nonlinearity for which the above
expectation can be computed. Moreover, since in Eq (2), the
term inside the expectation only depends on inner products,
this relation can be generalized to arbitrary depths.

3.4. Implementation

Now we actualize the above formulations into a procedure
to generate a kernel matrix from the input data. Let A be
a set of valid neural network operations. A given network
architecture N is represented as an ordered list of operations
from A. Let K denote a mapping from elements of A to
their corresponding operators as defined in Subsection 3.2.

Algorithm 1 defines the procedure for constructing a com-
positional kernel from a given architecture N and an input
tensor X of N RGB images of shape N ⇥D ⇥D ⇥ 3. We
note that the output kernel is only a N ⇥N matrix if there
exist exactly logD pooling layers. We emphasize that this
procedure is a deterministic function of the input images
and network architecture.

Due to memory limitations, in practice we compute the
compositional kernel in batches on a GPU. Implementation
details are given in Section 4.

Algorithm 1 Compositional Kernel
Input

N Input architecture of m layers from A

K Map from A to layerwise operators
X Tensor of input images, shape (N ⇥D⇥D⇥ 3)

Output

Km Compositional kernel matrix, shape (N ⇥N)

K0 = k0(X)
for i = 1 to m do

ki  K(Ni)
Ki  ki(Ki�1)

end for

4. Experiments

In this section, we first provide an overview of the archi-
tectures used in our experiments. We then present compar-
ison results between neural networks, NTKs, and compo-
sitional kernels on a variety of datasets, including MNIST,
CIFAR-10 (Krizhevsky (2009)), CIFAR-10.1 (Recht et al.
(2019)), CIFAR-100 (Krizhevsky (2009)) and 90 UCI
datasets (Fernández-Delgado et al. (2014)).

4.1. Architectures

We design our deep convolutional kernel based on the non-
residual convolutional “Myrtle” networks introduced in
Page (2018). We choose this particular network because

of its rare combination of simplicity and high performance.
Many components commonly used in neural networks, in-
cluding residual connections, are intended to ease training
but have little or unclear effect in terms of the function of
the trained network. It is unclear how to model these neu-
ral network components in the corresponding kernels, but
equally unclear what benefit this might offer. We further
simplify the architecture by removing batch normalization
and swapping out max pooling with average pooling, for
similar reasons. The remaining components are exclusively
3⇥ 3 convolutions, 2⇥ 2 average pools, and ReLUs. More
generally, we refer to all architectures that can be repre-
sented as a list of operations from the set {conv3, pool2,
relu} as the “Myrtle” family.

We work with 3 networks from this family: Myrtle5, Myr-
tle7 and Myrtle10, denoting the depth of each network. An
example of the Myrtle5 architecture is shown in Figure 2.
The deeper variants have more convolution and ReLU lay-
ers; we refer the reader to the appendix for an illustration of
the exact architectures. Next we show convolutional neural
networks from this family can indeed achieve high accuracy
on CIFAR-10, as can their kernel counterparts.

4.2. Experimental setup.

We implemented all the convolutional kernels in the tensor
comprehensions framework (Vasilache et al., 2018) and ex-
ecuted them on V100 GPUs using Amazon Web Services
(AWS) P3.16xlarge instances. For image classification tasks
(MNIST, CIFAR-10, CIFAR-10.1, and CIFAR-100), we
used compositional kernels based on the Myrtle family de-
scribed above. For tabular datasets (90 UCI datasets), we
used simpler Gaussian kernels. All experiments on CIFAR-
10, CIFAR-10.1 and CIFAR-100 used ZCA whitening as a
preprocessing step, except for the comparison experiments
explicitly studying preprocessing. We apply “flip” data aug-
mentation to our kernel method by flipping every example
in the training set across the vertical axis and construct-
ing a kernel matrix on the concatenation of the flipped and
standard datasets.

For all image classification experiments (MNIST, CIFAR-
10, CIFAR-10.1, and CIFAR-100) we perform kernel ridge
regression with respect to one-hot labels, and solve the op-
timization problem exactly using a Cholesky factorization.
More details are provided in the appendix. For experiments
on the UCI datasets, we minimize the hinge loss with lib-
SVM to appropriately compare with prior work (Arora et al.,
2020; Fernández-Delgado et al., 2014).

