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Abstract
The success of GANs is usually attributed to prop-
erties of the divergence obtained by an optimal
discriminator. In this work we show that this ap-
proach has a fundamental flaw:
If we do not impose regularity of the discrimi-
nator, it can exploit visually imperceptible errors
of the generator to always achieve the maximal
generator loss. In practice, gradient penalties are
used to regularize the discriminator. However,
this needs a metric on the space of images that
captures visual similarity. Such a metric is not
known, which explains the limited success of gra-
dient penalties in stabilizing GANs.
Instead, we argue that the implicit competitive
regularization (ICR) arising from the simultane-
ous optimization of generator and discrimina-
tor enables GANs performance. We show that
opponent-aware modelling of generator and dis-
criminator, as present in competitive gradient de-
scent (CGD), can significantly strengthen ICR and
thus stabilize GAN training without explicit regu-
larization. In our experiments, we use an existing
implementation of WGAN-GP and show that by
training it with CGD without any explicit regular-
ization, we can improve the inception score (IS)
on CIFAR10, without any hyperparameter tuning.

1. Introduction
Generative adversarial networks (GANs): (Goodfellow
et al., 2014) are a class of generative models based on a
competitive game between a generator that tries to generate
realistic new data, and a discriminator that tries to distin-
guish generated from real data. In practice, both players are
parameterized by neural networks that are trained simulta-
neously by a variant of stochastic gradient descent.
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The minimax interpretation: Presently, the success of
GANs is mostly attributed to properties of the divergence
or metric obtained under an optimal discriminator. For
instance, an optimal discriminator in the original GAN leads
to a generator loss equal to the Jensen-Shannon divergence
between real and generated distribution. Optimization over
the generator is then seen as approximately minimizing this
divergence. We refer to this point of view as the minimax
interpretation. The minimax interpretation has led to the
development of numerous GAN variants that aim to use
divergences or metrics with better theoretical properties.

The GAN-dilemma: However, every attempt to explain
GAN performance with the minimax interpretation faces
one of the two following problems:

1. Without regularity constraints, the discriminator
can always be perfect. This is because it can selectively
assign a high score to the finite amount of real data points
while assigning a low score on the remaining support of the
generator distribution, as illustrated in Figure 1. Therefore,
the Jensen-Shannon divergence between a continuous and
a discrete distribution always achieves its maximal value,
a property that is shared by all divergences that do not im-
pose regularity constraints on the discriminator. Thus, these
divergences can not meaningfully compare the quality of
different generators.

2. Imposing regularity constraints needs a measure of
similarity of images. Imposing regularity on the discrimi-
nator amounts to forcing it to map similar images to similar
results. To do so, we would require a notion of similarity
between images that is congruent with human perception.
This is a longstanding unsolved problem in computer vi-
sion. Commonly used gradient penalties use the Euclidean
norm which is known to poorly capture visual similarity, as
illustrated in Figure 2.

We believe that the different divergences underlying the var-
ious GAN formulations have little to do with their ability
to produce realistic images. This is supported by the large
scale studies of Lucic et al. (2017) that did not find sys-
tematic differences in the performance of GANs associated
with different divergence measures. Understanding of GAN
performance is crucial in order to improve training stability
and reduce the required amount of hyperparameter tuning.
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Figure 1. The discriminator can always improve: We want the discriminator confidence to reflect the relative abundance of true and
fake data (left). But by picking out individual data points, the discriminator can almost always achieve arbitrarily low loss on any finite
data set (right). Even in the limit of infinite data, the slightest misalignment of the supports of generated and real data can be exploited in
a similar way.

A way out?: Due to the GAN-dilemma, every attempt at
explaining the performance of GANs needs to go beyond
the minimax interpretation and consider the dynamics of
the training process. In this work, we argue that an implicit
regularization due to the simultaneous 1 training of generator
and discriminator allows GANs to use the inductive biases
of neural networks for the generation of realistic images.

