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Abstract

Policy optimization methods are one of the most
widely used classes of Reinforcement Learning
(RL) algorithms. Yet, so far, such methods have
been mostly analyzed from an optimization per-
spective, without addressing the problem of ex-
ploration, or by making strong assumptions on
the interaction with the environment. In this
paper we consider model-based RL in the tab-
ular finite-horizon MDP setting with unknown
transitions and bandit feedback. For this setting,
we propose an optimistic policy optimization al-
gorithm for which we establish O(vV.S2AH*K)
regret for stochastic rewards. Furthermore, we
prove O(vV/S2AH*K?/3) regret for adversarial
rewards. Interestingly, this result matches previ-
ous bounds derived for the bandit feedback case,
yet with known transitions. To the best of our
knowledge, the two results are the first sub-linear
regret bounds obtained for policy optimization
algorithms with unknown transitions and bandit
feedback.

1. Introduction

Policy Optimization (PO) is among the most widely used
methods in Reinforcement Learning (RL) (Peters & Schaal,
2006; 2008; Deisenroth & Rasmussen, 2011; Lillicrap et al.,
2015; Levine et al., 2016; Gu et al., 2017). Unlike value-
based approaches, e.g., Q-learning, these types of methods
directly optimize the policy by incrementally changing it.
Furthermore, PO methods span wide variety of popular
algorithms such as policy-gradient algorithms (Sutton et al.,
2000), natural policy gradient (Kakade, 2002), trust region
policy optimization (TRPO) (Schulman et al., 2015) and
soft actor-critic (Haarnoja et al., 2018).
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Due to their popularity, there is a rich literature that pro-
vides different types of theoretical guarantees for different
PO methods (Scherrer & Geist, 2014; Abbasi-Yadkori et al.,
2019; Agarwal et al., 2019; Liu et al., 2019; Bhandari &
Russo, 2019; Shani et al., 2019; Wei et al., 2019) for both
the approximate and tabular settings. However, previous
results, concerned with regret or PAC bounds for the RL
setting when the model is unknown and only bandit feed-
back is given, provide guarantees which critically depend
on ‘concentrability coefficients’ (Kakade & Langford, 2002;
Munos, 2003; Scherrer, 2014) or on a unichain MDP as-
sumption (Abbasi-Yadkori et al., 2019). However, these
coefficients might be infinite and are usually small only for
highly stochastic domains, while the unichain assumption is
often very restrictive.

Recently, Cai et al. (2019) established an O(v/K) regret
bound for an optimistic PO method in the case of an un-
known model and assuming full-information feedback on
adversarially chosen instantaneous costs, where K is the
number of episodes seen by the agent. In this work, we
eliminate the full-information assumption on the cost, as in
most practical settings only bandit feedback on the cost is
given, i.e., the cost is observed through interacting with the
environment. Specifically, we establish regret bounds for an
optimistic PO method in the case of an unknown model and
bandit feedback on the instantaneous cost in two regimes:

1. For stochastic cost, we establish an O(vS2AHAK)
regret bound for a PO method (Section 6).

2. For adversarially chosen cost, we establish an
O(VS2AH*K?/3) regret bound for a PO method.
The regret bound matches the O (K?/?) upper bound
obtained by Neu et al. (2010a) for PO methods which
have an access to the true model and observe bandit
adversarial cost feedback (Section 7).

2. Preliminaries

Stochastic MDPs. A finite horizon stochastic Markov
Decision Process (MDP) M is defined by a tuple
(S, A H, {pn}_,, {cn}L ), where S and A are finite
state and action spaces with cardinality S and A, respec-
tively, and H € N is the horizon of the MDP. On time



Optimistic Policy Optimization with Bandit Feedback 2

Table 1. Comparison of our bounds with several state-of-the-art bounds for policy-based RL and occupancy measure RL in tabular
finite-horizon MDPs. The time complexity of the algorithms is per episode; S and A are the sizes of the state and action sets, respectively;
H is the horizon of the MDP; K is the total number of episodes; Env. describes the environment of the algorithm: stochastic (Sto)
or adversarial (Adv); Policy based describes if an algorithm is based on policy updates or on occupancy measure updates. Costs and
model terms describes how optimism is used in the estimators: For costs, a bonus term (Bonus) or an importance sampling estimator
(IS). For transition model: a bonus term (Bonus) or a confidence interval of models (CI); The update procedure describes how the
optimization problem is solved, using a state-wise closed-form solution (Closed form), or by solving an optimization problem over
the entire state-action space (Optimization). The algorithms proposed in this paper are highlighted in gray. The other algorithms are
OMD-BP (Neu et al., 2010b), UC-O-REPS (Rosenberg & Mansour, 2019a), OPPO (Cai et al., 2019) and UOB-REPS (Jin et al., 2019).

