
Neural Kernels without Tangents: Appendix

June 27, 2020

Appendix A Nonparametric prediction with kernels

We proceed with kernel classification as follows. Let C be the total number of classes. Let {x1...xN}
be N training examples in d dimensions. Let {y1...yN} be N one-hot encoded training labels. We
use vim to denote the mth entry of the vector vi. For a choice of kernel function k(x, y), loss function
L, and regularization value λ, we solve the following optimization problem:

minimize
α

1

N

N∑
i=1

L
(N∑
j=1

Kj·α, yi
)

+ λTr(αTKα) (1)

where K is the matrix of kernel evaluations on the data: Kij = k(xi, xj). The prediction for an
example xtest is:

argmax
c

N∑
i=1

αick(xtest, xi) (2)

If not otherwise specificed, we use the squared error loss, L(ŷ, y) = ‖ŷ− y‖2, for our experiments. In
this case, α in (1) is given by

α = (K + λI)−1Y

where Y is the N × C matrix of all one-hot-encodings of the labels. We allow for the value of λ = 0
in our experiments, and oftentimes this value produces the lowest test error.

Appendix B LOO Tilting and ZCA Augmentation

Two additional techniques were used for the Cifar-10 experiments for an additional 0.5% performance
improvement in test accuracy.

1

B.1 ZCA Augmentation

As mentioned in Section ??, incorporating augmentation directly is difficult for kernel methods. To
capture a small fraction of the benefit of the augmentation in the preprocessing method itself, we
first augment the data 20 times using the random augment method proposed in Cubuk et al. [2].

We then learn the ZCA preprocessing matrix by computing the eigendecomposition of the augmented
training data as described in [4]. We then use just the portion of the preprocessed data matrix
corresponding to the regular unaugmented training data (or corresponding to the unaugmented
training data and its horizontal flips) to compute the kernel matrix.

We find this technique offered a small performance boost of around 0.2% across CIFAR-10 and
CIFAR-10.

B.2 Leave-One-Out Tilting

We additionally found a minor improvement in prediction by averaging the predictions from the
true labels and from the labels imputed by leave-one-out prediction. With K and Y defined as they
are in section A, let Q be (K + λI)−1 and α be (K + λI)−1Y . α are the coefficients for standard
ridge regression.

Let Yloo be a N × C matrix of leave-one-out predictions. Here, the ith row of Yloo is the output of
ridge regression where we predict example i using every element in the entire training set except
example i. For kernel ridge regression, we can actually compute the leave-one-out prediction matrix
in closed form:

Ylooic = Yic −
Qii
αic

Our titled prediction uses an affine combination of the true labels Y and the imputed leave-one-out
predictions Yloo:

αloo = (K + λI)−1(Y − tYloo)

Where t is chosen to maximize test accuracy on CIFAR-10. We empirically find the optimal value of
t to be 0.3. Though we do not yet have a theoretical justification for this method, we found that this
solution never reduced test error, and always performed well on the test set CIFAR-10.1. For our
best model, we found this technique offered a modest performance boost of around 0.3% on both
CIFAR-10 and CIFAR-10.1. We leave an analysis of the efficacy of this technique to future work.

Appendix C Supplementary proof

For completeness, we present the proof details for section 3.3 using results from [3].

2

We aim to prove the following equality:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]
=

krelu

(
cw
(
k0(U)

))
[i, j, k, `,m, n]

(3)

where Ψ, U and k0 are as defined in the main text.

Daniely et al. [3] (Section 4.2) presents the concepts of dual activation and kernel:

σ̂(ρ) = E(X,Y)∼Nρ [σ(X)σ(Y)]

where we denote by Nρ the multivariate Gaussian distribution with mean 0 and covariance matrix(
1 ρ
ρ 1

)
.

In our case, we have the relu activation σ(·) = max(x, 0), whose dual activation function takes the

form σ̂(ρ) =

√
1−ρ2+ρ(π−cos−1(ρ))

π [3].

