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Abstract

We present a description of the function space
and the smoothness class associated with a con-
volutional network using the machinery of repro-
ducing kernel Hilbert spaces. We show that the
mapping associated with a convolutional network
expands into a sum involving elementary func-
tions akin to spherical harmonics. This functional
decomposition can be related to the functional
ANOVA decomposition in nonparametric statis-
tics. Building off our functional characterization
of convolutional networks, we obtain statistical
bounds highlighting an interesting trade-off be-
tween the approximation error and the estimation
error.

1. Introduction

The renewed interest in convolutional neural net-
works (Fukushima, 1980; LeCun et al., 1995) in computer
vision and signal processing has led to a major leap in gen-
eralization performance on common task benchmarks, sup-
ported by the recent advances in graphical processing hard-
ware and the collection of huge labelled datasets for training
and evaluation. Convolutional neural networks pose major
challenges to statistical learning theory. First and foremost,
a convolutional network learns from data, jointly, both a fea-
ture representation through its hidden layers and a prediction
function through its ultimate layer. A convolutional neural
network implements a function unfolding as a composition
of basic functions (respectively nonlinearity, convolution,
and pooling), which appears to model well visual informa-
tion in images. Yet the relevant function spaces to analyze
their statistical performance remain unclear.

The analysis of convolutional neural networks (CNN5s) has
been an active research topic. Different viewpoints have
been developed. A straightforward viewpoint is to dismiss
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completely the grid- or lattice-structure of images and ana-
lyze a multi-layer perceptron (MLP) instead acting on vec-
torized images, which has the downside to set aside the most
interesting property of CNNs which is to model well images
that is data with a 2D lattice structure.

The scattering transform viewpoint and the i-theory view-
point (Mallat, 2012; Bruna & Mallat, 2013; Mallat, 2016;
Poggio & Anselmi, 2016; Oyallon et al., 2018) keeps the
triad of components nonlinearity-convolution-pooling and
their combination in a deep architecture and characterize
the group-invariance properties and compression properties
of convolutional neural networks. Recent work (Bietti &
Mairal, 2017) considers risk bounds involving appropriately
defined spectral norms for convolutional kernel networks
acting on continuous-domain images.

We present in this paper the construction of a function space
including the mapping associated with a convolutional net-
work acting on discrete-domain images. Doing so, we char-
acterize the sequence of eigenvalues and eigenfunctions of
the related integral operator, hence shedding light on the
harmonic structure of the function space of a convolutional
neural network. Indeed the eigenvalue decay controls the
statistical convergence rate. Thanks to this spectral charac-
terization, we establish high-probability statistical bounds,
relating the eigenvalue decay and the convergence rate.

We show that a convolutional network function admits a
decomposition whose structure is related to a functional
tensor-product space ANOVA model decomposition (Lin,
2000). Such models extend the popular additive models in
order to capture interactions of any order between covari-
ates. Indeed a tensor-product space ANOVA model decom-
poses a high-dimensional multivariate function as a sum of
one-dimensional functions (main effects), two-dimensional
functions (two-way interactions), and so on.

A remarkable property of such models is their statistical
convergence rate, which is within a log factor of the rate in
one dimension, under appropriate assumptions. We bring
to light a similar structure in the decomposition of mapping
associated with a convolutional network. This structure
plays an essential role in the convergence rates we present.
This suggests that an important component of the model-
ing power of a convolutional network is to capture spatial
interactions between sub-images or patches.
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This work makes the following contributions. We construct
a kernel and a corresponding reproducing kernel Hilbert
space (RKHS) to describe a convolutional network (CNN).
The construction encompasses networks with any number
of filters per layer. Moreover, we provide a sufficient con-
dition for the kernel to be universal. Then, we establish
an explicit, analytical, Mercer decomposition of the multi-
layer kernel associated to this RKHS. We uncover a rela-
tionship to a functional ANOVA model, by highlighting a
sum-product structure involving interactions between sub-
images or patches. We obtain a tight control of the eigen-
value decay of the integral operator associated under general
conditions on the activation functions. Finally, we establish
convergence rates to the Bayes classifier for the regularized
least-squares estimator in this RKHS. From a nonparametric
learning viewpoint, these rates are optimal in a minimax
sense. All the proofs can be found in the longer version of
the paper (Scetbon & Harchaoui, 2020).

