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Abstract

We investigate the combination of actor-critic re-
inforcement learning algorithms with a uniform
large-scale experience replay and propose solu-
tions for two ensuing challenges: (a) efficient
actor-critic learning with experience replay (b)
the stability of off-policy learning where agents
learn from other agents behaviour. To this end
we analyze the bias-variance tradeoffs in V-trace,
a form of importance sampling for actor-critic
methods. Based on our analysis, we then argue
for mixing experience sampled from replay with
on-policy experience, and propose a new trust
region scheme that scales effectively to data dis-
tributions where V-trace becomes unstable. We
provide extensive empirical validation of the pro-
posed solutions on DMLab-30 and further show
the benefits of this setup in two training regimes
for Atari: (1) a single agent is trained up until
200M environment frames per game (2) a pop-
ulation of agents is trained up until 200M envi-
ronment frames each and may share experience.
We demonstrate state-of-the-art data efficiency
among model-free agents in both regimes.

1. Introduction

Value-based and actor-critic policy gradient methods are the
two leading model-free techniques of constructing general
and scalable reinforcement learning agents (Sutton et al.,
2018). Both have been combined with non-linear function
approximation (Tesauro, 1995; Williams, 1992), and have
achieved remarkable successes on multiple challenging do-
mains; yet, these algorithms still require large amounts of
data to determine good policies for any new environment.
To improve data efficiency, experience replay agents store
experience in a memory buffer (replay) (Lin, 1992), and
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Table 1. Comparison of model-free state-of-the-art agents on 57
Atari games in the standard regime: Here no experience is shared
between agents (differently from Figure 1 and Table 2). One
agent is trained per game for up until 200M environment steps
per game. We observe that our proposed LASER (LArge Scale
Experience Replay) agent achieves a substantially higher score
than all model-free prior art.

AGENTS (TRAINED IN STANDARD ATARI-57 MEDIAN

REGIME) AT 200M

LASER (OURS) 431%
META-GRADIENT (XU ET AL., 2018) 288%
RAINBOW (HESSEL ET AL., 2017) 223%
IQN (DABNEY ET AL., 2018) 218%
REACTOR (GRUSLYS ET AL., 2018) 187%
DQN (MNIH ET AL., 2013) 79%

reuse it multiple times to perform reinforcement learning
updates (Riedmiller, 2005). Replay is often combined with
the value-based Q-learning (Mnih et al., 2015), as it is an off-
policy algorithm by construction, and can perform well even
if the sampling distribution from replay is not aligned with
the latest agent’s policy. Combining experience replay with
actor-critic algorithms can be harder due to their on-policy
nature. Hence, most established actor-critic algorithms with
replay such as (Wang et al., 2017; Gruslys et al., 2018;
Haarnoja et al., 2018) employ and maintain Q-functions to
learn from the replayed off-policy experience.

In this paper, we demonstrate that off-policy actor-critic
learning with experience replay can be achieved without
surrogate Q-function approximators using V-trace by em-
ploying the following approaches:

e Off-policy replay experience needs to be mixed with a
proportion of on-policy experience. We experimentally
observe severe degradation in performance if this is
missed (Figure 2) and theoretically that the V-trace
policy gradient is otherwise not guaranteed to converge
to a locally optimal solution.

e A trust region scheme (Conn et al., 2000; Schulman
etal., 2015; 2017) can mitigate bias and enable efficient
learning in a strongly off-policy regime, where distinct
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agents share experience through a commonly shared
replay module. Sharing experience permits the agents
to benefit from parallel exploration (Kretchmar, 2002)
(Figures 1 and 3). Here we use a form of rejection
sampling to reject transitions unsuitable for importance
sampling.

Our paper is structured as follows: In Section 2 we revisit
pure importance sampling for actor-critic agents (Degris
et al., 2012) and V-trace, which is notable for allowing to
trade off bias and variance in its estimates. We recall that
variance reduction is necessary (Appendix, Figure 1 left)
but is biased in V-trace. We derive proposition 2 stating
that off-policy V-trace is not guaranteed to converge to a
locally optimal solution — not even in an idealized scenario
when provided with the optimal value function. Through
theoretical analysis (Section 3) and experimental validation
(Figure 2) we determine that mixing on-policy experience
into experience replay alleviates the problem. Furthermore
we propose a trust region scheme (Conn et al., 2000; Schul-
man et al., 2015; 2017) in Section 4 that enables efficient
learning even in a strongly off-policy regime, where distinct
agents share the experience replay module and learn from
each others experience. We define the trust region in policy
space and prove that the resulting estimator is correct (i.e.
estimates the return more accurately).