Implicit competitive regularization: We define implicit
competitive regularization (ICR) as the introduction of ad-
ditional stable points or regions due to the simultaneous
training of generator and discriminator that do not exist
when only training the generator (or discriminator) with gra-
dient descent while keeping the discriminator (or generator)
fixed.
It has been previously observed that performing simulta-
neous gradient descent (SimGD) on both players leads to
stable points that are not present when performing gradi-
ent descent with respect to either player, while keeping the
other player fixed (Mazumdar & Ratliff, 2018). These stable
points are not local Nash equilibria, meaning that they are
not locally optimal for both players. This phenomenon is
commonly seen as a shortcoming of SimGD and modifica-
tions that promote convergence only to local Nash equilibria
which have been proposed by, for instance, (Balduzzi et al.,
2018; Mazumdar et al., 2019). In contrast to this view we
believe that ICR is crucial to overcoming the GAN-dilemma
and hence to explaining GAN performance in practice by
allowing the inductive biases of the discriminator network
to inform the generative model.

Summary of Contributions

In this work, we point out that a fundamental dilemma pre-
vents the common minimax interpretation of GANs from
explaining their successes. We then show that implicit com-
petitive regularization (ICR), which so far was believed to
be a flaw of SimGD, is key to overcoming this dilemma.

1Here and in the following, when talking about simultaneous
training, we include variants such as alternating gradient descent.

Based on simple examples and numerical experiments on
real GANs we illustrate how it allows to use the inductive
biases of neural networks for generative modelling, result-
ing in the spectacular performance of GANs.
We then use this understanding to improve GAN perfor-
mance in practice. Interpreting ICR from a game-theoretic
perspective, we reason that strategic behavior and opponent-
awareness of generator and discriminator during the training
procedure can strengthen ICR. These elements are present
in competitive gradient descent (CGD) (Schaefer & Anand-
kumar, 2019) which is based on the two players solving for
a local Nash-equilibrium at each step of training. Accord-
ingly, we observe that CGD greatly strengthens the effects
of ICR. In comprehensive experiments on CIFAR 10, com-
petitive gradient descent stabilizes previously unstable GAN
formulations and achieves higher inception score compared
to a wide range of explicit regularizers, using both WGAN
loss and the original saturating GAN loss of Goodfellow
et al. (2014). In particular, taking an existing WGAN-GP
implementation, dropping the gradient penalty, and training
with CGD leads to the highest inception score in our exper-
iments. We interpret this as additional evidence that ICR,
as opposed to explicit regularization, is the key mechanism
behind GAN performance.

2. The GAN-dilemma
In this section, we study in more detail the fundamental
dilemma that prevents the common minimax interpretation
from explaining the successes of GANs. In particular, we
show how the existing GAN variants fall into one or the
other side of the GAN-dilemma.

Metric-agnostic GANs: In the original formulation due
to Goodfellow et al. (2014), the two players are playing a
zero-sum game with the loss function of the generator given
by the binary cross entropy
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Figure 2. The Euclidean distance is not perceptual: We would like to challenge the reader to order the above three pairs of images
according to the Euclidean distance of their representation as vectors of pixel-intensities. 3

min
G

max
D

1

2
Ex∼Pdata

[logD(x)]+
1

2
Ex∼PG [log (1−D(x))] .

(1)
Here, G is the probability distribution generated by the gen-
erator, D is the classifier provided by the discriminator, and
Pdata is the target measure, for example the empirical dis-
tribution of the training data. A key feature of the original
GAN is that it depends on the discriminator only through its
output when evaluated on samples. This property is shared,
for instance, by the more general class of f -divergence
GANs (Nowozin et al., 2016). We call GAN formulations
with this property metric-agnostic.

Metric-informed GANs: To address instabilities observed
in the original GAN, Arjovsky et al. (2017) introduced
WGAN, with loss function given by

min
G

max
D

Ex∼Pdata
[D(x)]−Ex∼PG [D(x)]+F (∇D) (2)

where F(∇D) is infinity if supx ‖∇D(x)‖ > 1 and zero,
else. (Gulrajani et al., 2017) propose WGAN-GP, where
this inequality constraint is relaxed by replacing F with a
penalty, for instance F(∇D) = E

[
(‖∇xD‖ − 1)

2
]
. These

GAN formulations are fundamentally different from metric-
agnostic GANs in that they depend explicitly on the gradient
of the discriminator. In particular, they depend on the choice
of metric used to measure the size of ∇D. Subsequent to
WGAN(-GP), which uses the Euclidean norm, other variants
such as Sobolev-GAN (Mroueh et al., 2017), Banach-GAN
(Adler & Lunz, 2018), or Besov-GAN (Uppal et al., 2019)
have been proposed that use different metrics to measure

3The pairs of images are ordered from left to right, in increasing
order of distance. The first pair is identical, while the third pair
differs by a tiny warping.

gradient size. We refer to these types of GAN formulations
as metric-informed GANs.