(**) represents the different setting of the average cost criterion.

Algorithm Regret Env. Ffeeg‘t)(ik Ull\lzl(;):{n 1];(;1;21/ Costs | Model PrL(I)I; 233?6
POMD ‘ O(VS2AH*K) | Sto. ‘ v ‘ v ‘ v ‘ Bonus | Bonus | Closed form
OMDP-BP (**) O(K?/3) Adv. v X v IS - Closed form
UC-O-REPS O(VS2AHAK) | Adv. X v X - CI Optimization
OPPO O(VS3A3SHAK) | Adv. X v v - Bonus | Closed form
UOB-REPS O(VS?AH*K) | Adv. v v X IS CI | Optimization
POMD O(VS2AHAK?/3) | Adv. v v v IS CI | Closed form

step h, and state s, the agent performs an action a, tran-
sitions to the next state s’ according to a time-dependent
transition function p, (s’ | s, a), and suffers a random cost
Ch(s,a) € [0, 1] drawn i.i.d from a distribution with expec-
tation cp (s, a).

A stochastic policy 7 : S x [H] — A 4 is a mapping from
states and time-step indices to a distribution over actions,
ie, Ay = {mreRA: Y m(a) =1,7(a) > 0}. The per-
formance of a policy 7 when starting from state s at time h
is measured by its value function, which is defined as

H
Vir(s) = Elz cn (Spryan) | sp = S,7T,p‘|, 2.1
h'=h
where the expectation is with respect to the randomness of
the transition function, the cost function and the policy. The
Q-function of a policy given the state action pair (s, a) at
time-step A is defined by

H
Qr(s,a) = Elz cr(Shryan) | sn=s,an = aﬂﬁpm

h'=h

2.2)
The two satisfy the following relation:
QZ(Sa a) = Ch(sa a) +ph(' ‘ s7a)Vhﬂ+1v
Vi (s) = Q5 (s,-), mn(- | 8)), (2.3)

with pp, (-] s, )V =3"_ pr(s'| s,a)V(s') for V € R, and
(-, ) is the dot product.

An optimal policy 7* minimizes the value for all states
s and time-steps h simultaneously (Puterman, 2014), and

its corresponding optimal value is denoted by V;*(s) =
min, V;7(s), forall h € [H]. We consider an agent that re-
peatedly interacts with an MDP in a sequence of K episodes
such that the starting state at the k-th episode, s’f, is initial-
ized by a fixed state s;*. The agent does not have access
to the model, and the costs are received by bandit feed-
back, i.e., the agent only observes the costs of encountered
state-action pairs. At the beginning of the k-th episode,
the agent chooses a policy 7, and samples a trajectory
{sk,ak, Ck(sT, aﬁ)}thl by interacting with the stochas-
tic MDP using this policy, where (s¥, a}) are the state and
action at the h-th time-step of the k-th episode. The perfor-
mance of the agent for stochastic MDPs is measured by its
regret relatively to the value of the optimal policy, defined as
Regret(K') = S5 V7 (sk) — Vi (sk) for all K7 € [K],
and 7, is the policy of the agent at the k-th episode.

Adversarial MDPs. Unlike stochastic MDP, in adversar-
ial MDP, we let the cost to be determined by an adversary at
the beginning of every episode, whereas the transition func-
tion is fixed. Thus, we denote the MDP at the k-th episode
by M* = (S, A, H, {pn}i_1, {c} 1 1) Asin (2.1), (2.2),
we define the value function and @-function of a policy 7
at the k-th episode by

H
V}f,ﬂ(s) =E Z CE’(Sh'7a‘h’) | Sp = Svﬁap]7
h'=h
H
fb”r(s,a) =E Z e (spryan) | s =s,ap = a,w,p].
h'=h

*for simplicity we fix the initial state, but the results hold when
it is drawn from a fixed distribution.
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Notably, th'“ and be’ﬂ satisfy the relations in rela-
tion (2.3).