As aresult, we present state-of-the-art data efficiency in Sec-
tion 5 in terms of median human normalized performance
across 57 Atari games (Bellemare et al., 2013), as well as
improved learning efficiency on DMLab30 (Beattie et al.,
2016) (Tables 1 and 2).

2. The Issue with Importance Sampling: Bias
and Variance in V-trace

V-trace importance sampling is a popular off-policy correc-
tion for actor-critic agents (Espeholt et al., 2018). In this
section we revisit how V-trace controls the (potentially infi-
nite) variance that arises from naive importance sampling.
We note that this comes at the cost of a biased estimate (see
Proposition 1) and creates a failure mode (see Proposition
2) which makes the policy gradient biased. We propose
solutions for said issues in Sections 3 and 4.

2.1. Reinforcement Learning

We follow the notation of Sutton et al. (2018) where an
agent interacts with its environment, to collect rewards.
On each discrete time-step ¢, the agent selects an action
as; it receives in return a reward r; and an observation
041, encoding a partial view of the environment’s state
s¢+1- In the fully observable case, the RL problem is for-
malized as a Markov Decision Process (Bellman, 1957): a
tuple (S, A, p,~), where S, A denotes finite sets of states
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Figure 1. Sharing experience between agents leads to more effi-
cient hyper-parameter sweeps on 57 Atari games. Note that the
only previous agent “R2D2” that achieved a score beyond 400%
required more than 1 x 3, 000 (compared to our 9 x 60) million en-
vironment steps (see Kapturowski et al. (2019), page 14, Figure 9).
We present the pointwise best agent from hyper-parameter sweeps
with and without experience replay (shared and not shared). Each
sweep contains 9 agents with different learning rate and entropy
cost combinations. Replay experiment were repeated twice and
ran for 50M steps. To report scores at 200M we ran the baseline
and one shared experience replay agent for 200M steps.

and actions, p models rewards and state transitions (so that
re, St41 ~ P(S¢,az)), and -y is a fixed discount factor. A
policy is a mapping 7(a|s) from states to action probabili-
ties. The agent seeks an optimal policy 7* that maximizes
the value, defined as the expectation of the cumulative dis-
counted returns Gy =Y oo V*ritk.

Off-policy learning is the problem of finding, or evaluating,
a policy 7 from data generated by a different policy u. This
arises in several settings. Experience replay (Lin, 1992)
mixes data from multiple iterations of policy improvement.
In large-scale distributed RL, decoupling acting from learn-
ing (Nair et al., 2015; Horgan et al., 2018; Espeholt et al.,
2018) causes the experience to lag behind the latest agent
policy. Finally, it is often useful to learn multiple general
value functions (Sutton et al., 2011; Mankowitz et al., 2018;
Lample & Chaplot, 2016; Mirowski et al., 2017; Jaderberg
et al., 2017b) or options (Sutton et al., 1999; Bacon et al.,
2017) from a single stream of experience.

2.2. Naive Importance Sampling

On-policy n-step bootstraps give more accurate value esti-
mates in expectation with increasing n (Sutton et al., 2018).
Unfortunately n must be chosen suitably as the estimates
variance increases with n too. It is desirable to obtain bene-
fits akin to n-step returns in the off-policy case. To this end
multi-step importance sampling (Kahn, 1955) can be used.
This however adds another source of (potentially infinite
(Sutton et al., 2018)) variance to the estimate.
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Table 2. Comparison of model-free agents that were trained with population training schemes; ranging from simple sweeps to population
based training (Jaderberg et al., 2017a). We present our proposed LASER (LArge Scale Experience Replay) agent in comparison to
state-of-the-art agents that were also trained for 9 x 200M (per Atari game) or 10 x 10B (jointly on all DMLab-30 games combined)
environment steps. Results are obtained from Hessel et al. (2019). As a baseline we consider an implementation of a pixel control agent
from Hessel et al. (2019). Extending our approach to the concurrent work by Song et al. (2020) remains for future work.