4.3. MNIST

As a “unit test,” we evaluate the performance of the compo-
sitional kernels in comparison to several baseline methods,
including the Gaussian kernel, on the MNIST dataset of
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3 x 3 Conv ReLU 3 x 3 Conv ReLU 2x2 AvgPool 3 x 3 Conv ReLU 2x2 AvgPool 3 x 3 Conv ReLU 2x2 AvgPool 2x2 AvgPool 2x2 AvgPool

Figure 2. A 5 layer network from the “Myrtle” family (Myrtle5).

handwritten digits (LeCun et al., 1998b). Results are pre-
sented in Table 1. We observe that all convolutional methods
show nearly identical performance, outperforming the three
non-convolutional methods (NTK, arccosine kernel, and
Gaussian kernel).

Table 1. Classification performance on MNIST. All methods with
convolutional structure have essentially the same performance.

Method MNIST
Accuracy

NTK 98.6
ArcCosine Kernel 98.8
Gaussian Kernel 98.8
Gabor Filters + Gaussian Kernel 99.4
LeNet-5 (LeCun et al., 1998a) 99.0
CKN (Mairal et al., 2014) 99.6
Myrtle5 Kernel 99.5
Myrtle5 CNN 99.5

4.4. CIFAR-10

Table 3 compares the performance of neural networks with
various depths and their corresponding compositional ker-
nels on both the 10,000 test images from CIFAR-10 and the
additional 2,000 “harder” test images from CIFAR-10.11

(Krizhevsky, 2009; Recht et al., 2019). We include the per-
formance of the Gaussian kernel and a standard ResNet32
as baselines. We train all the Myrtle CNNs on CIFAR-10
using SGD and the mean squared error (MSE) loss with
multi-step learning rate decay. The exact hyperparameters
are provided in the appendix.

We observe that a simple neural network architecture built
exclusively from 3 ⇥ 3 convolutions, 2 ⇥ 2 average pool-
ing layers, and ReLU nonlinearities, and trained with only
flip augmentation, achieves 93% accuracy on CIFAR-10.
The corresponding fixed compositional kernel achieves 90%
accuracy on the same dataset, outperforming all previous
kernel methods. We note the previous best-performing ker-
nel method from Li et al. (2019) heavily relies on a data
dependent feature extraction before data is passed into the
kernel function (Coates & Ng, 2012). When additional
sources of augmentation are used, such as cutout and ran-
dom crops, the accuracy of the neural network increases
to 96%. Unfortunately due to the quadratic dependence on

1As this dataset was only recently released, some works do not
report accuracy on this dataset.

dataset size, it is currently intractable to augment the com-
positional kernel to the same extent. For all kernel results2

on CIFAR-10, we gained a performance improvement of
roughly 0.5% using two techniques: Leave-One-Out tilt-
ing and ZCA augmentation we detail these techniques in
appendix ??.

Effect of preprocessing. For all of our primary CIFAR-
10 experiments, we begin with ZCA pre-processing (Good-
fellow et al., 2013). Table 3 also shows the accuracy of our
baseline CNN and its corresponding kernel when we replace
ZCA with a simpler preprocessing of mean subtraction and
standard deviation normalization. We find a substantial
drop in accuracy for the compositional kernel without ZCA
preprocessing, compared to a much more modest drop in
accuracy for the CNN. This result underscores the impor-
tance of proper preprocessing for kernel methods; we leave
improvements in this area for future work.

4.5. CIFAR-100

For further evaluation, we compute the compositional ker-
nel with the best performance on CIFAR-10 on CIFAR-100.
We report our results in Table 2. We find the compositional
kernel to be modestly performant on CIFAR-100, match-
ing the accuracy of a CNN of the same architecture when
no augmentation is used. However we note this might be
due to training instability as the network performed more
favorably after flip augmentation was used. Accuracy fur-
ther increased when batch normalization was added, lending
credence to the training instability hypothesis. We also note
cross entropy loss was used to achieve the accuracies in
Table 2, as we had difficulty optimizing MSE loss on this
dataset. We leave further investigations on the intricacies of
achieving high accuracy on CIFAR-100 for future work.

4.6. Subsampled CIFAR-10

In this section, we present comparison results in the small
dataset regime using subsamples of CIFAR-10, as investi-
gated in Arora et al. (2020). Results are shown in Figure 3.
Subsampled datasets are class balanced, and standard devia-
tions are computed over 20 random subsamples, as in Arora
et al. (2020). More details are provided in the appendix.