Now we show how the above result translates to equation ??. Recall that for a convolutional layer
followed by a ReLU layer, we have tensors U with shape N ×D1 ×D2 ×D3, and W with shape
(2w + 1)× (2w + 1)×D3 ×D4. To ease the notation, denote Z as the tensor W ∗U with shape
N ×D1 ×D2 ×D4. We begin with the LHS of equation ??:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]
=E
[
σ
(√

D4(Z[i, j, k, 1])
)
σ
(√

D4(Z[l,m, n, 1])
)]

Let X =
√
D4(Z[i, j, k, 1]), Y =

√
D4(Z[l,m, n, 1]), and choose entries of W to be independent and

identically distributed Gaussian random variables with mean 0 and variance 1
D4

. With normalization
on every patch, we have that (X,Y) follow the multivariate Gaussian distribution with mean 0 and

covariance matrix
(

1 ρ
ρ 1

)
, where

ρ =
w∑

δ=−w

w∑
∆=−w

D3∑
d=1

U [i, j + δ, k + ∆, d]U [l,m+ δ, n+ ∆, d]

Following Daniely et al. [3], we have:

E
[D4∑
c=1

Ψ(U)[i, j, k, c]Ψ(U)[`,m, n, c]

]

=

√
1− ρ2 + ρ(π − cos−1(ρ))

π

(4)

3

Now we show that the RHS of equation ?? is indeed
√

1−ρ2+ρ(π−cos−1(ρ))
π .

As defined in Subsection ??,

k0(U)[i, j, k, l,m, n] =

D3∑
d=1

U [i, j, k, d]U [l,m, n, d]

.

Let C be the tensor cw
(
k0(U)

)
,

C[i, j, k, l,m, n]

=

w∑
δ=−w

w∑
∆=−w

D3∑
d=1

U [i, j ± δ, k ±∆, d]U [l,m± δ, n±∆, d]

With normalization for every patch,
√
C[i, j, k, i, j, k] = 1, and

krelu

(
cw

(
k0(U)

))
=

1

π

(√
1− ρ2 + ρ(π − cos−1(ρ))

) (5)

Combining (4) and (5) completes the proof.

Appendix D Neural Network Parameters

The parameters used to train neural networks for the experiments in this paper are as follows:

For Myrtle5 on MNIST, we used a width of 1,024 filters for all layers and trained for 20 epochs
using MSE loss and Adam as the optimizer with a learning rate of 0.001, without weight decay, and
without any form of data preprocessing. For the Myrtle5 Kernel on MNIST we used a regularization
value (λ) of 1e-4.

For CIFAR-10, all experiments are trained using MSE loss and SGD with Nesterov momentum,
setting weight decay to 0.0005, momentum to 0.9, and minibatch size to 128. All experiments using
Myrtle5 used 1,024 filters for all layers and trained for 60 epochs at half-precision with an initial
learning rate of 0.1, which is decayed by 0.1 at 15, 30, and 45 epochs. Myrtle7, Myrtle10 without
augmentation, and Myrtle10 with flips used 1,024 filters and are trained for 200 epochs with an
initial learning rate of 0.05, which is decayed by 0.1 at 80, 120, and 160 epochs. Myrtle10 with flips,
cutout, and random crops used 2,048 filters and is trained for 400 epochs with an initial learning rate
of 0.1, which is decayed by 0.1 at 80, 160, 240, and 320 epochs. For all CIFAR-10 kernel experiments
we used a regularization value (λ) of 0.

For CIFAR-100, all experiments use a width of 2,048 filters for all layers and are trained for 200
epochs using cross entropy loss and SGD with Nesterov momentum, setting weight decay to 0.0005,

4

momentum to 0.9, and minibatch size to 128. The learning rate is decayed by 0.2 at 60, 120, and 160
epochs. The initial learning rate is set to 0.1 for both experiments with batch normalization, 0.05
for Myrtle10 CNN with flips, and 0.01 for Myrtle10 CNN without augmentation. For all CIFAR-100
kernel experiments we used a regularization value (λ) of 1e-4.

Appendix E Neural Network Architectures

In Figure 1 we illustrate the two “deeper" Myrtle architectures used. The architectures are similar
to the 5 layer variant illustrated in main text, except with more convolution and nonlinearity layers.

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

2 x 2 Average Pool

2 x 2 Average Pool

Myrtle7

(a)

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

ReLU

3 x 3 Convolution

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

ReLU

3 x 3 Convolution

3 x 3 Convolution

ReLU

2 x 2 Average Pool

3 x 3 Convolution

ReLU

ReLU

3 x 3 Convolution

2 x 2 Average Pool

2 x 2 Average Pool

Myrtle10

(b)

Figure 1: a) 7 layer b) 10 layer variants of the Myrtle architectures

Appendix F UCI experiments details

In this section, we provide supplementary details for the experiments on the UCI datasets.