ATARI DMLAB-30
AGENTS (TRAINED JOINTLY IN POPULATIONS) MEDIAN MEDIAN MEAN-CAPPED
POPART-IMPALA+PIXELCONTROL (BASELINE) - 85.5% 77.6%
LASER: EXPERIENCE REPLAY 233% AT 9 x 50M 95.4% 79.6%
LASER: SHARED EXPERIENCE REPLAY 370% AT 9 x 50M 97.2% 81.7%

448% AT 9 x 200M
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Figure 2. Left: Learning entirely off-policy from experience replay fails (red), while combining on-policy data with experience replay
leads to improved data efficiency: We present sweeps on DMLab-30 with experience replays of 10M capacity. A ratio of 87.5% implies
that there are 7 replayed transitions in the batch for each online transition. Furthermore we consider an agent identical to “LASER 87.5%
replay” which however draws all samples from replay. Its batch thus does not contain any online data and we observe a significant
performance decrease (see Proposition 2 and 3). The shading represents the point-wise best and worst replica among 3 repetitions. The
solid line is the mean. Right: The effect of capacity in experience replay with 87.5% replay data per batch on sweeps on DMLab-30.

Data-efficiency improves with larger capacity.

Importance sampling can estimate the expected return V'™
from trajectories sampled from p # , as long as p is non-
zero whereever 7 is. We employ a previously estimated
value function V' as a bootstrap to estimate expected returns.
Following (Degris et al., 2012), a multi-step formulation of
the expected return is

K—1
V(st) + Z v (H ﬂ-t—H)éH—kV
k=0

where E,, denotes the expectation under policy p up to
an episode termination, 6;V = 7, + YV (s441) — V(s¢)
is the temporal difference error in consecutive states S;1,
st, and m = m(a¢|s¢). Importance sampling estimates
can have high variance. Tree Backup (Precup et al., 2000),
and Q(\) (Sutton et al., 2014) address this, but reduce the
number of steps before bootstrapping even when this is
undesirable (as in the on-policy case). RETRACE (Munos
et al., 2016) makes use of full returns in the on-policy case,
but it introduces a zero-mean random variable at each step,

V”(st) (1)

adding variance to empirical estimates in both on- and off-
policy cases.

2.3. Bias-Variance Analysis & Failure Mode of V-trace
Importance Sampling

V-trace (Espeholt et al., 2018) reduces the variance of impor-
tance sampling by trading off variance for a biased estimate
of the return — resulting in a failure mode (see Proposition 2).
It uses clipped importance sampling ratios to approximate
V7™ by

K—1 k—1
V7 (se) = V(se) + Z 0l (H Ci)ﬁt5t+kv
k=0 i=0

where V is a learned state value estimate used to boot-
strap, and p; = min [m;/pe, pl, ¢¢ = min [my/pe, €| are
the clipped importance ratios. Note that, differently from
RETRACE, V-trace fully recovers the Monte Carlo return
when on policy. It similarly reweights the policy gradi-
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Figure 3. Left: Naively sharing experience between distinct agents in a hyper-parameter sweep fails (green) and is worse than the
no-replay baseline (blue). The proposed trust region estimator mitigates the issue (red). Right: Combining population based training with
trust region estimation improves performance further. All replay experiments use a capacity of 10 million observations and 87.5% replay

data per batch.

ent as: VV7(s) & E, [peV (log m) (re + YV (s141))]

Note that VV ™ (s;) recovers the naively importance sam-
pled policy gradient for p — oo. In the literature, it is
common to subtract a baseline from the action-value esti-
mate 7; + YV ™ (s441) to reduce variance (Williams, 1992),
omitted here for simplicity. The constants p > ¢ > 1 (typ-
ically chosen p = ¢ = 1) define the level of clipping, and
improve stability by ensuring a bounded variance. For any
given p, the bias introduced by V-trace in the value and pol-
icy gradient estimates increases with the difference between
m and . We analyze this in the following propositions.