2with the exception of the experiment performed without ZCA
processing
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Table 2. Accuracy on CIFAR-100. All CNNs were trained with
cross entropy loss.

Method CIFAR-100
Accuracy

Myrtle10-Gaussian Kernel 65.3
Myrtle10-Gaussian Kernel + Flips 68.2
Myrtle10 CNN 64.7
Myrtle10 CNN + Flips 71.4
Myrtle10 CNN + BatchNorm 70.3
Myrtle10 CNN + Flips + BatchNorm 74.7

Figure 3. Accuracy results on random subsets of CIFAR-10, with
standard deviations over 20 trials. The 14-layer CNTK results are
from Arora et al. (2020).

Results. We demonstrate that in the small dataset regime
explored in Arora et al. (2020), our convolutional kernels
significantly outperform the NTK on subsampled training
sets of CIFAR-10. We find a network with the same ar-
chitecture as our kernel severely underperforms both the
compositional kernel and NTK in the low data regime. As
with CIFAR-100 we suspect this is a training issue as once
we add batch normalization the network outperforms both
our kernel and the NTK from Arora et al. (2020).

4.7. UCI datasets

In this section, we present comparison results between the
Gaussian kernel and NTK evaluated on 90 UCI datasets,
following the setup used in Arora et al. (2020). Arora et al.
(2020) identifies that the NTK outperforms a variety of clas-
sifiers, including the Gaussian kernel, random forests (RF),
and polynomial kernels, evaluated in Fernández-Delgado
et al. (2014) on 90 UCI datasets.

Results. For appropriate comparison, we use the same set
of 90 “small” UCI datasets (containing no more than 5000
data points) as in Arora et al. (2020) for the evaluations. For
the tuning and evaluation procedure we make one crucial

Figure 4. Performance profiles for NTK and tuned Gaussian kernel
on 90 UCI datasets.

modification to the evaluation procedure posed in Arora
et al. (2020) and Fernández-Delgado et al. (2014). We
compute the optimal hyperparameters for each dataset (for
both NTK and Gaussian kernel) by averaging performance
over four cross-validation folds, while both Arora et al.
(2020) and Fernández-Delgado et al. (2014) choose optimal
hyper parameters on a single cross validation fold. Using
a single cross validation fold can lead to high variance in
final performance, especially when evaluation is done purely
on small datasets. A single fold was used in the original
experimental setup of Fernández-Delgado et al. (2014) for
purely computational reasons, and the authors point out the
issue of high variance hyperparameter optimization. Table
4 reports the average cross-validation accuracy over the
90 datasets for the NTK and Gaussian kernel. Compared
to results in Arora et al. (2020), the modified evaluation
protocol increases the performance of both methods, and
the gap between the NTK and Gaussian kernel disappears.

We compute the same metrics used in Arora et al. (2020):
Friedman rank, P90, P95 and PMA, where a better clas-
sifier is expected to have lower Friedman rank and higher
P90, P95, and PMA. The average accuracy is reported to-
gether with its standard deviation. Friedman rank denotes
the ranking metric introduced to compare classifiers across
multiple datasets in Demšar (2006), and reports the average
ranking of a given classifier compared to all other classifiers.
P90/P95 denotes the percentage of datasets on which the
classifier achieves at least 90%/95% of the maximum ac-
curacy across all classifiers for this dataset. PMA denotes
the average percentage of the maximum accuracy across all
classifiers for each dataset.

On all metrics reported by Arora et al. (2020), the Gaussian
kernel has comparable or better performance relative to
the NTK. Figure 4 shows a performance profile to visually
compare the two classifiers (Dolan & Moré, 2002). For a
given ⌧ , the y axis denotes the fraction of instances where
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Table 3. Classification performance on CIFAR-10.
Method CIFAR-10