2. Basic Notions

Image Space. We first describe the mathematical frame-
work to describe image data. An image is viewed here
as a collection of normalized sub-images or patches. The
sub-image or patch representation is standard in image pro-
cessing and computer vision, and encompasses the pixel
representation as a special case (Mairal et al., 2014a). Note
that the framework presented here readily applies to sig-
nals and any grid or lattice-structured data with obvious
changes in indexing structures. We focus on the case of im-
ages as it is currently a popular application of convolutional
networks (Goodfellow et al., 2016).

Denote X the space of images. Let h, w > 1 respectively
the height and width of the images and min(h?, w?) > d >
2 the size of each patch. We consider square patches for
simplicity. Denoting > 1 the height of a patch, we have
that 2 = d. We define for each (i,5) € {1,....,h—r+1} x
{1,...,w — r + 1} the patch extraction operator at location
(i, j) as

P j(X) = (Xisej4nk)ekeft,..ry € R? €]

where X € R"*% Moreoverlet 1 <n < (h—7r+1)(w —
r+1)andlet AC {1,...,h—r+1} x{1,..,w—r+1}
such that |A| = n.

Define now the initial space of images as E4 :=
{X € R |P(X)|]s = 1 for z € A} where
each patch considered has been normalized. Since
{i+4,j+k): (i,j) €A and (ke{l,..,r}} =
{1,...h—r+1} x{1,...,w — r + 1}, the mapping
¢ : RM>*v 5 RIx.. xR¢
X - (PZ(X))zeA

is injective. The mappings Z := ¢(FE,4) and E4 are then

Figure 1. For simplicity, we consider a single-channel image in
this illustration. Normalized patches are extracted from the image.

isomorphic. Hence we shall work from now on with 7 as
the image space.

We have by construction that Z C [[;_, S%~! the n-th
Cartesian power of S9!, where S?~! is the unit sphere
of R%. Moreover, as soon as the patches considered are
disjoint, we have that Z = []""_, S 4=1 Tn order to simplify
the notation, we shall always consider the case where Z =
I, S9=1 where d is the dimension of the square patches
and n is the number of patches considered. In the following,
we shall denote for any ¢ > 1 and set X, the g-ary Cartesian
power [, X := (X)%. Moreover if X € (X)?, we shall
denote X := (X;)?_, where each X; € X.

Let P,,(d) be the space of homogeneous polynomials of
degree m in d variables with real coefficients and H.,,(d)
be the space of harmonics polynomials defined by

Hon(d) := {P € Pp(d)|AP = 0} )

d

where A- = g% is the Laplace operator on R (Folland,
i=1

2016).

Moreover, define H,, (S 1) the space of real spherical
harmonics of degree m defined as the set of restrictions
of harmonic polynomials in #,,(d) to S9~1. Let also
ngd’l(sdfl) be the space of (real) square-integrable
functions on the sphere S%~! endowed with its induced
Lebesgue measure dog_; and |S9~!| the surface area
of §4=1. [34-1 (541} endowed with its natural inner
product is a separable Hilbert space and the family of
spaces (H,, (597 1))m>0, yields a direct sum decomposi-
tion (Efthimiou & Frye, 2014)

ngdfl(sdfl) _ @ Hm(Sdfl) 3)

m>0

which means that the summands are closed and pairwise or-
thogonal. Moreover, each H,,(S?~1) has a finite dimension
Qm,d With ag g = 1, o, = d and for m > 2

d—1+m d—14+m—2
Onod = —
od m m—2
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Therefore for all m > 0, given any orthonormal basis of
H,,(S1Y), (YL, ..., Y;n™?), we can build an Hilbertian
basis of L37*~*(S9~1) by concatenating these orthonormal
basis. Let Ly(Z) := L?g;ldad’l (Z) be the space of (real)
square-integrable functions on Z endowed with the n-tensor
product measure ®;— dog—1 = dog—1 ® ... ® dog—; and
let us define the integral operator on Lo (Z) associated with
a positive semi-definite kernel K on 7

TK : LQ(I) — LQ(I)
f - fZK(xv )f(l') ®?:1 do—dfl(x)'

As soon as [, K(z,z)dog_1 ® ... ® dog_1(x) is finite,
which is clearly satisfied when K is continuous, T’k is well

defined, self-adjoint, positive semi-definite and trace-class
(Simon, 2010; Smale & Zhou, 2007).