Proposition 1. The V-trace value estimate V'™ is biased: It
does not match the expected return of m but the return of a
related implied policy 7 defined by equation 2 that depends
on the behaviour policy ji:

o min[pulale), w(ala)
Tulale) = i bl o)

Proof. See Espeholt et al. (2018). O]

Note that the biased policy 7,, can be very different from .
Hence the V-trace value estimate V™ may be very different
from V™ as well. As an illustrative example, consider two
policies over a set of two actions, e.g. “left” and “right”
represented as a tuple of probabilities. Let us investigate
w=(¢,1—¢)and w = (1 — ¢, ¢) defined for any suitably
small ¢ < 1. Observe that 7 and & share no trajectories
(state-action sequences) in the limit as ¢ — 0 and they get
more focused on one action. A practical example of this
could be two policies, one almost always taking a left turn
and one always taking the right. Given sufficient data of
either policy it is possible to estimate the value of the other
e.g. with naive importance sampling. However observe that
V-trace with p = 1 will always estimate a biased value - even

given infinite data. Observe that min [u(a|z), 7(a|z)] =
min [¢, 1 — ¢] for both actions. Thus 7, is uniform rather
than resembling 7 the policy. The V-trace estimate V7
would thus compute the average value of "left" and "right" —
poorly representing the true V™.

Proposition 2. The V-trace policy gradient is biased: given
the the optimal value function V'* the V-trace policy gradient
does not converge to a locally optimal 7 for all off-policy
behaviour distributions |i.

Proof. See Appendix Section 3.

3. Mixing On- and Off-Policy Experience
(Mitigation I)

In Proposition 2 we presented a failure mode in V-trace
where the variance reduction biases the value estimate and
policy gradient. In this section we show that mixing replay
data with a suitable a-fraction of on-policy data can pre-
vent the otherwise severe degradation in performance (see
Figure 2).

3.1. The Problem

Observe that V-trace computes biased Q-estimates
Q¥ # @ resulting in a wrong local policy gradient:
VEw(a\s) [Qw(sa a)] 7£ VETr(a\s) [Q(’S?a)]' In equation 4
in the appendix we show that Q“(s,a) = Q(s, a)w(s,a)

where w(s, a) = min {1,ﬁﬁg‘;‘|3} <1

The question of how biased the resulting policy will be
depends on whether the distortion changes the argmax of
the Q-function. Little distortions that do not change the
argmax will result in the same local fixpoint of the policy
improvement. The policy will continue to select the optimal
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action and it will not be biased at this state. The policy
will however be biased if the Q-function is distorted too
much. For example considering an optimal Q and w(s, a)
that swaps the argmax for the 2nd largest value, the regret
will then be the difference between the maximum and the
2nd largest value. Intuitively speaking the more distorted
the Q*, the larger will be the regret compared to the optimal
policy.

More precisely, the regret of learning a policy that
maximizes the distorted Q% at state s is: R(s) =
Q(s,a") — Q(S, Gactual) = maxy Q(s,b) — Q(S, actuar)
where a* = argmax,(Q,b) is the optimal action accord-
ing to the real @ and aactual = argmax[Q¥(s,a)] =
argmax|[Q (s, a)w(s, a)], is the optimal action according
to the distorted Q“. For generality, we denote A* as the
set of best actions - covering the case with multiple with
identical optimal Q-values.

3.2. Mitigating the Problem

Proposition 3 provides a mitigation: Clearly the V-trace
policy gradient will converge to the same solution as the
true on-policy gradient if the argmax of the Q-function is
preserved at all states in a tabular setting. We show that
this can be achieved by mixing a sufficient proportion « of
on-policy experience into the computation.

We show in equation 7 in the appendix that choosing o such
that

o Q“(5,b) — Q“(s,a")] d"(s)
T—a ~ 0ga | Q(s,a®) — Q(s,b) | dn(s)

for Q¥ (s,a) = Q(s,a)w(s,a) will result in a policy that
correctly chooses the best action at state s. Note that 12— —
ooas o — 1.

Intuitively: the larger the action value gap of the
real Q-function Q(s,a*) — Q(s,b) the lower the right
hand side and the less on-policy data is required. If
maxp[(Q(s, b)w(s, b) — Q(s,a*)w(s, a*)] is negative, then
o may be as small as zero hence enabling even pure off-
policy learning. Finally note that the right hand side de-
creases due to d"(s)/d™(s) if 7 visits the state s more of-
ten than p. All of those conditions can be computed and
checked if an accurate Q-function and state distribution is
accessible. How to use imperfect Q-function estimates to
adaptively choose such an a remain a question for future
research.