5

Table 2 provides the accuracy values (with Clopper-Pearson confidence intervals) for both the NTK
and the tuned Gaussian kernel on each of the 90 small UCI datasets. For the Gaussian kernel
we swept the kernel bandwidth γ value from ν ∗ 2−19 to ν ∗ 220 in log space, where ν was chosen
heuristically to be the median `2 distance between data points. We swept the SVM parameter C
from 2−19 to 220 in log space.

For the NTK we tuned the kernel exactly using the protocol from [1].

Classifier Friedman Average P90 P95 PMA
Rank Accuracy (%) (%) (%) (%)

SVM NTK (tuned on 4 eval folds) 14.3 83.2 ± 13.5 96.7 83.3 97.3 ± 3.8
SVM Gaussian (tuned on 4 eval folds) 11.6 83.4 ± 13.4 95.6 83.3 97.5 ± 3.7
SVM NTK (tuned on 1 eval fold) 29.0 82.0 ± 14.0 88.9 72.2 95.6 ± 5.2
RF (tuned on 1 eval fold) 32.4 81.6 ± 13.8 85.6 65.6 95.1 ± 5.3
SVM Gaussian (tuned on 1 eval fold) 35.1 81.0 ± 15.0 85.6 72.2 94.4 ± 8.2
SVM Polynomial (tuned on 1 eval fold) 36.6 78.2 ± 20.2 81.6 63.2 94.3 ± 6.0

Table 1: Results on 90 UCI datasets. Friedman rank reports the average (over datasets) of the
accuracy ranking (among classifiers). Average accuracy is reported ± standard deviation. P90/P95
denotes the percentage of datasets on which a classifier achieves at least 90%/95% of the maximum
accuracy. PMA denotes the average (over datasets) percentage of the maximum accuracy ± standard
deviation.

Appendix G Subsampled CIFAR-10 experiments details

Subsets of CIFAR-10 were selected uniformly at random without replacement, and each experiment
was repeated in 20 independent trials (over which we report standard deviations). This procedure,
and the sizes of training sets we consider, match the setup in [1]. Table 4 compares the performance
(on all 10,000 test examples) of the CNTK from [1] with that of our Myrtle5 kernel and CNN (with
and without batch normalization), our Myrtle10-Gaussian kernel, and a baseline linear classifier.
Each linear model used a regularization parameter λ tuned on a log scale between 10−4 and 106. The
optimal values for λ from top to bottom were: 102, 10−2, 102, 103, 103, 103, 105, 104. The Myrtle10-
Gaussian kernel is our highest-performing unaugmented kernel on the full CIFAR-10 dataset; here
we confirm that it retains high performance in the small-data regime.

6

References

[1] Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli
Yu. Harnessing the power of infinitely wide deep nets on small-data tasks. In International
Conference on Learning Representations, 2020.

[2] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical data
augmentation with no separate search. arXiv preprint arXiv:1909.13719, 2019.

[3] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances in Neural Information
Processing Systems, 2016.

[4] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua Bengio.
Maxout networks. In International Conference on Machine Learning, 2013.

7

Table 2: Results on 90 UCI datasets, with Clopper-Pearson confidence intervals.