We approach here the modeling of interactions of patches
or sub-images with functional ANOVA modelling in mind.
Let us first recall the basic notions to define a tensor product
of functional Hilbert spaces (Lin, 2000; Steinwart & Christ-
mann, 2008). Consider a Hilbert space F; of functions of
X and a Hilbert space E of functions of Xs. The tensor
product space E; ® Ej is defined as the completion of the
class of functions of the form

k
> fi(X1)gi(Xa)

i=1

where f; € E1, g; € F5 and k is any positive integer, under
the norm induced by the norms in F; and Fs. The inner
product in E; ® E» satisfies

(f1(X1)g1(X2), f2(X1)92(X2)) By 0B,
= (f1(X1), f2(X1)) B, (91(X2), 92(X2)) E,

where for i = 1,2, (-, -) g, denote the inner product in E;.
Note that when 7 and F5 are RKHS-s with associated ker-
nels k; and ko, one has an explicit formulation of the kernel
associated to the RKHS F; ® E5 (Carmeli et al., 2010). A
tensor product space ANOVA model captures interactions
between covariates as follows. Let D be the highest or-
der of interaction in the model. Such model assumes that
the high-dimensional function to be estimated is a sum of
one-dimensional functions (main effects), two-dimensional
functions (two-way interactions), and so on. That is, the
n-dimensional function f decomposes as

f(a:l,...,xn) :C+Z Z fA(xA)

k=1 Ac{1,...,n}
|A|=k

where C'is a constant and the components satisfy conditions
that guarantee the uniqueness (Scetbon & Harchaoui, 2020).
More precisely, after assigning a function space for each

main effect, this strategy models an interaction as living in
the tensor product space of the function spaces of the inter-
acting main effects. In other words, if we assume f; (X1) to
be in a Hilbert space E; of functions of X; and f>(X2) be
in a Hilbert space F» of functions of X5, then we can model
fi2 asin F7 ® Fs, the tensor product space of F; and Fs.
Higher order interactions are modeled similarly. In (Lin,
2000), the author considers the case where the main effects
are univariate functions living in a Sobolev—Hilbert space
with order m > 1 and domain [0, 1], denoted H™ ([0, 1]),
defined as

{f: F@) abs. cont., v = 0,...,m — 1; f(™) ¢ Lg}

More generally, functional ANOVA models assume that the
main effects are univariate functions living in a RKHS (Lin,
2000).

3. Convolutional Networks and Multi-Layer
Kernels

We proceed with the mathematical description of a con-
volutional network. The description follows previous
works (Bruna & Mallat, 2013; Mairal et al., 2014b; Bietti
& Mairal, 2017). Let N be the number of hidden layers,
(0;)X.;, N real-valued functions defined on R be the ac-
tivation functions at each hidden layer, (d;)Y; the sizes
of square patches at each hidden layer, (p;)Y; the num-
ber of filters at each hidden layer and (n;){" the num-
ber of patches at each hidden layer. As our input space is
T = (SH" wesetdy = d, po = 1, ng = n. Moreover
as the prediction layer is a linear transformation of the N'"
layer, we do not need to extract patches from the N layer,
and we set dy = n_1 such that the only “patch” extracted
for the prediction layer is the full “image” itself. Therefore
we can also set ny = 1.

Then, a mapping defined by a convolutional network is
parameterized by a sequence W := (W°, ..., W) where
for0 < k < N—1, Wk € RPr+1%dkPk gnd WN € RINPN
for the prediction layer. Indeed let W such a sequence and
denote for k € {0,...., N — 1}, Wk = (wlf,...,w’;kH)T
where forall j € {1, ..., pp41}, wh € R4+, Moreover let
us define for all k € {0,...,N — 1}, 7 € {1,...,px+1} and

q € {1,...,ng+1} the following sequence of operators.

Convolution Operators.

CF:Z e (RUP )™ — CK(Z) = ((Zs,w])) ", € R™

=
Non-Linear Operators.

M, : X e R™ — Mk(X) = (0‘;C (XZ)):l:kl € R™

ng

Pooling Operators. Let (%’“ ;)i %, be the pooling factors
at layer k (which are often assumed to be decreasing with
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respect to the distance between ¢ and 7).

ny

Z AL j c R™

Ay - XER”"—)Ak

Patch extraction Operators.

P‘;H-l (Rpk+1)7lk: N RPr+1dk+1

U o PMLU) = (Ui

Notice that, as we set dy = ny_1 and ny = 1, hence
when &k = N — 1, there is only one patch extraction operator
which is PV = 1d.