We provide experimental evidence for these results with
function approximators in the 3-dimensional simulated en-
vironment DMLab-30 with various o > 1/8 in Section 5.3
and Figure 2. We observe that « = 1/8 is sufficient to
facilitate stable learning. Furthermore it results in better
data-efficiency than pure on-policy learning as it utilizes
off-policy replay experience.

Proposition 3. Mixing on-policy data into the V-
trace policy gradient with the ratio « reduces the
bias by providing a regularization to the implied
state-action values. In the general function approx-
imation case it changes the off-policy V-trace pol-
icy gradient from ) _d"(s)E [(Q(s,a)Vlogn(als)] to
> Ex [Q%(s,a)Viogm(als)] where Q% = Qd™(s)a +
Q¥ d*(s)(1 — «) is a regularized state-action estimate and
d™, d" are the state distributions for m and p. Note that
there exists a < 1 such that Q® has the same argmax (i.e.
best action) as Q.

Proof. See Appendix Section 3.

Mixing online data with replay data has also been argued for
by (Zhang & Sutton, 2017), as a heuristic way of reducing
the sensitivity of reinforcement learning algorithms to the
size of the replay memory. Proposition 3 grounds this in the
theoretical properties of V-trace.

4. Trust Region Scheme for Off-Policy V-trace

Recall that in off-policy learning we have the choice be-
tween naive importance sampling (high-variance), V-trace
(limited variance + bias) and no-correction (large bias). In
this section we introduce an approach to limit the bias in V-
trace importance sampling by rejecting high-bias transitions.
In Section 5.4 and Figure 3 we apply this to off-policy ex-
perience from concurrently learning agents, thus enriching
the agents replay with relevant (low variance + low bias)
transitions from other agents behaviour.

To this end we introduce a behaviour relevance function
that classifies behaviour as relevant. We then define a trust-
region estimator that computes expectations (such as ex-
pected returns, or the policy gradient) only on relevant tran-
sitions. In proposition 4 and 5 we show that this trust region
estimator indeed computes new state-value estimates that
improve over the current value function. While our anal-
ysis and proof is general we propose a suitable behaviour
relevance function in Section 4.3 that employs the Kullback
Leibler divergence between target policy n and implied
policy 7,: KL (7 (+|s)||7.(:|s)). We provide experimental
validation in Figure 3.

4.1. Behaviour Relevance Functions

In off-policy learning we often consider a family of be-
haviour policies either indexed by training iteration ¢:
My = {u|t < T} for experience replay, or by a differ-
ent agent k: My = {ux|k € K} when training multiple
agents. In the classic experience replay case we then sam-
ple a time ¢ and locate the transition 7 that was generated
earlier via p;. This extends naturally to the multiple agent
case where we sample an agent index k and then obtain a
transition for such agent or tuples of (k,t). Without loss of
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generality we simplify this notation and index sampled be-
haviour policies by a random variable z ~ Z that represents
the selection process. While online reinforcement learning
algorithms process transitions 7 ~ , off-policy algorithms
process T ~ p, for z ~ Z. In this notation, given equa-
tion (1) and a bootstrap V, the expectation of importance
sampled off-policy returns at state s, is described by:

Viie(s0) = Bz By [G7 (s1)] )

where G™#(s;) = V(1) + D> po (HZ -0 Z:iz) OV
is a single importance sampled return. Note that the on-

policy return G™ ™ (s¢) = V(8¢) + 3o Vit k-

Above E, |, represents the expectation of sampling from
a given . The conditioning on z is a notational reminder
that this expectation does not sample z or i, but experience
from 1. For any sampled z we obtain a y1, and observe that
the inner expectation wrt. experience of i, in equation (3)
recovers the expected on-policy return in expectation:

[GTH=(s1)]

V-3 (H

— g Mzttt

V(St) + Z'Yk( 7N27t+i)5t+kv
=0 g Mz t+i

V(s + Y 2 e
k=0

=V7"(st)

E

wzlz

=E,,

41)5t+kv

:Eﬂ,

=E; =E; [Gmﬁ(st”

Thus V5, (s:) = E. [E, [G™7(s,)] = By [G77(s,)] =
V7 (s¢). This holds provided that x, is non-zero wherever
m is. This fairly standard assumption leads us straight to
the core of the problem: it may be that some behaviours
are ill-suited for estimating the inner expectation. However,
standard importance sampling applied to very off-policy
experience divides by small g resulting in high or even
infinite variance. Similarly, V-trace attempts to compute
an estimate of the return following 7 resulting in limited
variance at the cost of a biased estimate in turn.