We consider an agent which repeatedly interacts with an
adversarial MDP in a sequence of K episodes. Each
episode starts from a fixed initial state, s’f = s1. Asin
the stochastic case, at the beginning of the k-th episode,
the agent chooses a policy 7, and samples a trajectory
{s’fb, a’fb, cZ (52» aZ) }2{:1 by interacting with the adversarial
MDP. In this case, the performance of the agent is mea-
sured by its regret relatively to the value of the best policy
in hindsight. The objective is to minimize Regret(K') =

max, S VET (51) — VT (sy) forall K7 € [K].

Notations and Definitions. The filtration F}, includes all
events (states, actions, and costs) until the end of the k-th
episode, including the initial state of the k + 1 episode. We
denote by nf (s, a), the number of times that the agent has
visited state-action pair (s, a) at the h-th step, and by X,
the empirical average of a random variable X . Both quanti-
ties are based on experience gathered until the end of the k'"
episode and are F}, measurable. We also define the probabil-
ity to visit the state-action pair (s, a) at the k-th episode at
time-step h by wy(s,a) = Pr(sf =s,af = a| s}, m,p).
Since 7y, is Fj_1 measurable, so is wﬁ(s, a). In what fol-
lows, we refer to wf (s, a) as the state-action occupancy
measure. Furthermore, we define the state visitation fre-
quency of a policy 7 in state s given a transition model p as
d7(s;p) = E[1{sp = s} | s1, 7, p]. By the two definitions,
it holds that wf (s, a) = d* (s;p)mk(a | s).

We use O(X ) to refer to a quantity that depends on X up
to a poly-log expression of a quantity at most polynomial
in S;A, K, H and 6~!. Similarly, < represents < up to

numerical constans or poly-log factors. We define X VY :=
max{X,Y}.

Mirror Descent. The mirror descent (MD) algorithm
(Beck & Teboulle, 2003) is a proximal convex optimiza-
tion method that minimizes a linear approximation of the
objective together with a proximity term, defined in terms
of a Bregman divergence between the old and new solution
estimates. In our analysis we choose the Bregman diver-
gence to be the Kullback-Leibler (KL) divergence, dx .. If
{ fk}le is a sequence of convex functions f : R¢ — R,
and C is a constraints set, the k-th iterate of MD is the
following:

Tyl € arg Igin{tK<ka<xk)»$ — o) +drr(z||ze)},
xre

where t is a stepsize. In our case, C' is the unit simplex
A, and thus the optimization problem has a closed-form
solution,

wy (i) exp(—tx Vi fr(Tr))
> 7x(d) exp(—tx V; fir(zr))

Vi € [d], zps1(i) =

The MD algorithm ensures Regret(K’) = Zszll flzx) —
min, f(z) € O(VK) forall K’ € [K].

3. Related Work

Approximate Policy Optimization: A large body of
work addresses the convergence properties of policy op-
timization algorithms from an optimization perspective. In
Kakade & Langford (2002), the authors analyzed the Con-
servative Policy Iteration (CPI) algorithm, an RL variant
of the Frank-Wolfe algorithm (Scherrer & Geist, 2014;
Vieillard et al., 2019), and showed it approximately con-
verges to the global optimal solution. Recently, Liu et al.
(2019) established the convergence of TRPO when neu-
ral networks are being used as the function approxima-
tors. Furthermore, Shani et al. (2019) showed that TRPO
(Schulman et al., 2015) is in fact a natural RL adaptation
of the MD algorithm, and established convergence guar-
antees. In (Agarwal et al., 2019), the authors obtained
convergence results for policy gradient based algorithms.
However, all of the aforementioned works rely on the
strong assumption of a finite concentrability coefficient, i.e.,
max, ¢, df (s;p)/d}(s;p) < oo . This assumption by-
passes the need to address exploration (Kakade & Langford,
2002), and leads to global guarantees based on the local
nature of the policy gradients (Scherrer & Geist, 2014).

Mirror Descent in Adversarial Reinforcement Learn-
ing: There are two different methodologies for using MD
updates in RL. The first and more practical one, is using
MD-like updates directly on the policy. The second is based
on optimizing over the space of state-action occupancy mea-
sures, that is, visitation frequencies for state-action pairs.
An occupancy measure represents a policy implicitly. For
convenience, previous results for regret minimization using
MD approaches are summarized in Table 1.

Following the policy optimization approach, and assuming
bandit feedback and known dynamics, Neu et al. (2010b)
(OMDP-BF) established O(K?2/3) regret for the average
reward criteria. Alternatively, by assuming full information
on the reward functions, unknown dynamics and further
assuming both the reward and transition dynamics are linear
in some d-dimensional features, Cai et al. (2019) established
O(Vd3H*K) regret for their OPPO algorithm. The tabular
case is a specific setting of the latter for d = S A.