Then the function associated to W generated by the convolu-
tional network can be obtained by the following procedure:
let X° € Z, then we can denote X° = (X1)"| where for
all i € [|1,n4]], X? € S9-1. Therefore we can build by
induction the sequence (X*)X_ o by doing the following
operations starting from k = 0 unt11 k=N-1

(X, wh)) ™ @)
<<X’ﬂw’?>>>?51 (5)
Z% 40k (( >)> 6)

chxky = (
My(CF (X)) = (on

A (M (CF

Writing now

Z (1, 5) = Ax(Mi(CF(X5)));
we have
Xkt (Zps1 (2, 1), oy Zio1 (4, Prt1)) ) oy
and finally
Xk+1 (PkH(XkH))Zfil @)

The mapping associated with a convolutional network there-
fore reads Ny (X%) = (XN, WN)gonnn_1. In the fol-
lowing, we denote F W )N, the function space of all
the functions Ny, defined as above on Z for any choice

of (WF)N_ such that for 0 < k < N — 1, W ¢
RPk+1 Xd’cpk and WY € RN PN We omit the dependence
of Fio)N | (poyy, With respect to (d;)[L; and (n;)]L; to

simplify the notations. We shall also consider the union
space

Flony, = U

(p1,--PN)ENLY

Lo, )N,

to encompass convolutional networks with varying number
of filters across layers.

Example. Consider the case where at each layer the num-
ber of filters is 1. This corresponds to the case where for all
ke {1,...,N}, pr = 1. Therefore we can omit the depen-
dence in j of the convolution operators defined above. At
each layer k, Xk+1 ¢ R™* is the new image obtained after
a convolution, a nonlinear and a pooling operation with ny
pixels which is the number of patches that has been extracted
from the image X* at layer k& — 1. Moreover X**1 is the
decomposition of the image Xk+1 in ng+1 patches obtained

: k+1\"k
thanks to the patch extraction operators (P, 1) 27",

Finally after N layers, we obtain that X~V = X~ ¢ R~-1
which is the final image with n pixels obtained after re-
peating N times the above operations. Then the prediction
layer is a linear combination of the coordinates of the final
image X* from which we can finally define for all X° € Z,
NW (XO) = <XN7 WN>R"N—1 .

We show in Prop. 1 below that there exists an
RKHS (Scholkopf & Smola, 2002) containing the space
of functions ]:(m)ﬁ\’:p and this, for a general class of activa-
tion functions, (o;)Y.,, admitting a Taylor decomposition
on R. Moreover we show that for a large class of nonlinear
functions, the kernel is actually a c-universal kernel on Z. It
is worthwhile to emphasize that the definition of the RKHS
H y we give below does not depend on the number of filters
(pz)fv Zl at each hidden layer. Therefore our framework en-
compasses networks with varying number of filters across
layers (Scetbon & Harchaoui, 2020).

Definition 3.1. (c-universal (Sriperumbudur et al., 2011))
A continuous positive semi-definite kernel k on a compact
Hausdorff space X is called c-universal if the RKHS, H
induced by k is dense in C(X') w.r.t. the uniform norm.
Proposition 1. Let N > 2 and (o)., be a sequence of
N functions with a Taylor decomposition on R. Moreover
let (fi)N_| be the sequence of functions such that for every
ie{l,..,N}

®

>0

Then the bivariate function defined on T X T as

Kn(X,X'):=fyo..0f (Z fi ((Xi,x;md))

i=1
is a positive definite kernel on Z, and the RKHS associated

Hy contains F,, )N the function space generated by con-

volutional networks. Moreover as soon as O' ( ) # 0 for
alli > 1landt > 0, then K is a c- unzversal kernel on T.

Function space. A simple fact is that

inf BI(F(X) = Y)?] < jnf B(f(X) - V)’
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where F' 1= }‘(J v . In other words the minimum ex-
pected risk in Hy is a lower bound on the minimum ex-
pected risk in F. Since a major concern of recent years
has been the spectacular performance of deep networks i.e.
how small they can drive the risk, analyzing them via this
kind of Hilbertian envelope can shed more light on the rela-
tion between their multi-layer structure and their statistical
performance. From this simple observation, one could ob-
tain statistical bounds on F' using high-probability bounds
from (Boucheron et al., 2005). However, we choose to focus
on getting tight statistical bounds on H instead, in order
to explore the connection between the statistical behavior
and the integral operator eigenspectrum.

Universality. For a large class of nonlinear activation
functions, the kernel K n defined above is actually univer-
sal. Therefore the corresponding RKHS H y allows one
to get universal consistency results for common loss func-
tions (Steinwart & Christmann, 2008). In particular, if we
choose the least-squares loss, we have then

inf E[(/(X) - Y)Y = B

where R* is the Bayes risk. See Corollary 5.29 in (Steinwart
& Christmann, 2008).