The problem with metric-agnostic GANs: GANs are able
to generate highly realistic images, but they suffer from un-
stable training and mode collapse that often necessitates
extensive hyperparameter tuning. Beginning with (Arjovsky
& Bottou, 2017) these problems of the original GAN have
been explained with the fact that the supports of the gen-
erator distribution and the training data are almost never
perfectly aligned. For any fixed generator, the discriminator
can take advantage of this fact to achieve arbitrarily low loss,
as illustrated in Figure 1. In the case of the Formulation
1, this corresponds to the well known fact that the Jensen-
Shannon divergence between mutually singular measures is
always maximal. This result extends to all metric-agnostic
divergences, simply because they have no way of access-
ing the degree of similarity between data points on disjoint
supports.

Arora et al. (2017); Huang et al. (2017) emphasize that the
discriminator is restricted to a function class parameterized
by a neural network. However, the experiments of Arjovsky
& Bottou (2017) as well as our own in Figure 4 clearly show
the tendency of the discriminator to diverge as it achieves
near-perfect accuracy. This is not surprising since Zhang
et al. (2016) observed that modern neural networks are able
to fit even random data perfectly. Arjovsky & Bottou (2017)
also show that as the discriminator improves its classifica-
tion loss, the generator achieves less and less useful gradient
information. This is again not surprising, since confidence
scores of deep neural networks are known to be poorly
calibrated (Guo et al., 2017). Therefore, the outputs of a
near-perfect discriminator can not be expected to provide a
useful assessment of the quality of the generated samples.
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Since GAN optimization is highly non-convex it is natural
to ask if GANs find locally optimal points in the form of
local Nash or Stackelberg equilibria. This local minmax
interpretation has been emphasized by Fiez et al. (2019);
Jin et al. (2019), but the experiments of Berard et al. (2019)
as well as our own in Figure 4 suggest that good GAN so-
lutions for metric-agnostic GANs are typically not locally
optimal for both players. It seems plausible that the discrim-
inator, being highly overparameterized, can find a direction
of improvement against most generators.

The problem with metric-informed GANs: The above ob-
servation has motivated the introduction of metric-informed
GANs that restrict the size of the gradient of the discrimi-
nator (as a function mapping images to real numbers). This
limits the discriminator’s ability to capitalize on small mis-
alignments betweenD and Pdata and thus makes for a mean-
ingful minimax interpretation even if the two measures have
fully disjoint support. However, the Achilles heel of this
approach is that it needs to choose a metric to quantify the
magnitude of the discriminator’s gradients. Most of the
early work on metric-informed GANs chose to measure the
size of ∇D using the Euclidean norm (Arjovsky & Bottou,
2017; Arjovsky et al., 2017; Gulrajani et al., 2017; Roth
et al., 2017; Kodali et al., 2017; Miyato et al., 2018). How-
ever, since the discriminator maps images to real numbers,
this corresponds to quantifying the similarity of images at
least locally by the Euclidean distance of vectors containing
the intensity values of each pixel. As illustrated in Fig-
ure 2, this notion of similarity is poorly aligned with visual
similarity even locally. From this point of view it is not
surprising that the generative model of (Chen et al., 2019),
based on a differentiable optimal transport solver, produced
samples of lower visual quality than WGAN-GP, despite
achieving better approximation in Wasserstein metric. As
noted by Chen et al. (2019), these observations suggest that
the performance of WGAN can not be explained by its re-
lationship to the Wasserstein distance. When comparing a
variety of GAN formulations with a fixed budget for hyper-
parameter tuning, Lucic et al. (2017) did not find systematic
differences in their performance. This provides additional
evidence that the key to GAN performance does not lie in
the choice of a particular divergence between probability
measures.

The metric-informed divergences considered so far were all
based on the Euclidean distance between images. Other re-
searchers have tried using different metrics on image space
such as Sobolev or Besov norms (Adler & Lunz, 2018;
Mroueh et al., 2017; Uppal et al., 2019), or kernel max-
imum mean discrepancy distances (Li et al., 2015; 2017;
Bińkowski et al., 2018). However, none of these metrics do
a good job at capturing perceptual similarity either, which
explains why these variants have not been observed to out-
perform WGAN(-GP) in general. Researchers in computer

vision have proposed more sophisticated domain-specific
distance measures (Simard et al., 1998), kernel functions
(Haasdonk & Burkhardt, 2007; Song et al., 2014), and fea-
tures maps (Dalal & Triggs, 2005). Although computation-
ally expensive, methods from differential geometry have
been used for image inter– and extrapolation (Trouvé &
Younes, 2005; Berkels et al., 2015; Effland et al., 2018).
However, none of these classical methods achieve perfor-
mance comparable to that of neural network based models,
making them unlikely solutions for the GAN dilemma.