The key idea of our proposed solution is to compute
the return estimate for 7 at each state only from a sub-
set of suitable behaviours p,: Mgz (s) {1z €
Z and S(m, p, s) < b} as determined by a behaviour rele-
vance function

B(ﬂ->p’7$) : (MZ7MZaS) —R

and a threshold b. The behaviour relevance function decides
if experience from a behaviour is suitable to compute an
expected return for 7. It can be chosen to control properties

of V.. by restricting the expectation on subsets of Z. In

particular it can be used to control the variance of an impor-
tance sampled estimator: Observe that the inner expectation
E,. [G™"(s;)|z] in equation (3) already matches the ex-
pected return V™. Thus we can condition the expectation
on arbitrary subsets of Z without changing the expected
value of V. . This allows us to reject high variance G™*
without introducing a bias in V7., . The same technique can
be applied to V-trace where we can reject return estimates

with high bias.

4.2. Derivation of Trust Region Estimators

Using a behaviour relevance function 3(s) we can define a
trust region estimator for regular importance sampling (IS)
and V-trace and show their correctness.

We define the trust region estimator as the conditional ex-
pectation

Virustea (1) = B2 By [T 5 (5)] 12 € Mpa(s:)

with A-returns G, chosen as G[g"* (sf) =V(s) +

D heo (Hi:o s (St+i) 71 uz "

sampling and for V-trace as

0o k—1
_V(St) + Z ,yk( H )\777/"12 (St+i)cz7t+i>
k=0 =0

Aoz (St4k) Pzt 46Otk V.

GTr Mz (

Vtrace

where Ar ,(s;) is designed to constraint Monte-Carlo boot-
straps to relevant behaviour: Ax ,(st) = 1g(x,u,s,)<p and

+ , ,6} and c, ;1 are behaviour depen-

— i | Tt
Pz t+k = MIN {ﬁ
dent clipped importance rations. Thus both G7"* and

Gyl .. are a multi-step return estimators with adaptlve
length. Note that only estimators with length > 1 are used
in V|7 steq- Due to Minkowski’s inequality the trust region
estimator thus shows at least the same contraction as a 1-step

bootstrap, but can be faster due to its adaptive nature:

Proposition 4. Let G{3"'* be a set of importance sampling

estimators as defined in section 4.2. Note that they all have
the same fix point V™ and contract with at least . Then the

contraction properties carry over to V. In particular
<AV =VT,

rusted*

| trusted -V |oo

Proof. See Appendix Section 3.

Proposition 5. Ler Gl\Z.. be a set of V-trace es-

timators (see section 4.2) with corresponding fixed
points VZ* (see equation 2) to which they con-
tract at a speed of an algorithm and behaviour
speciﬁc N..  Then VT .., moves towards VP =
E. | eMs , (s) [V?] shrinking the distance as follows
|V:E V6|oo < maX#zG]\l/j,n—(St)|nZ<V_VZ)‘oo <

rusted
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Tmax MAXy, . € Mg . (s¢) (V- VZ)|<>O with  Nmax =

Maxy, eMg, . (s¢) Mz

Proof. See Appendix Section 3.

Note how the choice of 3 and thus My . enables us to
discard ill-suited G{//2 . from the estimation of V[T, . .
Recall that V-trace fixed points V, are biased. Thus
allows us to selectively create the V-trace target Ve =
E. . eMs (1) [V#] and control its bias and the shrinkage
max,, e, . (s:) [n-(V(s) — V*(s))|,, (see Proposition 5).
Similarly it can control cases where we can not use the exact
importance sampled estimator.

4.3. Implementation Details

In Proposition 5 we have seen that the quality of the
trust region V-trace return estimator depends on 5. A
suitable choice of 3 can move the return estimate V7
closer to V™ and improve the shrinkage by reducing
max,,_car, . (s,) [1=(V(s) = V*(s))| . Hence, we employ
a behaviour relevance function Skj, that rejects high bias
transitions by estimating the Kulback-Leibler divergence
between the target policy 7 and the implied policy 7, for
a sampled behaviour p,. Recall from Proposition 1 that
7, determines the fixed point of the V-trace estimator for
behaviour 4, and thus determines the bias in V%,

Bru(m, i, 8) = KL (7(:[$) |7 (-[s))

Note that the behaviour probabilities p, can be evaluated
and saved to the replay when the agent executes the be-
haviour, similarly the target policy 7 is represented by the
agents neural network. Using both and equation 2, 7, can
be computed. For large or infinite action spaces a Monte
Carlo estimate of the KL divergence can be computed.