Instead of directly optimizing the policy, Zimin & Neu
(2013) proposed optimizing over the space of state-action oc-
cupancy measures with the Relative Entropy Policy Search
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(O-REPS) algorithm. The O-REPS algorithm implicitly
learns a policy by solving an MD optimization problem on
the primal linear programming formulation of the MDP (Alt-
man, 1999; Neu et al., 2017). Considering full information
and unknown transitions, Rosenberg & Mansour (2019b)
obtained O(vV'S2AHAK) regret for their UC-O-REPS al-
gorithm. Later, Rosenberg & Mansour (2019a) extended
the algorithm to bandit feedback and obtained a regret of
O(K?3/%). Recently, by considering an optimistically biased
importance sampling estimator, Jin et al. (2019) established
O(VS2AH*K) for their UOB-REPS algorithm®. The O-
REPS variants’ updates constitute solving a convex opti-
mization problem with H.S?A variables on each episode,
instead of the closed form solution updates of the direct
policy optimization variants.

Value-based Regret Minimization in Episodic RL: As
opposed to Policy-based methods, there is an extensive lit-
erature about regret minimization in episodic MDPs using
value-based methods. The works of (Azar et al., 2017; Dann
et al., 2017; Jin et al., 2018; Zanette & Brunskill, 2019;
Efroni et al., 2019) use the optimism in face of uncertainty
principle to achieve near-optimal regret bounds. Jin et al.
(2018) also establish a lower bound of (Vv SAH3K).

4. Mirror Descent for MDPs

Algorithm 1 POMD with Known Model
Require: ¢y, 7 is the uniform policy.
fork=1,..,K do
# Policy Evaluation
for Vh =H,H —1,..,1do
for Vs,a € S x Ado
Ri(s,a) = cn(s,a) +pul- | s,a)Vi
end for
end for
# Policy Improvement
for Vs,a,h € S x Ax[H] do
k+1 5 (als) exp(—tx Qp" (s,a)
7Th-"_ (Cl|$) = > TR (al|s) e)((p(—tKhQ;:k (s,)a'))
end for
end for

The empirical success of TRPO (Schulman et al., 2015) and
SAC (Haarnoja et al., 2018) had motivated recent study of
MD-like update rules for solving MDPs (Geist et al., 2019)
when the model of the environment is known. Although not
explicitly discussed in (Geist et al., 2019), such an algorithm
can also provide guarantees — by similar proof technique —

tNote that in Jin et al. (2019), the regret of UOB-REPS is

O(VS2AH?K). However, this is due to the loop-free assumption.
To remove this assumption, one needs to multiply the number of
states by a factor of H.

for the case where the cost function is adversarially chosen
on each episode.

Policy Optimization by Mirror Descent (POMD) (see Al-
gorithm 1) is conceptually similar to the Policy Iteration
(PD) algorithm (Puterman, 2014). It alternates between two
stages: (i) policy evaluation, and (ii) policy improvement.
Furthermore, much alike PI, POMD updates its policy on
the entire state space, given the evaluated ()-function. How-
ever, as oppose to PI, the policy improvement stage is ‘soft’.
Instead of updating according to the greedy policy, the algo-
rithm applies soft update that keeps the next policy ‘close’
to the current one due to the KL-divergence term.

Similarly to standard analysis of the MD algorithm, Geist
et al. (2019) established O(v/K) bound on the regret of Al-
gorithm 1. In the next sections, we apply the same approach
to problems with unknown model and bandit feedback.

5. Extended Value Difference Lemma

The analysis of both stochastic and adversarial cases is
built upon a central lemma which we now review. The
lemma is a variant of (Cai et al., 2019)[Lemma 4.2], which
generalizes classical value difference lemmas. Rewriting
it in the following form, enables us to establish our results
(proof in Appendix D).

Lemma 1 (Extended Value Difference). Let w, 7' be
two policies, and M = (S, A, {pn}t_,, {en}i_)) and
M = (S, A AP {3 ) be two MDPs.  Let

Z’M(s,a) be an approximation of the Q-function of
policy m on the MDP M for all h,s,a, and let

VM (s) = < M (s, ), n (- | 3)>. Then,

Vi M(s1) = VM (s1) =

H

ZEKQZ’M(%')’M(' | sn) — (- | Sh)> | SlaW',P'}Jr
h=1

H

ZE [QZ7M(Sh7ah)_C/}L(Sh7 ah) _p;b('|sha ah)v}::»/\l/[ | Slaﬁl7p/:|
h=1

where Vi M is the value function of 7' in the MDP M.

