
Supplementary materials for Implicit competitive regularization in GANs

Florian Schäfer * 1 Hongkai Zheng * 2 3 Anima Anandkumar 1

1. Experimental details
1.1. Euclidean distance on images

In Figure 1 we provide a larger reproduction of Figure 2
from the main paper. We see that also on the larger resolu-
tion, the third pair of images is visually indistinguishable,
despite having the largest Euclidean distance of all pairs.
The textures of this image are very rough, with a rapid alter-
nation of bright and dark pixels. Therefore, a slight warping
of the image will lead to dark pixels taking the place of
bright ones and vice versa, leading to a large Euclidean
distance. A similar effect could be achieved by the wind
slightly moving the foliage between, for instance, succes-
sive frames of a video. Thus, this phenomenon could be
observed in real images.

1.2. ICR as projection

For the experiments in Figure 5 of the main paper, we used
two tiny neural networks with 28 parameters and three layers
each as generator and discriminator.

The generator G is composed as follows:

1. Use first four parameters as input, apply arctan nonlin-
earity.

2. Apply four times four dense layer, followed by arctan.

3. Apply two times four dense layer, followed by the non-
linearity (

x
y

)
7→
(

exp (arctan (y) /π + x)
exp (arctan (y) /π − x)

)
.

The form of the last nonlinearity ensures that the output is
restricted to the set

S :=

{
(es+t, es−t)

∣∣∣∣s ∈ [−1

2
,

1

2

]
, t ∈ R

}
⊂ R2

that does not include the target Pdata := (2, 2). Note that in
this simple example the generator does not take any input,
but directly maps the weights wG ∈ R28 to a pair of real
numbers.

The discriminator Dη is composed as follows:

1. Rescale input by the diagonal matrix η, apply four times
two dense layer, followed by arctan.

2. Apply four times four dense layer, followed by arctan.

3. Apply one times four dense layer, followed by arctan.

While we did not observe the metastable projection behavior
on all runs, we observed it in 13 out of 20 independent runs
when using SimGD. When using CGD we observed the
projection behavior in 17 out of 20 independent runs (with
the same initialization as in the SimGD cases). Furthermore,
the number of iterations spent in the projection states was
larger when using CGD.

1.3. ICR on MNIST

In our experiments on MNIST, we use the network archi-
tectures detailed in Table 1 and Table 2. We train using
stochastic SimGD with a learning rate of 0.01. First, we
train the GAN for 9,000 iterations with a batch size of 128.
We refer to the resulting generator and discriminator as the
checkpoint generator and discriminator.

1.3.1. DETAILS ABOUT FIGURE 4 OF THE MAIN PAPER

We then create a test set that has a real set Xreal that has
500 images sampled from MNIST training set, and a fake
set Xfake that has 500 images generated by the checkpoint
generator, as illustrated in Figure 2.

Let Dt, Dc denote, respectively, the discriminator at time
step t and the checkpoint discriminator. The Euclidean
distance between predictions of Dt and Dc over set Xreal

and Xfake in Figure 4 of the main paper is given by

dset(Dt, Dc) =

√ ∑
x∈Xset

(Dt(x)−Dc(x))2 (1)

where set ∈ {real, fake}.

1.4. CIFAR10 experiments

1.4.1. ARCHITECTURE

For our experiments on CIFAR10, we use the same DCGAN
network architecture as in Wasserstein GAN with gradient
penalty (Gulrajani et al., 2017), which is reported in Table 5
and Table 4.



Supplementary materials for Implicit competitive regularization in GANs

Figure 1. A larger reproduction of Figure 2 of the main paper. The first pair is based on an image by Matt Artz, the second pair on an image
by Yanny Mishchuk, and the third pair on an image by Tim Mossholder. All images were obtained from https://unsplash.com/.

(a) A part of the fake set (b) A part of the real set

Figure 2. Test set for Figure 4 of the main paper.

Module Kernel Stride Output shape
Gaussian distribution N/A N/A 96

Linear, BN, ReLU N/A N/A 1024
Linear, BN, ReLU N/A N/A 128× 7× 7

ConvT2d, BN, ReLU 4× 4 2 64× 14× 14
ConvT2d, Tanh 4× 4 2 1× 28× 28

Table 1. Generator architecture for MNIST experiments

Module Kernel Stride Output shape
Input N/A N/A 1× 28× 28

Conv2d, LeakyReLU 5× 5 1 32× 24× 24
MaxPool 2× 2 N/A 32× 12× 12

Conv2d, LeakyReLu 5× 5 1 64× 8× 8
MaxPool 2× 2 N/A 64× 4× 4

Linear, LeakyReLU N/A N/A 1024
Linear N/A N/A 1

Table 2. Discriminator architecture for MNIST experiments

1.4.2. HYPERPARAMETERS

We compare the stability and performance of Adam and
ACGD by varying the loss functions and regularization
methods.