A way out: Generative modelling means producing new
samples that are similar to the training samples, but not too
similar to each other. Thus, every generative method needs
to choose how to measure similarity between samples, im-
plicitly or explicitly.
When analyzing GANs from the minimax perspective this
assessment of image similarity seems to rely exclusively on
the classical metrics and divergences used for their formula-
tion. But modeling perceptual similarity is hard and most
commonly used GAN formulations are based on measures
of similarity that are known to be terrible at this task. Thus,
the minimax point of view can not explain why GANs pro-
duce images of higher visual quality than any other method.
The key to image classification is to map similar images
to similar labels. The fact that deep neural networks dras-
tically outperform classical methods in this tasks leads us
to believe that they capture perceptual similarity between
images far better than any classical model. We believe that
the success of GANs is due to their ability to implicitly use
the inductive biases of the discriminator network as a notion
of similarity. They create images that look real to a neural
network, which acts as a proxy for looking real to the hu-
man eye. In the next section we propose a new mechanism,
implicit competitive regularization, to explain this behavior.

3. Implicit competitive regularization (ICR)
Implicit regularization: Based on the discussion in the
last section, any attempt at understanding GANs needs to
involve the inductive biases of the discriminator. However,
there is ample evidence that the inductive biases of neural
networks do not arise from a limited ability to represent
certain functions. Indeed, it is known that modern neural
networks can fit almost arbitrary functions (Kolmogorov,
1956; Cybenko, 1989; Zhang et al., 2016). Rather, they seem
to arise from the dynamics of gradient-based training that
tends to converge to classifiers that generalize well, a phe-
nomenon commonly referred to as implicit regularization
(Neyshabur, 2017; Gunasekar et al., 2017; Ma et al., 2017;
Azizan et al., 2019; Kubo et al., 2019; Arora et al., 2019).

Implicit regularization is not enough for GANs: The im-
plicit regularization induced by gradient descent lets neural
networks prefer sets of weights with good generalization
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Figure 3. ICR in the quadratic case: When optimizing only y
in Equation (3), it diverges rapidly to infinity, for any fixed y. If
however we simultaneously optimize x and y with respective step
sizes ηx = 0.09 and ηy = 0.01, we converge to (0, 0).

performance. However, the outputs of even a well-trained
neural network are typically not informative about the con-
fidence of the predicted class (Guo et al., 2017). Thus, a
discriminator trained on finite amounts of real data and data
generated by a given generator can be expected to distin-
guish new real data from new data generated by a similar
generator, with high accuracy. However, its outputs do not
quantify the confidence of its prediction and thus of the
visual quality of the generated samples. Therefore, even
considering implicit regularization, a fully trained discrim-
inator does not provide useful gradients for training the
generator.

Implicit competitive regularization: We think that GAN
training relies on implicit competitive regularization (ICR),
an additional implicit regularization due to the simultane-
ous training of generator and discriminator. When training
generator and discriminator simultaneously, ICR selectively
stabilizes good generators that would not be stable when
training one player while keeping the other player fixed.

Consider the game given by

min
x

max
y

x2 + 10xy + y2. (3)

In this problem, for any fixed x, any choice of y will be
sub-optimal and gradient ascent on y (with x fixed) will
diverge to infinity for almost all initial values.

What about simultaneous gradient descent? As has been
observed before (Mazumdar & Ratliff, 2018), simultaneous
gradient descent wit step sizes ηx = 0.09 for x and ηy =
0.01 for y will converge to (0, 0), despite it being a locally
worst strategy for the maximizing player. (See Figure 3 for
an illustration.) This is a first example of ICR, whereby
the simultaneous optimization of the two agents introduces
additional attractive points to the dynamics that are not
attractive when optimizing one of the players using gradient
descent while keeping the other player fixed.

As outlined in Section 2, the key to the performance of
GANs has to lie in the simultaneous optimization process.