Dataset NTK Accuracy Gaussian Kernel Accuracy

abalone 66.04 [63.97, 68.08] 66.71 [64.65, 68.74]
acute-inflammation 100.0 [94.04, 100.0] 100.0 [94.04, 100.0]
acute-nephritis 100.0 [94.04, 100.0] 100.0 [94.04, 100.0]
arrhythmia 72.35 [66.02, 78.07] 72.79 [66.49, 78.48]
balance-scale 99.04 [97.22, 99.8] 99.52 [97.96, 99.97]
balloons 100.0 [63.06, 100.0] 100.0 [63.06, 100.0]
bank 89.93 [88.62, 91.14] 90.04 [88.74, 91.25]
blood 80.48 [76.1, 84.38] 79.01 [74.53, 83.03]
breast-cancer 75.7 [67.8, 82.5] 75.35 [67.42, 82.19]
breast-cancer-wisc 97.86 [95.73, 99.1] 97.57 [95.36, 98.91]
breast-cancer-wisc-diag 97.54 [94.99, 99.0] 97.54 [94.99, 99.0]
breast-cancer-wisc-prog 84.18 [75.43, 90.77] 83.16 [74.26, 89.97]
breast-tissue 75.0 [61.05, 85.97] 74.04 [60.01, 85.2]
car 98.84 [97.88, 99.44] 99.31 [98.49, 99.74]
cardiotocography-10clases 86.53 [84.33, 88.53] 85.55 [83.29, 87.61]
cardiotocography-3clases 93.6 [91.95, 94.99] 92.98 [91.28, 94.45]
chess-krvkp 99.25 [98.69, 99.61] 99.22 [98.65, 99.59]
congressional-voting 63.3 [56.53, 69.71] 63.3 [56.53, 69.71]
conn-bench-sonar-mines-rocks 86.54 [78.45, 92.44] 87.98 [80.14, 93.54]
contrac 54.89 [51.21, 58.53] 55.71 [52.03, 59.33]
credit-approval 87.94 [84.02, 91.18] 87.65 [83.7, 90.93]
cylinder-bands 80.66 [75.29, 85.32] 81.05 [75.71, 85.67]
dermatology 98.08 [94.86, 99.53] 98.35 [95.26, 99.66]
echocardiogram 86.36 [75.69, 93.57] 86.36 [75.69, 93.57]
ecoli 87.5 [81.53, 92.09] 88.1 [82.21, 92.57]
energy-y1 96.22 [93.8, 97.9] 96.48 [94.12, 98.09]
energy-y2 89.97 [86.52, 92.79] 91.41 [88.14, 94.01]
fertility 89.0 [76.93, 96.08] 89.0 [76.93, 96.08]
flags 51.56 [41.14, 61.89] 54.69 [44.2, 64.88]
glass 70.75 [61.13, 79.19] 72.17 [62.62, 80.44]
haberman-survival 73.68 [65.93, 80.49] 75.66 [68.04, 82.25]
heart-cleveland 59.87 [51.62, 67.73] 60.2 [51.95, 68.04]
heart-hungarian 87.67 [81.22, 92.53] 86.99 [80.43, 91.98]
heart-switzerland 49.19 [36.26, 62.21] 50.0 [37.02, 62.98]
heart-va 40.0 [30.33, 50.28] 41.5 [31.73, 51.79]
hepatitis 83.97 [73.93, 91.31] 86.54 [76.92, 93.21]
ilpd-indian-liver 74.32 [68.9, 79.23] 73.29 [67.82, 78.27]
ionosphere 95.74 [91.61, 98.2] 95.74 [91.61, 98.2]
iris 98.65 [92.7, 99.97] 98.65 [92.7, 99.97]
led-display 74.6 [70.55, 78.36] 75.3 [71.28, 79.02]
lenses 87.5 [56.38, 99.09] 87.5 [56.38, 99.09]
libras 86.67 [80.81, 91.27] 85.83 [79.87, 90.57]
low-res-spect 93.8 [90.19, 96.38] 94.55 [91.1, 96.95]
lung-cancer 65.62 [38.34, 86.94] 62.5 [35.43, 84.8]
lymphography 89.19 [79.8, 95.22] 89.19 [79.8, 95.22]
mammographic 82.29 [78.58, 85.6] 83.75 [80.14, 86.94]
molec-biol-promoter 91.35 [80.2, 97.35] 91.35 [80.2, 97.35]
molec-biol-splice 87.61 [85.89, 89.19] 87.7 [85.99, 89.28]
musk-1 90.97 [86.58, 94.29] 91.39 [87.07, 94.62]

8

Table 3: Results on 90 UCI datasets, with Clopper-Pearson confidence intervals: continued.