This lemma generalizes existing value difference lem-
mas. For example, in (Kearns & Singh, 2002; Dann
et al., 2017) the term V;"™(s)— Vfr’M/(s) is ana-
lyzed, whereas in (Kakade & Langford, 2002) the term
ViM(s) — Vfr/’M(s) is analyzed. In next sections, we
will demonstrate how Lemma 1 results in a simple analysis
of the POMD algorithm. Importantly, the resulting regret
bounds do not depend on concentrability coefficients (see
Section 3) nor on any other structural assumptions.
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6. Policy Optimization in Stochastic MDPs

We are now ready to analyze the optimistic version of
POMD for stochastic environments (see Algorithm 2). In-
stead of using the known model as in POMD, in Algorithm 2
we use the empirical model to estimate the ()-function of
an empirical optimistic MDP, with the empirical transition
function p and an optimistic cost function ¢. The empiri-
cal transition function p and empirical cost function ¢ are
computed by averaging the observed transitions and costs,
respectively, that is,

Zk’ 1 (Sh =S ah aasﬁﬂzsl)
Zk’ 1 (sh —SGZ/_G)V1
ko Cksa]l sk:s,ak:a

D k=1 h h
Zk’ 1 (h_saﬁ'_a)\/l

pi(s' | s,0) =

cﬁ(s a) =

)

/
for every s, a, s’, h, k.

Algorithm 2 Optimistic POMD for Stochastic MDPs
Require: ¢y, 7 is the uniform policy.
fork=1,..., K do
Rollout a trajectory by acting 7
# Policy Evaluation
VseS, Vi (s)=0
for Vh =H,..,1do
for Vs,a € S x Ado
e 1(5 a) =&y (s,a) — b~ !(s,a), Eq. (6.1)
Qh(sa a) _Clli 1(57 a) +ﬁ271('|57 a)th-&-l

QY (s,a) = maX{Q’fL(s, a), 0}

end for
for Vs € S do
th(s) = <QZ(S,-),7TZ(' | S)>
end for
end for

# Policy Improvement
for Vh,s,a € [H] x S x Ado
k41 w};(a\s)exp —tKQ,kl'(s,a)
e (als) = =y eip(,t,(@g@,)a/))
end for
Update counters and empirical model, ny, ck p*
end for

The optimistic cost function ¢ is obtained by adding a
bonus term which drives the algorithm to explore, i.e.,
& L(s,a) = ¢ (s,a) — by (s, a), and we set

bﬁfl(s,a) = b;‘;’kfl(s, a) + bﬁ’kil(s, a). 6.1)

The two bonus terms compensate on the lack of knowledge

of the true costs and transition model, and are

. 1
bF L (s,0) = 0| ——— |,
ny (s, a)
B (s,a) = O Vs (6.2)
ny (s, a)

The following theorem bounds the regret of Algorithm 2. A
full proof is found in Appendix B.2.

Theorem 1. For any K' € [K]|, setting tx =
O(H_lK_l/Q) the regret of Algorithm 2 is bounded by

Regret(K') < O(\/m)

Proof Sketch. We start by decomposing the regret into three
terms according to Lemma 1, and then bound each term
separately to get our final regret bound. For any T,

Regret(K ZV{Tk s) — VT (sh)
K/

*vark st) = Vi (st JFZVl st) — Vi (sY)
k=1

V1 (1)

_ZV

(#)
+Z]E[<Qlfi(5h’ ')aﬂ-ﬁ(' | sh) - Trh(' | Sh)> ‘ Slvﬂ-vp]

k,h

(49)

+ZE Q% (shan) —ch(sn.an) —pa-|sn,an) Vicyy | s1.7.p)]
kh

(i)

Term (i): Bias of V*. Term (i) is the bias between the
estimated and true value of 75, V* and V™, respectively.
Applying Lemma 1, while using E[X (sp, az) | 81,7, p] =
E[X (s}, af) | Fi—1] for any Fj_;-measurable function
X € R%*4, we bound Term (i) by

ZE Ac’,j ! s

+ ZE[bz”f‘%si,a’z) U sk ah) | Fea
k,h

—|—H||Ap |sh,ah H | Fr— 1]