Figure 4. ICR on MNIST: We train a GAN on MNIST until we
reach a checkpoint where it produces good images. (First image:)
We fix the generator and only train the discriminator, observing
that it can reach near-zero loss. When instead training generator
and discriminator jointly, the loss stays stable. (Second Image:)
When trained individually, the discriminator moves significantly
slower slower when trained jointly with the generator, as measured
by its output on a set of thousand reference images.

We now provide evidence that the solutions found by GANs
are indeed stabilized by ICR. To this end, we train a GAN
on MNIST until it creates good images. We refer to the
resulting generator and discriminator as the checkpoint gen-
erator and discriminator. We observe that the loss of both
generator and discriminator, as well as the image quality, is
somewhat stable even though it would diverge after a long
time of training. If instead, starting at the checkpoint, we
optimize only the discriminator while keeping the generator
fixed, we observe that the discriminator loss drops rapidly.
For the same number of iterations and using the same learn-
ing rate, the discriminator moves away from the checkpoint
significantly faster as measured both by the Euclidean norm
of the weights and the output on real– and fake images. The
observation that the discriminators diverges from the check-
point faster when trained individually than when trained
simultaneously with the generator suggests that the check-
point, which produced good images, was stabilized by ICR.

4. How ICR lets GANs generate
An (hypo)thesis: In the example in the last section, the
checkpoint producing good images was stabilized by ICR.
However, we have not yet given a reason why points sta-
bilized by ICR should have better generators, in general.
For GANs to produce visually plausible images, there has
to be some correspondence between the training of neu-
ral networks and human visual perception. Since learning
and generalization are poorly understood even for ordinary
neural network classifiers, we can not avoid making an as-
sumption on the nature of this relationship. This section
relies on the following hypothesis.

Hypothesis How quickly the discriminator can pick up on
an imperfection of the generator is correlated with the visual
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Figure 5. By prematurely stopping the training process, we obtain
generators of different image-quality on CIFAR10 (higher incep-
tion score (IS) reflects better image quality). We then train a new
discriminator against this fixed generator and measure how quickly
it increases its classification performance. We use a model trained
on the 10-class classification task as starting point for the discrim-
inator to prevent the initial phase of training from polluting the
measurements. While all discriminators achieve near-perfect accu-
racy eventually, the rate of improvement is inversely correlated to
inception score of the generator.

prominence of said imperfection.

It is common intuition in training neural network classifiers
that more visually obvious patterns are learned in fewer iter-
ations and from less data. It is also in line with the coherent
gradient hypothesis of Chatterjee (2020) that explains gen-
eralization performance of neural networks with the fact
that systematic patterns in the data generate more coherent
gradients and are therefore learned faster. While a thorough
verification of the hypothesis is beyond the scope of this
work we provide some empirical evidence in Figure 5.

This section argues for the following thesis.

Thesis: ICR selectively stabilizes generators for which the
discriminator can only improve its loss slowly. By the hy-
pothesis, these generators will produce high quality samples.

An argument in the quadratic case: We begin with
the quadratic problem in Equation 3 and model the dif-
ferent speeds of learning of the two agents by changing
their step sizes ηx and ηy. In Figure 6 we see that for
(ηx, ηy) = (0.03, 0.03) the two agents slowly diverge to
infinity and for (ηx, ηy) = (0.01, 0.09), divergence oc-
curs rapidly. In general, stable points x̄ of an iteration
(xk+1 = xk + F (xk) are characterized by (1): F (x̄) = 0
and (2) DxF (x̄) having spectral radius smaller than one
(Mescheder et al., 2017)[Proposition 3]. For SimGD applied
to a zero sum game with the loss of x given by f , these are
points with vanishing gradients such that

Id−M := Id−
(
ηxD

2
xxf ηxD

2
xyf

−ηyD2
yxf −ηyD2

yyf

)

Figure 6. ICR depends on speed of learning: When changing
the learning rates to (ηx, ηy) = (0.03, 0.03) (top) or (ηx, ηy) =
(0.01, 0.09) (bottom), SimGD diverges.

has spectral radius smaller than one. For univariate x, y
we can set a := D2

xxf , b := D2
xyf , and c := D2

yyf and
compute the characteristic polynomial of M as

p(λ) = λ2 − (ηxa− ηyc)λ+ (−ηxηyac+ ηxηyb
2).