For instance, if at each layer the nonlinear function is
Oexp() = exp x, as in (Mairal et al., 2014b; Bietti & Mairal,
2017), then the corresponding RKHS is universal. There are
other examples of activation functions satisfying assump-
tions from Prop. 1, such as the square activation o5 (x) = 22,
the smooth hinge activation oy, close to the ReLU activa-
tion, or a sigmoid-like function such as o, similar to the

sigmoid function, with

() = ( f/ )

2
oa(r) = " e tap 4 ST

ﬁ a 27

In the following section, we study in detail the properties
of the kernel K. In particular we show an explicit Mer-
cer decomposition of the kernel from which we uncover a
relationship existing between convolutional networks and
functional ANOVA models.

4. Spectral Analysis of Convolutional
Networks

We give now a Mercer decomposition of the kernel intro-
duced in Prop 1. From this Mercer decomposition, we show
first that the multivariate function space generated by a con-
volutional network enjoys a decomposition related to the one
in functional ANOVA models, where the highest order of

interaction is controlled by the nonlinear functions (o),
involved in the construction of the network. Moreover we
also obtain a tight control of the eigenvalue decay under
general assumptions on the activation functions involved in
the construction of the network.

Recall that for all m > 0, we denote (Y}, ..., Y;n™") an
arbitrary orthonormal basis of H,,(S9~1). The next result
gives an explicit Mercer decomposition of the kernels of

interest.

Theorem 4.1. Let N > 2, fi a real valued function that
admits a Taylor decomposition around 0 on [—1, 1] with
non-negative coefficients and (f;)N., a sequence of real
valued functions such that fy o ... o fo admits a Taylor
decomposition around 0 on R with non-negative coefficients
(aq)g>0- Let us denote forall ky, ..., ky, >0, (lky, .o, l,,) €
{1, ~-~aak’1,d} X ..o X {1, ceny

akn,d} and X € T,
A,
X) := Hijt (X
i=1

Then each ey, 1, yr_, is an eigenfunction of T the inte-
gral operator associated to the kernel K, with associated

eigenvalue given by the formula
q n
Aoy yai
(al,...,an> 71:[1 P

€ (ki ),

2 a )

q=0 ag,...,0, 20
n

> ai=q
=1

Fe(kinie ) pey =

where for any k > 0 and o > 0 we have

[S920((d — 1)/2)
)‘k’a 9k+1
d*stk | fe@) 1 (2s+k)! T(s+1/2)
S a0 25+ k) (29)! T(s +k+d/2)

Moreover we have

KN(Xa X/) =

Z Fo(hes le, )y

ki,....kn >0
1<lg, <ak,,a

e kit (X)eth, iy, (X)

where the convergence is absolute and uniform.

From this Mercer decomposition, we get a decomposition of
the multivariate function generated by a convolutional net-
work. This decomposition is related to the one in functional
ANOVA models. But first let us introduce useful notations.
Let us denote

dtTd 1(Sd 1 _{1}@Ld0d 1 Sd—l)

where Ldad '(S971) is the subspace orthogonal to {1}.
Thus we have

QL8757 = QUMD LAT (7).
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Identify the tensor product of {1} with any Hilbert space
with that Hilbert space itself, then ;. LI7i-r(gd-1)
is the direct sum of all the subspaces of the form
Lyg ™ (Xj,) ® . ® Lyy'(X;,) and {1} where
{j1,---»Jx} is a subset of {1,...,n} and the subspaces in
the decomposition are all orthogonal to each other.

In fact, the function space generated by a convolutional
network is a subset of @7, L3"*~* (571 which selects
only few orthogonal components in the decomposition of
@7, L5 (§971) described above and allows only few
interactions between the covariates. Moreover, the highest
order of interactions can be controlled by the depth of the
network. Indeed, in the following proposition, we show
that the eigenvalues (p, 1), ) obtained from the Mer-
cer decomposition vanish as soon as the interactions are
large enough relatively to the network depth (Scetbon &
Harchaoui, 2020).

Proposition 4.1. Let N > 2, f1 a real-valued function
admitting a Taylor decomposition around 0 on [—1, 1] with
non-negative coefficients and fy o .... o fo a polynomial of
degree D > 1. Then, denoting d* := min(D,n), we have
that piy, 1, )7, = 0, as soon as |{i : k; # 0}| > d*, and,
forany f € Foyn , ¢ > d* and {ji,...,jq} C {1,...,n},
we have

dog_1 dog—1 L
fe (Lz,o (X)) ® ... @ Ly g (qu)) .