Here Ac}!(s,a) = cp(s,a) — &) '(s,a) and Ap) (- |
s,a) = pp(- | s,a) — (- | s,a), are the differences
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between the true cost and transition model to the empirical
cost and transition model. Applying Hoeffding’s bound and
L, deviation bound (Weissman et al., 2003) we get that
w.h.p. for any s, a

~ 1
Acp(s,a) <O = b (s,a),
ny, (s, )
~ VS
[Apn(- | s,a)ll; <O W=y hn b (s, a).
h (S,Cl)
Thus, w.h.p., we get
K' H
. HVS
@S Y E|l—————=| Fien |,
k=1 h=1 nk=t(sk ak)

which can be bounded by O (\/ S2AH*K ) using standard
techniques (e.g., Dann et al. (2017)).

Term (ii): OMD Analysis. Term (ii) is the linear approx-
imation used in MD optimization procedure. We bound it
using an analysis of OMD. By applying usual OMD analysis
(see Lemma 16) we have that for any policy 7 and s, h,

K

D AQkC 1 s),mh(- | s) = mn(- | )

ZZWM

k=1 a

1og A

Qh s a))

We plug this back to Term (ii) and use the fact that 0 <
Q¥ (s,a) < H, to obtain

Term (ii) =

K/
= ZE Z Qh Shy ) 7Tﬁ("sh) _7Th('|5h,)> ‘ §1,T, P
k=1

h=1
< HlogA n tKHSK.
B tx 2

By choosing tx = 2log A/(H?K), we obtain

Term (i) < +/2H*K log A.

Term (iii): Optimism. We choose our exploration
bonuses in Eq. (6.2) such that Term (iii) is non-positive.
Specifically, we choose the bonus such that Q¥ (s,a) —
cn(s,a) — p(-|s,a)ViF ;< 0 for any s, a, which implies
that Term(iii) < 0. O

Remark 6.1. The choice of the bonus term bﬁ’k(s, a) is
smaller than in (Cai et al., 2019) by a factor of \/'S. This

translates to an improved regret bound by this factor, al-
though (Cai et al., 2019) assumes full-information feedback
on the cost function.

Remark 6.2 (Bonus vs. Optimistic Model). Instead of us-
ing the additive exploration bonus bP? — which compensate
on the lack of knowledge of transition model — one can use
an optimistic model approach, as in UCRL2 (Jaksch et al.,
2010). Following analogous analysis as of Theorem 1 one
can establish the same guarantee O(VS2AH*K). How-
ever, the additive bonus approach results in an algorithm
with reduced computational cost.

Remark 6.3 (Optimism of POMD). Unlike value-based al-
gorithms (e.g., Jaksch et al. (2010)) V'*, the value-function
by which POMD improves upon, is not necessarily opti-
mistic relatively to V'*. Instead, it is optimistic relatively to
the value of Ty, i.e., VE <V,

7. Policy Optimization in Adversarial MDPs

Algorithm 3 Optimistic POMD for Adversarial MDPs
Require: tx, ~y, 7 is the uniform policy.
fork=1,..., K do
Rollout a trajectory by acting 7y
for all h, s do
Compute u¥ (s) by 74, PH~1, Eq. (7.1)
end for
# Policy Evaluation
VseS, Vi (s)=0
for YVh =H,..,1do
for Vs,a € S x Ado

cﬁ(s,a)]l{s:sh a= ah}

k
¢h(s,0) = Sl
ph('|8,a) € arg min h('|8,CL)th_‘_1

pr(|s,a)€PE T (s,0)
QL (s,a) = ¢ (s, a) + Pl (-]s,a) Vi,

end for
for Vs € S do
ViE(s) = (QE (s, ).l (- | )
end for
end for

# Policy Improvement

for Vh,s,a € [H] x S x Ado

k41 ﬂh(a\s) cxp(—tKQf(s,a))
7Th (Cl| ) Z ’ﬂ—h( ’\s)exp(—tKQE(S,a’))
end for
Update counters and model, ng, ]5’“
end for

In this section, we turn to analyze an optimistic version of
POMD for adversarial environments (Algorithm 3). Simi-
larly to the stochastic case, Algorithm 3 follows the POMD
scheme, and alternates between policy evaluation, and, soft
policy improvement, based on MD-like updates.
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Unlike POMD for stochastic environments, the policy eval-
uation stage of Algorithm 3 uses different estimates of the
instantaneous cost and model. The instantaneous cost is
evaluated by a biased importance-sampling estimator, origi-
nally suggested by (Neu, 2015), and recently generalized to
adversarial RL settings by (Jin et al., 2019),

ck(s 0) = Z(s,a)]l{s:s’fl,a:ai}
" uf(s)mk(a] s) +

“(s5D)-

b

where u} (s) = max, dpk 7.1
p

Here P*~1 is the set of transition functions obtained by
using confidence intervals around the empirical model (see
Appendix C.1.2).