For ηxa > ηyc and ηxηyb2 > ηxηyac the solutions of this
equation have positive real part and therefore the eigenvalues
of M have positive real part. By multiplying ηx and ηy by a
small enough factor we can obtain a spectral radius smaller
than one (c. f. Mazumdar & Ratliff (2018)). Thus, a small
enough ηy and large enough mixed derivative b can ensure
convergence even for positive c.

If we think of the maximizing player as the discriminator,
slow learning (modelled by small ηy) is correlated to good
images produced by the generator. Thus, in this interpre-
tation, a good generator leads to ICR stabilizing the point
(0, 0) more strongly.

Adversarial training as projection: Surprisingly, ICR al-
lows us to compute a projection with respect to the per-
ceptual distance of a neural network, without quantify-
ing this distance explicitly. Let us consider the follow-
ing example. We construct a generator G that maps its
28 weights to a bivariate output. This nonlinear map is
modelled as a tiny neural network with two hidden lay-
ers, with the final layer restricting the output to the set
S :=

{
(es+t, es−t)

∣∣s ∈ [− 1
2 ,

1
2

]
, t ∈ R

}
⊂ R2. We think

of this as mapping a set of weights to a generative model that
is characterized by only two parameters. In this parameteri-
zation, we assume that the target distribution is represented
by the point Pdata = (2, 2). Importantly, as shown in Fig-
ure 7, there is no set of weights that allow the generator
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Figure 7. Approximate projection via adversarial training: On
the left column, discriminator picks up on errors in the x- and y-
direction equally quickly. Therefore, the generator tries to satisfy
the criteria alternatingly, leading to a cyclic pattern. In the right col-
umn, the discriminator picks up on errors in the x-direction much
more quickly. This causes the generator to try to stay accurate in
the x-direction.

to output exactly Pdata. This is to model the fact that in
general, the generator will not be able to exactly reproduce
the target distribution. We construct a discriminator D that
maps a generative model (a pair of real numbers) and a set
of 28 weights to a real number, by a small densely connected
neural network.

We want to model the difference in visual prominence of
the two components of Pdata. To this end, we assume that
before before being passed to the discriminator, G and
Pdata are rescaled by a diagonal matrix η ∈ R2×2. Thus,
η determines the relative size of the gradients of D of the
first and second components of the input data. This models
the hypothesis that a real discriminator will pick up more
quickly on visually prominent features. Importantly, we
assume η to be unknown, since we do not have access to a
metric measuring ”visual similarity to a neural network”.

We will now show how adversarial training can be used to
approximate a projection with respect to η, without knowing
η. We use the loss

min
wG∈R28

max
wD∈R28

D (ηPdata, wD)−D (ηG (wG) , wD) (4)

and train the two networks using simultaneous gradient
descent. For η equal to the identity, we see oscillatory train-
ing behavior as G tries be accurate first in one, then the
other direction. If we instead use η =

(
1 0
0 10−2

)
, we are

modelling the first component as being more visually promi-
nent. Instead of the oscillatory patterns from before, we
observe long periods where the value of the first compo-

nent of G (wG) is equal to the first component of Pdata (see
Figure 7). Without knowing η, we have approximated the
projection of Pdata onto S with respect to the metric given
by (x, y) 7→ ‖η(x, y)‖. To do so, we used the fact that this
point is subject to the slowest learning discriminator, and
thus the strongest ICR.

We believe that GANs use the same mechanism to compute
generators that are close to the true data in the perceptual
distance of the discriminator, which in turn acts as a proxy
for the perceptual distance of humans.

5. Competitive gradient descent amplifies ICR
How to strengthen ICR: We have provided evidence that
GANs’ ability to generate visually plausible images can be
explained by ICR selectively stabilizing good generators.
It is well known that GANs often exhibit unstable training
behavior, which is mirrored by the observations in Figures 3,
4 and 7 that ICR often only leads to weak, temporary sta-
bility. Thus, it would be desirable to find algorithms that
induce stronger ICR than SimGD. To this end, we will find
a game-theoretic point of view useful.

Cooperation in a zero-sum game? As discussed in the
last section, ICR can stabilize solutions that are locally
suboptimal for at least one of the players. Since we did not
model either of the two players as altruistic, this behavior
may seem puzzling. It is likely for this reason that ICR has
mostly been seen as a flaw, rather than a feature of SimGD.

Convergence by competition: The quadratic example in
Equation (3) shows that the bilinear term xy is crucial for
the presence of ICR. Otherwise, SimGD reduces to each
player moving independently according to gradient descent.
In fact, the strength of ICR decreases rapidly as |α| and |β|
diverge to infinity.