Dataset NTK Accuracy Gaussian Kernel Accuracy

oocytes-merluccius-nucleus-4d 84.22 [80.76, 87.27] 85.78 [82.45, 88.7]
oocytes-merluccius-states-2f 93.63 [91.14, 95.59] 94.12 [91.71, 96.0]
oocytes-trisopterus-nucleus-2f 86.62 [83.15, 89.61] 87.28 [83.87, 90.2]
oocytes-trisopterus-states-5b 94.41 [91.88, 96.33] 95.18 [92.79, 96.95]
ozone 97.2 [96.14, 98.04] 97.36 [96.32, 98.17]
parkinsons 93.37 [86.49, 97.4] 93.37 [86.49, 97.4]
pima 76.69 [72.14, 80.83] 77.34 [72.82, 81.44]
pittsburg-bridges-MATERIAL 92.31 [81.46, 97.86] 94.23 [84.05, 98.79]
pittsburg-bridges-REL-L 75.0 [61.05, 85.97] 75.0 [61.05, 85.97]
pittsburg-bridges-SPAN 73.91 [58.87, 85.73] 73.91 [58.87, 85.73]
pittsburg-bridges-T-OR-D 89.0 [76.93, 96.08] 90.0 [78.19, 96.67]
pittsburg-bridges-TYPE 72.12 [57.95, 83.65] 68.27 [53.89, 80.48]
planning 71.67 [61.19, 80.67] 73.89 [63.56, 82.58]
plant-margin 84.38 [81.67, 86.82] 84.5 [81.8, 86.94]
plant-shape 74.0 [70.81, 77.01] 73.0 [69.78, 76.05]
plant-texture 85.44 [82.8, 87.81] 85.25 [82.6, 87.64]
post-operative 72.73 [57.21, 85.04] 72.73 [57.21, 85.04]
primary-tumor 53.96 [46.02, 61.76] 55.49 [47.54, 63.24]
seeds 96.15 [90.44, 98.94] 96.15 [90.44, 98.94]
semeion 95.73 [94.08, 97.02] 95.85 [94.23, 97.13]
spambase 94.93 [93.96, 95.79] 94.02 [92.97, 94.96]
statlog-australian-credit 68.31 [63.11, 73.2] 68.31 [63.11, 73.2]
statlog-german-credit 78.4 [74.53, 81.93] 78.7 [74.85, 82.21]
statlog-heart 88.06 [81.33, 93.02] 89.18 [82.65, 93.88]
statlog-image 98.09 [97.13, 98.8] 97.66 [96.61, 98.45]
statlog-vehicle 84.72 [80.92, 88.01] 85.31 [81.56, 88.55]
steel-plates 78.04 [75.3, 80.61] 77.53 [74.77, 80.12]
synthetic-control 99.5 [97.88, 99.96] 99.67 [98.16, 99.99]
teaching 60.53 [48.65, 71.56] 61.18 [49.31, 72.16]
tic-tac-toe 99.79 [98.84, 99.99] 100.0 [99.23, 100.0]
titanic 78.95 [76.42, 81.33] 78.95 [76.42, 81.33]
trains 87.5 [28.38, 99.99] 87.5 [28.38, 99.99]
vertebral-column-2clases 87.34 [81.03, 92.15] 87.66 [81.41, 92.41]
vertebral-column-3clases 84.74 [78.07, 90.02] 85.06 [78.44, 90.29]
waveform 87.16 [85.79, 88.45] 86.96 [85.58, 88.26]
waveform-noise 86.8 [85.41, 88.1] 86.8 [85.41, 88.1]
wine 98.86 [93.83, 99.97] 98.3 [92.91, 99.88]
wine-quality-red 67.38 [64.0, 70.62] 65.31 [61.9, 68.61]
wine-quality-white 67.59 [65.69, 69.44] 66.14 [64.22, 68.01]
yeast 61.05 [57.44, 64.58] 61.32 [57.71, 64.84]
zoo 100.0 [92.89, 100.0] 99.0 [91.03, 100.0]

9

Training CNTK Myrtle5 Myrtle5 Myrtle5 Myrtle10-G Linear
Size CNN CNN + BN Kernel Kernel

10 15.33± 2.43 11.29± 1.48 19.60± 3.32 17.22± 2.95 19.15± 1.94 12.94± 0.74
20 18.79± 2.13 11.83± 1.34 22.82± 2.56 22.16± 1.69 21.65± 2.97 13.54± 0.69
40 21.34± 1.91 12.16± 2.20 27.53± 1.61 26.74± 1.56 27.20± 1.90 14.66± 0.60
80 25.48± 1.91 18.96± 2.04 33.58± 1.22 32.56± 1.12 34.22± 1.08 15.54± 0.61
160 30.48± 1.17 20.36± 1.68 39.96± 1.44 38.61± 1.06 41.89± 1.34 17.15± 0.64
320 36.57± 0.88 34.79± 4.60 46.96± 1.29 46.03± 0.82 50.06± 1.06 19.18± 0.71
640 42.63± 0.68 43.36± 3.80 56.03± 0.80 53.45± 0.80 57.60± 0.48 22.30± 0.57
1280 48.86± 0.68 53.27± 1.55 61.94± 0.74 60.46± 0.58 64.40± 0.48 25.64± 0.61

Table 4: Accuracy results (%) on random subsets of CIFAR-10, with standard deviations over 20
resamplings. Myrtle10-G denotes the Myrtle10-Gaussian kernel, our best-performing kernel on the
full CIFAR-10 dataset which retains its high performance in the small-data regime. The shallower
Myrtle5 CNN trained with batch normalization has similar performance to the corresponding
compositional kernel, both of which outperform the CNTK and the Myrtle5 CNN trained without
batch normalization.

10