Accuracy
CIFAR-10.1

Accuracy
Gaussian Kernel 57.4 -
CNTK + Flips (Li et al., 2019) 81.4 -
CNN-GP + Flips (Li et al., 2019) 82.2 -
CKN (Mairal, 2016) 85.8 -
Coates-NG + Flips (Recht et al., 2019) 85.6 73.1
Coates-NG + CNN-GP + Flips (Li et al., 2019) 88.9 -
ResNet32 92.5 84.4
Myrtle5 Kernel + No ZCA 77.7 62.2
Myrtle5 Kernel 85.8 71.6
Myrtle7 Kernel 86.6 73.1
Myrtle10 Kernel 87.5 74.5
Myrtle10-Gaussian Kernel 88.2 75.1
Myrtle10-Gaussian Kernel + Flips 89.8 78.3
Myrtle5 CNN + No ZCA 87.8 75.8
Myrtle5 CNN 89.8 79.0
Myrtle7 CNN 90.2 79.7
Myrtle10 CNN 91.2 79.9
Myrtle10 CNN + Flips 93.4 84.8
Myrtle10 CNN + Flips + CutOut + Crops 96.0 89.8

Table 4. Results on 90 UCI datasets for the NTK and Gaussian kernel (both tuned over 4 eval folds).

Classifier Friedman Average P90 P95 PMA
Rank Accuracy (%) (%) (%) (%)

SVM NTK 14.3 83.2 ± 13.5 96.7 83.3 97.3 ± 3.8
SVM Gaussian kernel 11.6 83.4 ± 13.4 95.6 83.3 97.5 ± 3.7

a classifier either has the highest accuracy or has accuracy
within ⌧ of the best accuracy. The performance profile
reveals that the Gaussian kernel and NTK perform quite
comparably on the 90 UCI datasets.

5. Limitations and Future Work

The compositional kernels proposed in this manuscript sig-
nificantly advance the state of the art of kernel methods
applied to pattern recognition tasks. However, these ker-
nels still have significant limitations that must be addressed
before they can be applied in practice.

Computational cost. The compositional kernels we study
compare all pairs of input pixels for two images with D

pixels each, so the cost of evaluating the kernel function
on two data points is Õ(D2). In addition, O(N2) kernel
evaluations must be computed to construct the full kernel
matrix, creating a total complexity of Õ(N2

D
2). Even

with heavily optimized GPU code, this requires significant
computation time. We therefore limited our scope to image
datasets with a small pixel count and modest number of

examples: CIFAR-10/CIFAR-100 consist of 60, 000 32⇥
32 ⇥ 3 images and MNIST consists of 70, 000 28 ⇥ 28
images. Even with this constraint, the largest compositional
kernel matrices we study took approximately 1000 GPU
hours to compute. Thus, we believe an imperative direction
of future work is reducing the complexity of each kernel
evaluation. Random feature methods or other compression
schemes could play a significant role here.

Once a kernel matrix is constructed, exact minimization of
empirical risk often scales as O(N3). For datasets with less
than 100,000 examples, these calculations can be performed
relatively quickly on standard workstations with sufficient
RAM. However, even these solves are expensive for larger
datasets. Fortunately, recent work on kernel optimization
(Ma & Belkin, 2018; Dai et al., 2014; Shankar et al., 2018;
Wang et al., 2019) paves a way to scale our approach to
larger datasets.

Data augmentation. A major advantage of neural net-
works is that data augmentation can be added essentially
for free. For kernel methods, data augmentation requires
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treating each augmented example as if it was part of the data
set, and hence computation scales superlinearly with the
amount of augmentation: if one wants to perform 100 aug-
mentations per example, then the final kernel matrix will be
10,000 times larger, and solving the prediction problem may
be one million times slower. Finding new paths to cheaply
augment kernels (Ratner et al., 2017; Dao et al., 2019) or to
incorporate the symmetries implicit in data augmentation
explicitly in kernels should dramatically improve the effec-
tiveness of kernel methods on contemporary datasets. One
promising avenue is augmentation via kernel ensembling,
e.g. by forming many smaller kernels with augmented data
and averaging their predictions appropriately.

Architectural modifications. We consider a simple set of
architectural building blocks (convolution, average pool, and
ReLU) in this work, but there exist several commonly used
primitives in deep networks that have no clear analogues
for kernel machines (e.g residual connections, max pool,
batch normalization, etc.). While it is unclear whether these
primitives are necessary, the question remains open whether
the performance gap between kernels and neural networks
indicates a fundamental limitation of kernel methods or
merely an engineering hurdle that can be overcome (e.g.
with improved architectures or by additional subunits).
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Demšar, J. Statistical comparisons of classifiers over mul-
tiple data sets. Journal of Machine Learning Research
(JMLR), 7(Jan):1–30, 2006.
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