The mixed term xy models the ability of each player to
retaliate against actions of the other player. In the case of
β < 0, as the maximizing player y moves to plus infinity in
order to maximize its reward, it becomes a locally optimal
strategy for the minimizing player x to move towards nega-
tive infinity in order to minimize the dominant term xy. If
|β| � 1 it is favorable for the maximizing player to move
back towards zero in order to maximize the dominant term
xy. The reason for the maximizing player to stay in the sub-
optimal point y = 0 (the maximizer of its loss, for x = 0)
is the that minimizing player can use the mixed term xy to
punish every move of y with a counterattack. Thus, the need
to avoid counterattacks justifies the seemingly sub-optimal
decision of the maximizing player to stay in y = 0.

The generator strikes back! This phenomenon is also
present in the example of Figure 4. Consider the checkpoint
generator from Figure 4 and the over-trained discriminator
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that achieves near perfect score against the discriminator. As
we can see in Figure 8, training the generator while keeping
the over-trained discriminator fixed leads to a rapidly in-
creasing discriminator loss. The over-trained discriminator
has become vulnerable to counterattack by the generator! If
instead the generator is trained against the checkpoint dis-
criminator, the loss increases only slowly. Thus, ICR can be
interpreted as the discriminator trying to avoid counterattack
by the generator.

Agent modelling for stronger ICR: The update (x, y) of
SimGD applied to the loss function f can be interpreted as
the two players solving, at each step, the local optimization
problem

min
x
x>∇xf(xk, yk)+

‖x‖2

2η
, max

y
y>∇yf(xk, yk)−‖y‖

2

2η

The terms x>∇xf(xk, yk), y>∇yf(xk, yk) express the
belief about the loss associated to different actions, based
on local information. The quadratic regularization terms
express their their uncertainty about these beliefs, letting
them avoid extreme actions (large steps). However, y (x)
does not appear in the local optimization problem of x (y).
Thus, the two players are not taking the presence of their
opponent into account when choosing their actions. Accord-
ingly, ICR arises only because of the players reaction to,
rather than anticipation of each others actions. We propose
to strengthen ICR by using local optimization problems that
model the players’ anticipation of each other’s action.

Competitive gradient descent: The updates of competitive
gradient descent (CGD) (Schaefer & Anandkumar, 2019)
are obtained as Nash equilibria of the local game

min
x
x>∇xf(xk, yk) + x>[Dxyf(xk, yk))]y +

‖x‖2

2η
,

max
y

y>∇yf(xk, yk) + y>[Dyxf(xk, yk))]x− ‖y‖
2

2η
.

Under CGD, the players are aware of each other’s presence
at every step, since the mixed Hessian x>[Dxyf(xk, yk)]y
informs each player, how the simultaneous actions of the
other player could affect the loss incurred due to their own
action. This element of anticipation strengthens ICR, as
indicated by the convergence results provided by Schaefer
& Anandkumar (2019). Providing additional evidence, we
see in Figure 8 that attempting to over-train the discrimina-
tor using CGD leads to a discriminator that is even more
robust than the checkpoint discriminator. Applying CGD
to the example of Figure 7 also increases the stability of
the approximate projection of Pdata onto S according to the
metric implicit in the discriminator. These results suggest to
use CGD to strengthen ICR in GAN training, which we will
investigate in the next section. We also expect methods such
as LOLA (Foerster et al., 2018) or SGA (Balduzzi et al.,

0

1

2

3

4

5

Figure 8. ICR and opponent-awareness: When training the gen-
erator for just a few iterations against the over-trained discrimi-
nator of Figure 4, the discriminator loss increases rapidly. When
attempting to over-train with CGD instead of Adam, the resulting
discriminator is even more robust. Similarly, CGD is able to signif-
icantly increase the duration for which the generator stays accurate
in the (more important) x-direction in Figure 7.

2018; Gemp & Mahadevan, 2018) to strengthen ICR, but a
detailed comparison is beyond the scope of this work.

6. Empirical study on CIFAR10
Experimental setup: Based on the last section, CGD
strengthens the effects of ICR and should therefore improve
GAN performance. We will now investigate this question
empirically. In order to make for a fair comparison with
Adam, we combine CGD with a simple RMSprop-type
heuristic to adjust learning rates, obtaining adaptive CGD
(ACGD, see supplement for details). As loss functions, we
use the original GAN loss (OGAN) of (1) and the Wasser-
stein GAN loss function (WGAN) given by

min
G

max
D

Ex∼Pdata
[D(x)]− Ex∼PG [D(x)] .