For simplicity we use the same behaviour relevance func-
tions for the policy and value estimate - while those could
theoretically be different. As described above we stop the
Monte-Carlo bootstraps at undesirable state-behaviour pairs.
This censoring procedure is computed from state dependent
B(m, i, ) and ensures that the choice of bootstrapping does
not depend on the sampled actions. Rejection by an action-
based criteria such as small 7(a|s)/u(als) would introduce
an additional bias which we avoid by choosing Bkr..

5. Experiments
We present experiments to support the following claims:
e Our proposed algorithm obtains state-of-the-art perfor-
mance on Atari both in the shared regime (see Figure 1)

and in the classic single agent regime with 200M envi-
ronment steps per game (see Table 1).

e Section 5.2: Uniform experience replay obtains com-
parable results as prioritized experience replay, while
being simpler to implement and tune.

e Section 5.3: Using fresh experience before inserting
it in experience replay is strictly required as learning
purely off-policy from experience replay leads to se-
vere degradation in performance (see Figure 3 left) —
in line with Proposition 3.

e Section 5.4: Sharing experience without trust region
performs poorly as suggested by Proposition 2. Off-
Policy Trust-Region V-trace solves this issue.

e Section 5.5: Sharing experience can take advantage of
parallel exploration, while also saving memory through
sharing a single experience replay.

5.1. Experimental Setup & Methodology

We use the V-trace distributed reinforcement learning
agent (Espeholt et al., 2018) as our baseline. In our ex-
periments we consider two experimental platforms: Atari
and DeepMind Lab. On Atari we consider the common sin-
gle task training regime, where a different agent is trained,
from scratch, on each of the tasks. Following (Xu et al.,
2018) we use a discount of 0.995. Motivated by recent work
by (Kaiser et al., 2019), we use the IMPALA deep network
and increased the number of channels 4x. We use 96% re-
play data per batch. Differently from (Espeholt et al., 2018),
we do not use gradient clipping by norm (Pascanu et al.,
2012). Updates are computed on mini-batches of 32 (regu-
lar) and 128 (replay) trajectories, each corresponding to 19
steps in the environment. In the context of DeepMind Lab,
we consider the multi-task suite DMLab-30 (Espeholt et al.,
2018), as the visuals and the dynamics are more consistent
across tasks. Furthermore the multi-task regime is particu-
larly suitable for the investigation of strongly off-policy data
distributions arising from sharing the replay across agents,
as concurrently learning agents can easily be stuck in differ-
ent policy plateaus, generating substantially different data
(Schaul et al., 2019). As in (Espeholt et al., 2018), in the
multi-task setting each agent trains simultaneously on a uni-
form mixture of all tasks rather than individually on each
game. The score of an agent is thus the median across all
30 tasks. Following (Hessel et al., 2019), we augment our
agent with multi-task Pop-Art normalization and PixelCon-
trol. We use a PreCo LSTM (Amos et al., 2018) instead
of the vanilla one (Hochreiter & Schmidhuber, 1997). Up-
dates are computed on mini-batches of multiple trajectories
chosen as above, each corresponding to 79 steps in the envi-
ronment. In early experiments we found that computing the
entropy cost only on the online data provided slightly better
results, hence we have done so throughout our experiments.

In all our experiments, experience sampled from memory
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is mixed with online data within each mini-batch — follow-
ing Proposition 3. Episodes are removed in a first in first
out order, so that replay always holds the most recent ex-
perience. Unless explicitly stated otherwise we consider
hyper-parameter sweeps, some of which share experience
via replay. In this setting multiple agents start from-scratch,
run concurrently at identical speed, and add their new experi-
ence into a common replay buffer. All agents will then draw
uniform samples from the replay buffer. On DMLab-30 we
consider both regular hyper-parameter sweeps and sweeps
with population based training (PBT) (Jaderberg et al.,
2017a). Sweeps contain 10 agents with hyper-parameters
sampled similar as Espeholt et al. (2018) but fixed RMSProp
e = 0.1. On Atari sweeps contain 9 agents with differ-
ent constant learning rate and entropy cost combinations
{3:107%,6-107%,1.2-1073} x {5-1073,1-1072,2-1072}
(distributed by factors {1/2, 1,2} around the initial parame-
ters reported in Espeholt et al. (2018)). Although our focus
is on efficient hyper-parameter sweeps given crude initial pa-
rameters, we also present a single-agent LASER experiment
using the same tuned schedule as Espeholt et al. (2018),
a 87.5% replay ratio and a 15M replay. We store entire
episodes in the replay buffer and replay each episode from
the beginning, using the most recent network parameters to
recompute the LSTM states along the way: this is critical
when sharing experience between different agents, which
may have arbitrarily different state representations.