In Algorithm 3 of Jin et al. (2019), the authors suggest
a computationally efficient dynamic programming based
approach for calculating 5 (s) for all h,s. The motiva-
tion for such an estimate lies in the EXP3 algorithm (Auer

et al., 2002) for adversarial bandits, which uses an unbi-

ased importance-sampling estimator ¢(a) = %

Later, Neu (2015) showed that an optimistically biased esti-
R ck (a)ﬂ{a:ak} . .
mator ¢(a) = A= that motivates exploration can
also be used in this setting. Generalizing the latter estimator

to the adversarial RL setting requires to use the estimator

En (;k(zﬂi; ZZIZ) ar} . However, since the model
is unknown, Jin et al. (2019) uses uﬁj(s) as an upper bound

on d;* (s; p) which further drives exploration.

eh(s,a) =

Instead of using the empirical model and subtracting a bonus
term, Algorithm 3 uses an optimistic model (Jaksch et al.,
2010) for the policy evaluation stage. The model by which
Q" is evaluated is the one which results in the smallest loss
among possible models,
(s a) € arg min
Pn(]s,0)EPF T (s,a)

pr(ls,a)Viiiy.

The solution to this optimization problem can be computed
efficiently (see, e.g., Jaksch et al. (2010)).

Remark 7.1 (Optimistic Model vs. Additive Exploration
Bonus). Replacing the optimistic model with additive
bonuses, we were able to establish O(K 3/ 4) regret bound.
It is not clear whether this approach can attain a O(K 2/3)
regret bound, as achieved when using an optimistic model.

The following theorem bounds the regret of Algorithm 3. A
full proof is found in Appendix C.2.

Theorem 2. For any K' € [K|, setting v =
O(A=Y2K=1/3) and tx = O(H'K~2/3), the regret of
Algorithm 3 is bounded by

Regret(K') < O(H2SVA(K?/? + SAK?)).

Central to the analysis are the following claims, formally
established in Appendix C. The first is proved in (Jin et al.,
2019)[Lemma 11], based upon (Neu, 2015)[Lemma 1].

Claim 1 (Jin et al. (2019), Lemma 11). Let o!, .., " be
a sequence of Fy,_1 measurable functions such that o* €
[0,27]5%A. Then, for any h and K' € [K], with high prob-
ability, Y1y 3, o oF(s,a) (¢f(s,a) — cf(s,a)) < O(1).

Claim 2. Let o, o' be a sequence of Fi_1 mea-

surable functions such that o* € [0,2y].  For

any s,h and K' € [K], with high probability,
K’ ™ A

Do (V,f(s) — V" (s)) < O(H).

Claim 2 (see Lemma 7 in the appendix) allows us to derive
improved upper bound on ZkK:/I V¥ (s) which is crucial to
derive the O(K?/3) regret bound. Naively, we can bound
V¥ (s) by recalling it is a value function of an MDP with
costs bounded by 1/+. This leads to the naive bound

Z%

However, a tighter upper bound can be obtained by applying
Claim 2 with o = 2+ for all k € [K']. We have that

K’
D Vits <Zwk
k=1

where in the last relation we used the fact that for any s, h,
V,7*(s) < H. In the following proof sketch we apply the
later upper bound and demonstrate its importance.

) < K'H/~. (7.2)

H
+— <HK’+; (7.3)

Proof Sketch. We decompose the regret as in Theorem 1 to
(i) Bias term, (ii) OMD term, and (iii) Optimism term. We
bound both the Bias and Optimism terms in the appendix
while relying on both Claim 1 and Claim 2.