Loss:

1. Original GAN loss (Goodfellow et al., 2014)

Lo = Ex∼Pdata
[logD(x)] + Ex∼PG [log (1−D(x))] .

2. Wasserstein GAN loss (Arjovsky et al., 2017)

Lw = Ex∼Pdata
[D(x)]− Ex∼PG [D(x)] .

Regularization:

1. L2 weight penalty on the discriminator parameters λ ∈
{10−2, 10−3, 10−4}.

https://unsplash.com/


Supplementary materials for Implicit competitive regularization in GANs

0 1 2 3 4 5 6 7 8
Gradient calls(106)

1
2
3
4
5
6
7

In
ce

pt
io

n 
sc

or
e

WGAN-NOREG+ACGD
WGAN-GP+Adam
OGAN-Dropout+Adam

(a) Against gradient call

0 200 400 600 800 100012001400
Generator updates(103)

1
2
3
4
5
6
7

In
ce

pt
io

n 
sc

or
e

WGAN-NOREG+ACGD
WGAN-GP+Adam
OGAN-Dropout+Adam

(b) Against the generator itera-
tions

Figure 3. Tensorflow inception scores for important runs

2. Gradient penalty on the discriminator proposed by
WGAN-GP paper (Gulrajani et al., 2017).

3. Spectral normalization on the discriminator proposed by
SNGAN paper (Miyato et al., 2018).

Each experiment is trained with a batch size of 64. When
using Adam and the original GAN loss, we adopt the log-
trick as recommended in GAN paper (Goodfellow et al.,
2014). When using ACGD, the generator and discriminator
share the same loss function. For the training of WGAN-
GP, we use the same training strategy and hyperparameters
as WGAN-GP1 (Gulrajani et al., 2017). Hyperparameter
setting for each experiment is reported in Table 3.

1.4.3. TENSORFLOW INCEPTION SCORE

We compute the Tensorflow version of the inception scores
for important runs of our experiments to show that the rela-
tive performance of the different models is largely the same.
As reported in Figure 3, our results matches the ones re-
ported in the literature (Figure 3 in (Gulrajani et al., 2017))
with ACGD still outperforming WGAN-GP trained with
Adam by around 10%.

1.5. Details on ACGD

In order to make a fair comparison with Adam, we run our
experiments with ACGD, a variant of CGD that adaptively
adjusts CGD’s step size. The algorithm is described in Al-
gorithm 1. ACGD computes individual step sizes for the
different parameters. Let Ax,t and Ay,t denote the diagonal
matrices containing the step sizes of x and y at time step
t as elements. If Ax,t and Ay,t are multiples of the iden-
tity, the algorithm reduces to CGD with the corresponding
step size. The reason we rearrange the terms as shown in
Algorithm 1 is that we want the matrix inverse to contain
an additive identity (to decrease the condition number) and
be symmetric positive definite (so that we can use conju-
gate gradient (Eisenstat, 1981) for its computation). ACGD

1Check more details in WGAN-GP official repository:
https://github.com/igul222/improved wgan training/blob/master/gan cifar.py

adjusts CGD’s step size adaptively during training with sec-
ond moment estimate of the gradients. The update rules are
derived from the local game in the same way as for CGD
(Schaefer & Anandkumar, 2019):

min
x
x>∇xf(xt, yt) + x>[Dxyf(xt, yt))]y +

1

2
xTA−1x,kx,

max
y

y>∇yf(xt, yt) + y>[Dyxf(xt, yt))]x−
1

2
yTA−1y,ky.