When using Adam on OGAN, we stick to the common prac-
tice of replacing the generator loss by Ex∼PG [− log (D(x)]],
as this has been found to improve training stability (Goodfel-
low et al., 2014; 2016). In order to be generous to existing
methods, we use an existing architecture intended for the
use with WGAN gradient penalty (Gulrajani et al., 2017).
As regularizers, we consider no regularization (NOREG),
`2 penalty on the discriminator with different weights (L2),
Spectral normalization (Miyato et al., 2018) on the discrimi-
nator (SN), or 1-centered gradient penalty on the discrimi-
nator, following (Gulrajani et al., 2017) (GP). Following the
advice in (Goodfellow et al., 2016) we train generator and
discriminator simultaneously, with the exception of WGAN-
GP and Adam, for which we follow (Gulrajani et al., 2017)
in making five discriminator updates per generator update.
We use the Pytorch implementation of inception score (IS)
(Salimans et al., 2016) to compare generator quality.4

Experimental results: We will now summarize our main

4The Pytorch implementation gives slightly different scores
than Tensorflow. We report Tensorflow IS in the supplementary
material showing that the relative performance is largely the same.
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Figure 9. We plot the inception score (IS) against the number of iterations (first panel) and gradient or Hessian-vector product computation
(second panel). In the third panel we show final samples of WGAN trained with ACGD and without explicit regularization. In panel four,
we compare measure image quality using the Frechet-inception-distance (FID, smaller is better). The results are consistent with those
obtained using IS. In panel five, we plot the difference between inception scores between ACGD and Adam (positive values correspond to
a larger score for ACGD) over different iterations and models. The only cases where we observe nonconvergence of ACGD are OGAN
without regularization or with weight decay of weight 0.0001, as shown in the last panel. The inception score is however still higher than
for the same model trained with Adam. When using Adam on the original saturating GAN loss (which we used with ACGD), training
breaks down completely.

experimental findings, (see Figure 9). (1:) When restricting
our attention to the top performing models, we observe that
the combination of ACGD with the WGAN loss and without
any regularization achieves higher inception score than all
other combinations tested. (2:) The improvement obtained
from training with ACGD persists when measuring image
quality according to the Freched-inception-distance (FID)
(Heusel et al., 2017). (3:) When comparing the number of
gradient computations and Hessian-vector products, ACGD
is significantly slower than WGAN loss with spectral nor-
malization trained with ADAM, because of the iterative
solution of the matrix inverse in ACGD’s update rule. (4:)
The only instance where we observe erratic behavior with
ACGD is when using OGAN without regularization, or with
a small `2 penalty. However, ACGD still outperforms Adam
on those cases. In particular training with Adam breaks
down completely when using the original saturating loss
(as we do for ACGD). (5:) When plotting the difference
between the inception scores obtained by ACGD and Adam
for the same model over the number of iterations, for all
models, we observe that ACGD often performs significantly
better, and hardly ever significantly worse.

Since CGD strengthens the effects of ICR, the performance
improvements obtained with CGD provide further evidence
that ICR is a key factor to GAN performance.

7. Conclusion and outlook
In this work, we have pointed out a fundamental flaw present
in the static minimax approach to understanding GANs. As
an alternative we explain GAN performance with ICR, a
mechanism that focuses on the dynamics of simultaneous
training. While there is more work left to be done in order
to characterize ICR, we provide a number of illustrative
experiments on low-dimensional examples and real GANs
that supports our conclusions. We also use a game-theoretic
interpretation of ICR to identify algorithms such as CGD
that can lead to stronger ICR. Indeed, comprehensive experi-
ments on CIFAR10 show systematically improved inception
scores and stability when training with CGD, adding further
support to our findings.
An important direction for future work is the closer inves-
tigation of the generator. Recent work on variational au-
toencoders (Razavi et al., 2019) and GANs (Karras et al.,
2019) suggests that the inductive biases of the generator play
an important role, as well. Understanding their interaction
with ICR is an important direction of future work. We also
hope to better understand the relationship of ICR with local
solution concepts such as “proximal equilibria” (Farnia &
Ozdaglar, 2020) that emphasize slow improvement of the
discriminator.
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