Term (ii): OMD Analysis. Similarly to the stochastic
case, we utilize the usual OMD analysis (Lemma 16), which
ensures that for any policy 7 and s, h,

K/
P AABEASDEEAGE)
k=1
logA t
Kzzﬁhﬂﬂ )(Q(s,a))?
k=1 a
10 A t H
< g 2 ZZﬂh(ﬂthsa)
k=1 a
=V} (s)
SlogA tKH(HK’ H)
Ik 2y Y
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where the second relation holds since 0 < Q’fL(S7 a) < %,
and the third relation holds by applying Eq. (7.3). Plugging
this in Term (ii) we get

Term (ii) =
KI

H
= STE| S @k (sn. ), mE Clsn) — wallsn)) | s1,7m,p

h=1 k=1

Hlog A txH? H
< =88 L KT (HK 4+ 2,
ik 2y v

8. Discussion

On-policy vs. Off-policy. There are two prevalent ap-
proaches for policy optimization in practice, on-policy and
off-policy. On-policy algorithms, e.g., TRPO (Schulman
et al., 2015), update the policy based on data gathered fol-
lowing the current policy. This results in updating the policy
only in observed states. However, in terms of theoretical
guarantees, the convergence analysis of this approach re-
quires the strong assumption of finite concentrability coeffi-
cient (Kakade & Langford, 2002; Scherrer & Geist, 2014;
Agarwal et al., 2019; Liu et al., 2019; Shani et al., 2019).
The assumption arises from the need to acquire global guar-
antees from the local nature of policy gradients.

The approach taken in this work, is fundamentally different
than such on-policy approaches. In each episode, instead
of updating the policy only at visited states, the policy is
updated over the entire state space, by using all the historical
data (in the form of the empirical model). Thus, the analyzed
approach bears resemblance to off-policy algorithms, e.g.,
SAC (Haarnoja et al., 2018). There, the authors i) estimate
the @Q-function of the current policy by sampling from a
buffer, which contains historical data, and ii) apply an MD-
like policy update to states sampled from the buffer.

The uniform updates of policy-based methods analyzed in
this work are in stark contrast to value-based algorithms,
such as in (Jin et al., 2018; Efroni et al., 2019), where
only observed states are updated. It remains an important
open question, whether such updates could also be imple-
mented in a provable policy based algorithm. In the case
of stochastic POMD, this may be achieved by using opti-
mistic Q-function estimates, instead of estimating the model
with UCB-bonus, similarly to (Jin et al., 2019). There, the
authors keep the estimates optimistic with respect to the
optimal @Q-function, Q*. However, in approximate policy
optimization, the policy improvement is done with respect
to Q™*, as described in Algorithm 1. Therefore, differently
than in (Jin et al., 2019), such off-policy version would
require learning an optimistic Q™ estimator, instead of Q*.

Policy vs. State-Action Occupancy Optimization. In
our work, we proposed algorithms which directly optimize
the policy. In this scenario, the policy is updated indepen-
dently at each time step h and state s. That is, an optimiza-
tion problem is solved over the action space in each h, s.
Therefore, this method requires solving H S optimization
problems of size A, where each has a closed form solution
in the tabular setting.

Alternatively, algorithms based on the O-REPS framework
(Zimin & Neu, 2013), follow a different approach and op-
timize over the state-action occupancy measures instead
of directly on policies. In the case of unknown transition
model, taking such an approach requires solving a con-
strained convex optimization problem, later relaxed to a
convex optimization problem with only non-negativity con-
straints (Rosenberg & Mansour, 2019b) of size HS? A, in
each episode. Unlike the policy optimization approach, this
optimization problem does not have a closed form solution.
Thus, the computational cost of optimizing over the state-
action occupancy measures is much worse than the policy
optimization one.

Another significant shortcoming in applying the O-REPS
framework is the difficulty to scale it to the function ap-
proximation setting. Specifically, in case the state-action
occupancy measure is represented by a non-linear function,
it is unclear how to solve the constrained optimization prob-
lem as defined in (Rosenberg & Mansour, 2019b). Differ-
ently than the O-REPS framework, the policy optimization
approach scales naturally to the function approximation set-
ting, e.g., Haarnoja et al. (2018). In this important aspect,
policy optimization is preferable.

Interestingly, our work establishes O(\/R ) regret when
using POMD for the stochastic case, suggesting that policy-
based methods are sufficient for solving stochastic MDPs,
and thus preferable, compared to the O-REPS framework,
as they also enjoy better computational properties. However,
in the adversarial case, Jin et al. (2019) recently established
O(VK) regret for the UOB-REPS algorithm, where the
adversarial variant of POMD only obtains O (K?/3) regret.
Hence, it is of importance to understand whether it is possi-
ble to bridge this gap between policy and occupancy mea-
sure based methods, or alternatively to show that this gap is
in fact a true drawback of policy optimization methods in
the adversarial case.
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