Algorithm 1 ACGD, a variant of CGD with RMSProp-type
heuristic to adjust learning rates. All operations on vectors
are element wise. D2

xyf , D2
yxf denote the mixed Hessian

matrix ∂2f
∂x∂y and ∂2f

∂y∂x . βt2 denotes β2 to the power t. φ(η)
denotes a diagonal matrix with η on the diagonal. Hyperpa-
rameter settings for the tested GANs training problems are
α = 10−4, β2 = 0.99, and ε = 10−5

Require: α: Step size
Require: β2: Exponential decay rates for the second mo-

ment estimates
Require: maxy minx f(x, y): zero-sum game objective

function with parameters x, y
Require: x0, y0 Initial parameter vectors
t← 0 Initialize timestep
vx,0, vy,0 ← 0 (Initialize the 2nd moment estimate)
repeat
t← t+ 1
vx,t ← β2 · vx,t−1 + (1− β2) · g2x,t
vy,t ← β2 · vy,t−1 + (1− β2) · g2y,t
vx,t ← vx,t/(1− βt2)
vy,t ← vy,t/(1− βt2) (Initialization bias correction )
ηx,t ← α/(

√
vx,t + ε)

ηy,t ← α/(
√
vy,t + ε)

Ax,t = φ(ηx,t)
Ay,t = φ(ηy,t)

∆xt ← −A
1
2
x,t(I +A

1
2
x,tD

2
xyfAy,tD

2
yxfA

1
2
x,t)
−1A

1
2
x,t

(∇xf +D2
xyfAy,t∇yf)

∆yt ← A
1
2
y,t(I +A

1
2
y,tD

2
yxfAx,tD

2
xyfA

1
2
y,t)
−1A

1
2
y,t

(∇yf −D2
yxfAx,t∇xf)

xt ← xt−1 + ∆xt
yt ← yt−1 + ∆yt

until xt, yt converged



Supplementary materials for Implicit competitive regularization in GANs

Experiment Loss Optimizer Learning rate Spectral Normalization L2 penalty GP weight Critic iterations
OGAN-0.0001L2+Adam Lo Adam 10−4 N/A 10−4 N/A 1
OGAN-0.0001L2+ACGD Lo ACGD 10−4 N/A 10−4 N/A 1
OGAN-NOREG+Adam Lo Adam 10−4 N/A N/A N/A 1
OGAN-NOREG+ACGD Lo ACGD 10−4 N/A N/A N/A 1

WGAN-GP+Adam Lw Adam 10−4 N/A N/A 10 5
WGAN-SN+Adam Lw Adam 10−4 Yes N/A N/A 1

WGAN-NOREG+ACGD Lw ACGD 10−4 N/A N/A N/A 1
WGAN-GP+ACGD Lw ACGD 10−4 N/A N/A 10 5

WGAN-0.01L2+Adam Lw Adam 10−4 N/A 10−2 N/A 1
WGAN-0.001L2+Adam Lw Adam 10−4 N/A 10−3 N/A 1
WGAN-0.001L2+ACGD Lw ACGD 10−4 N/A 10−3 N/A 1

Table 3. Settings for all the experiments that occurred in Figure 7 of the main paper.

Module Kernel Stride Output shape
Gaussian distribution N/A N/A 128

Linear, BN, ReLU N/A N/A 256× 4× 4
ConvT2d, BN, ReLU 4× 4 2 128× 8× 8
ConvT2d, BN, ReLU 4× 4 2 64× 16× 16

ConvT2d, Tanh 4× 4 2 3× 32× 32

Table 4. Generator architecture for CIFAR10 experiments

Module Kernel Stride Output shape
Input N/A N/A 3× 32× 32

Conv2d, LeakyReLU 4× 4 2 64× 16× 16
Conv2d, LeakyReLU 4× 4 2 128× 8× 8
Conv2d, LeakyReLu 4× 4 2 256× 4× 4

Linear N/A N/A 1

Table 5. Discriminator architecture for CIFAR10 experiments

References
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-

erative adversarial networks. In International conference
on machine learning, pp. 214–223, 2017.

Eisenstat, S. C. Efficient implementation of a class of pre-
conditioned conjugate gradient methods. SIAM Journal
on Scientific and Statistical Computing, 2(1):1–4, 1981.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in neural information processing systems,
pp. 5767–5777, 2017.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-

tral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018.

Schaefer, F. and Anandkumar, A. Competitive gradi-
ent descent. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32, pp. 7623–7633. Curran Associates, Inc.,
2019. URL http://papers.nips.cc/paper/
8979-competitive-gradient-descent.pdf.

http://papers.nips.cc/paper/8979-competitive-gradient-descent.pdf
http://papers.nips.cc/paper/8979-competitive-gradient-descent.pdf