From this observation, we are able to characterize the func-
tion space of a convolutional network following the same
strategy as functional ANOVA models, but allowing the
main effects to live in an Hilbert space which may not nec-
essarily be a RKHS of univariate functions. We shall refer
to such decompositions as ANOVA-like decompositions to
underscore both their similarity and their difference with
functional ANOVA decompositions.

Definition 4.1. ANOVA-like Decomposition Let f a real
valued function defined on I. We say that f admits an
ANOVA-like decomposition of order r if f can be written as

f(levxn):C+ E E fA(XA)
k=1 Ac{1,...,n}
|A|l=k

where C' is a constant, for all k € {1,r} and for A =
{jl,...,jk} C {1,...,TL} Xy = (le,...,Xjk), fA S
Lgi)d’l (X)) ®...® ng{f*l (X, ) and the decomposition
is unique.

Here the main effects live in Lg:’o’l‘l (S9=1) which is a
Hilbert space of multivariate functions. Thanks to Prop. 4.1,
any function generated by a convolutional network admits
an ANOVA-like decomposition, where the highest order of

interactions is at most d* and it is completely determined
by the functions (o;)¥.;. Moreover even if the degree D is
arbitrarily large, the highest order of interaction cannot be
bigger than n.

Example. For any convolutional network such that oy ad-
mits a Taylor decomposition around 0 on [—1, 1] (as in tanh
and other nonlinear activations), and (c;) ;N=2, are quadratic
functions, the highest order of interaction allowed by the
network is upper bounded by d* < min(2V"1, n).

Finally, from the Mercer decomposition, we can control the
eigenvalue decay under general assumptions on the activa-
tions. Assume that N > 2 and that f; is a function, admit-
ting a Taylor decomposition on [—1, 1], with non-negative
coefficients (b, )m>0. Let us now show a first control of the
(Am,a)m,q introduced in Theorem 4.1.

Proposition 4.2. [fthere exist1 >1r > 0and 0 < c3 < ¢
constants such that for all m > 0

cor™ < by, < g™

then for all o« > 1, there exist Cy o, and Cy o, > 0, constants
depending only on o, and d such that for allm > 0

r\m
CZ,a (1) S /\m,a S Cl,a(m + 1)a717,,m

We can now provide a tight control of the positive eigenval-
ues of the integral operator Tk, associated with the kernel
K sorted in a non-increasing order with their multiplic-
ities which is exactly the ranked sub sequence of positive

eigenvalues in (l‘(ki,lki);;)-

Proposition 4.3. Let us assume that fy o .... o fo is a
polynomial of degree D > 1 and let d* := min(D,n).
Let (um)M_, be the positive eigenvalues of the integral
operator Ty, associated to the kernel Ky ranked in a
non-increasing order with their multiplicities, where M €
N U {+oc0}. Under the same assumptions of Prop. 4.2 we
have M = +o0 and there exists C3,Cy > 0and 0 < v < q

constants such that for all m > 0:
1 1
C4efqm(d—1)d* < i < Cgefﬂ/m(d—l)d*

— m =

Thanks to this control, we obtain in the next section the
convergence rate for the regularized least-squares estimator
on a non-trivial set of distributions, for the class of RKHS
introduced earlier. Moreover, in some situations, we show
that these convergence rates are actually minimax optimal
from a nonparametric learning viewpoint.

5. Regularized Least-Squares for CNNs

We consider the standard nonparametric learning frame-
work (Gyorfi et al., 2002; Steinwart & Christmann, 2008),



Harmonic Decompositions of Convolutional Networks

where the goal is to learn, from independent and identically
distributed examples z = {(z1,41),..., (z¢,ye)} drawn
from an unknown distribution p on Z := Z x ), a func-
tional dependency f, : Z — ) between input x € Z and
output y € ). The joint distribution p(x, y), the marginal
distribution pz, and the conditional distribution p(.|z), are
related through p(z,y) = pz(x)p(y|z). We call f, the
learning method or the estimator and the learning algorithm
is the procedure that, for any sample size ¢ € N and training
set z € Z* yields the learned function or estimator f,. Here
we assume that ) C R, and given a function f : Z — ),
the ability of f to describe the distribution p is measured by
its expected risk

R(f) = / @0 ey ©

The minimizer over the space of measurable )-valued func-
tions on 7 is

fola) = /y ydp(ylz) (10)

We seek to characterize, with high probability, how close
R(f,) is to R(f,). Let us now consider the regularized
least-squares estimator (RLS). Consider as hypothesis space
a Hilbert space H of functions f : Z — ). For any regular-
ization parameter A > 0 and training set z € 7% the RLS
estimator fg , » is the solution of