5.2. Uniform and Prioritized Experience Replay

Prioritized experience replay has the potential to provide
more efficient learning compared to uniform experience
replay (Schaul et al., 2015; Horgan et al., 2018). However,
it also introduces a number of new hyper-parameters and
design choices: the most critical are the priority metric.
Uniform replay is instead almost parameter-free and can
be easily shared between multiple agents. Experiments
provided in Figure 1 in the appendix showed little benefit of
actor critic prioritized replay on DMLab-30. Furthermore
priorities are typically computed from the agent specific
metrics such as the TD-error, which are ill-defined when
replay is shared among multiple agents. Hence we used
uniform replay for our further investigations.

5.3. Mixing On- and Off-policy Experience

Figure 2 (left) shows that performance degrades severely
when online data is not present in the batch. This experimen-
tally validates Propositions 2 and 3 that highlight difficulties
of learning purely off-policy. Furthermore Figure 2 (right)
shows that best results are obtained with experience replay
of 10M capacity and 87.5% ratio. A ratio of 87.5% = 7/8
corresponds to 7 replay samples for each online sample. We
have considered ratios of 1/2,3/4, and 7/8 and observed
stable training for all of them. Observe that among those

values, larger ratios are more data-efficient as they take
advantage of more replayed experience per training step.

5.4. Shared Experience Replay with Off-Policy Trust
Region V-trace

In line with proposition 2 we observe in Figure 3 (left)
that hyper-parameter sweeps without trust-region are even
surpassed by the baseline without experience replay. State-
of-the-art results are obtained in Figure 3 (right) when expe-
rience is shared with trust-region in a PBT sweep. Observe
that this indicates parallel exploration benefits and saves
memory at the same time: in our sweep of 10 replay agents
the difference between 10 x 10M (separate replays) and
10M (shared replay) is 10-fold. This effect would be even
more pronounced with larger sweeps. As discussed in sec-
tion 2.3, the bias in V-trace occurs due to the clipping of
importance ratios. A potential solution of reducing the bias
would be to increase the p threshold to clip less aggressively
and accept increased variance. Figure 1 in the appendix
shows that this is not a solution.

5.5. Evaluation on Atari

We apply our proposed agent to Atari which has been a
long established suite to evaluate reinforcement learning
algorithms (Bellemare et al., 2013).

In Figure 1 we investigate the benefits of sharing experi-
ence replay within a hyper-parameter sweep on Atari. A
sweep of 9 LASER agents sharing their replay achieves
423% in 9 x 60M environment steps. Given 9 x 200M steps
it achieves 448%. Shared experience replay obtains better
performance than not shared experience replay. This con-
firms the efficient use of parallel exploration (Kretchmar,
2002).

In Table 1 we consider the classic regime. Here we train
a single LASER agent with experience replay for 200M
steps per game (no sweep). Observe that it achieves 431%
compared to the previous state of the art of 288% (Xu et al.,
2018) within 200M steps. The fastest prior agent to reach
a score of 400% is presented by Kapturowski et al. (2019)
requiring more than 3,000M steps.

6. Conclusion

We have presented LASER — an off-policy actor-critic
agent which employs a large experience replay. It achieves
state-of-the-art data efficiency in two regimes: (1) where
it is trained for 200M steps on it’s own and (2) where it
may share experience off-policy with concurrently training
agents.

To facilitate this algorithm we have proposed two ap-
proaches: a) mixing replayed experience and on-policy data
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and b) a trust region scheme. We have shown theoretically
and demonstrated through a series of experiments that they
enable learning in strongly off-policy settings, which present
a challenge for conventional importance sampling schemes.
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