L
min{zyﬂm—y»uunz} Can

c€cH
f =1

In the following we consider the specific estimators obtained
from the RKHS-s introduced in Prop. 1. But before stat-
ing the statistical bounds we have obtained, we recall basic
definitions in order to clarify what we mean by asymptotic
upper rate, lower rate and minimax rate optimality, follow-
ing (Caponnetto & De Vito, 2007). We want to track the
precise behavior of these rates and the effects of adding
layers in a convolutional network. More precisely, we con-
sider a class of Borel probability distributions P on Z x R
satisfying basic general assumptions. We consider rates of
convergence according to the Lg” * norm denoted ||| ,.

Definition 5.1. (Upper Rate of Convergence) A sequence
(ar)e>1 of positive numbers is called upper rate of conver-
gence in Lgp * norm over the model P, for the sequence of
estimated solutions ( fy x,)e>1 using regularization parame-
ters (/\g)gzo lf

. . ¢ . _ 2 _
Jim_lim sup Sup (z 2 [ fare = follz > Tac) =0

Definition 5.2. (Minimax Lower Rate of Convergence) A
sequence (wg)g>1 of positive numbers is called minimax

. od )
lower rate of convergence in Ly norm over the model P if

lim lim inf infsup p’ (z: — 2> rw) =1

T—0+ l—co fyr pegp ( 1£2 f/’”P é)
where the infimum is taken over all measurable learning
methods with respect to P.

We call such sequences (w¢)¢>1 (minimax) lower rates. Ev-
ery sequence (wy)¢>1 which decreases at least with the same
speed as (wy)e>1 is also a lower rate for this set of probabil-
ity measures and on every larger set of probability measures
at least the same lower rate holds. The meaning of a lower
rate (wg)e>1 is that no measurable learning method can
achieve a L37” (T)-convergence rate (ay) ¢>1 in the sense of
Definition 5.1 decreasing faster than (wg),>1. In the case
where the convergence rate of the sequence coincides with
the minimax lower rates, we say that it is optimal in the
minimax sense from a nonparametric learning viewpoint.

Setting. Here the hypothesis space considered is the RKHS
Hpy associated to the Kernel K introduced in Prop. 1
where, N > 2, f1 a function which admits a Taylor decom-
position on [—1, 1] with non-negative coefficients (b, )m>0
and (f;)N., a sequence of real valuated functions such that
g := fno....0 fo admits a Taylor decomposition on R with
non-negative coefficients. In the following, we denote by
T,, the integral operator on L3"* (Z) associated with K y
defined as

T,, = Ly"(T) — Ly (T)

£ = JzEn(z,)f(2)dpz(x)

Let us now introduce the general assumptions on the class
of probability measures considered. Let us denote dP :=

" 1dog—y and for w > 1, we denote by W, the set of
all probability measures v on Z satisfying 5—1’3 < w. Fur-
thermore, we introduce for a constant w > 1 > h > 0,
Weo.n C W, the set of probability measures ;1 on Z which

additionally satisfy 2% > h.

Assumptions 5.1. Probability measures on 7 x ): Let
B,By,L,0 > 0 be some constants and 0 < § < 2 a
parameter. We denote by Fp p_ 1.5,3(P) the set of all
probability measures p on T x Y with the following proper-
ties

o p1 €P, [1yyidp(z,y) < ocoand || fyl2.,, < Bs

o there exists g € Lgpz (Z) such that f, = T/)BZ/Qg and
lgllz < B

o there exist o > 0 and L > 0 such that fy ly —
fo(@) " dp(ylz) < SmiLm=?

A sufficient condition for the last assumption is that p is
concentrated on Z x [—M, M| for some constant M > 0.
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In the following we denote G,, g := Fp B L,0,8(W.) and
Guh,f = FB Boo,Lo.s(W,n)-

Remark 1. Note that we do not make any assumption on the
set of distributions related to the eigenvalue decay. Indeed,
the control of the eigenvalue decay obtained in Proposition
4.3 allows us to define a non-trivial set of distributions
adapted to these kernels.

The main result of this paper is given in the following theo-
rem. See (Scetbon & Harchaoui, 2020) for details.
Theorem 5.1. Let us assume there exists 1 > r > 0 and
c1 > 0 a constant such that (b, )m>o satisfies for allm > 0
we have by, < cir™. Moreover let us assume that fr o
.... 0 fo is a polynomial of degree D > 1 and let us denote
d* := min(D,n). Let alsow > 1 and 0 < 8 < 2. Then
there exists A, C' > 0 some constants independent of 3 such
that for any p € G, g and T > 1 we have:

o If B > 1
5
-1 (d—1)d* B8
¢ > max <eﬁ, (75“141)‘“ ) = log(¢) T >,

with a p*-probability > 1 — e~ it holds

then for Xy = ﬁ and

1 (d—1)d*
1 zne = fp”,% < 3072%

e If3 =1, then for \, = %, w> (d—1)d* > 0and
1
¢ > max (exp ((AT)W) ,et log(é)“), with a

pt-probability > 1 — e~*" it holds

log(£)*
HfHN,ZJ\e - fPH;% < 367—2 0B
(d—1)d*
o If B < 1, then for \y = %and@ >

max (exp ((AT) M*l)d*(l*m) ,etlog(f) 7 ),
with a p*-probability > 1 — e~7 it holds

log(é) (d—1)d*

8
Remark 2. It is worth noting that the convergence rates
obtained here do not depend on the number of parameters
considered in the network which may be much larger than
the input dimension. Indeed, here we show that even on the
largest possible function space generated by convolutional
networks, learning from data can still happen.

HfHNJ,/\/z - pr,% < 3Cr?

In fact from the above theorem, we can deduce asymptotic
upper rate of convergence. Indeed we have

lim lim sup sup p°(z: — 1ll2 =0
i Tim sup sup p (z 2 lfzxe = follg > ar)

if one of the following conditions hold

1 lo Z(d—l)d*
[ ﬁ>1,/\g=mandag=%

e 3=1\ = —k’gg‘)“ and ay =
1d* >0

%foru>(d—

(d—1)d*
B

P (d—1)d*
e B< L)\ = log(£) ; 10%(5)£B

and ay =

In order to investigate the optimality of the convergence
rates, let us take a look at the lower rates.

Theorem 5.2. Under the exact same assumptions of The-
orem 5.1, and if we assume in addition that there exist a
constant 0 < co < ¢y such that for all m > 0:

cor™ < by,

we have that for any 0 < f < 2andw > 1 > h > 0 such
that W, j, is not empty

lim lim inf inf sup p° (z:||fz— fp||§ > Twg) =1

T—0T =00 fy PEGw.h,B8

where

B log(f)(d_l)d*

Wy = 76

The infimum is taken over all measurable learning methods
with respect to G, 1, g.

Rate optimality. If the source condition is satisfied with
B > 1, then the convergence rate of the regularized least-
squares estimator stated in Theorem 5.1 is optimal in
the minimax sense from a nonparametric learning view-
point (Gyorfi et al., 2002; Caponnetto & De Vito, 2007;
Steinwart & Christmann, 2008).

It is worthwhile to note that the rate is close to the known op-
timal rate for nonparametric regression with d-dimensional
inputs, setting the dimension of the sub-images or patches
tod

o log(0)*!
7 .
This connection highlights that the dimension of the sub-

images or patches drives the statistical rate of convergence
in this regime.

1 fane = foll; < 3CT

Functional ANOVA. In (Lin, 2000), the author estab-
lishes a similar result for a functional ANOVA models as-
suming that the main effects live in H™ ([0, 1]). Indeed,
denoting d* the highest order of interaction in the model,
the regularized least-squares estimator enjoys a near-optimal
rate of convergence, within a log factor of the optimal rate
of convergence in one dimension

w 2m
log(£)4 1> Zm+

e = ol < 3072 (22
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This correspondence brings to light how the construction
underlying a convolutional network allows one to overcome
the curse of dimensionality. The rates in Theorem 5.1 high-
light two important aspects of the behavior of CNNs. First,
the highest order of interactions, given by the network depth,
controls the statistical performance of such models. If the
order is small, we obtain optimal rates which are close to
the optimal rate for estimating multivariate functions in d
dimensions where d is the patch size. Therefore we obtain
learning rates which are almost free dimension.

Second, adding layers makes the eigenvalue decay decrease
slower and as soon as o o - -- o gy are arbitrary polyno-
mial functions with degrees higher than n, then the optimal
rates will be exactly the same as the one obtain for a poly-
nomial function of degree n. There is thus a regime in
which adding layers does not affect the convergence rate of
convergence, and allows the function space of target func-
tions to grow. Indeed the eigenvalue decay gives a concrete
notion of the complexity of the function space considered.
Given an eigensystem (ft,,)m>0 and (e,,)m>o of positive
eigenvalues and eigenfunctions respectively of the integral
operator Tk, associated with the Kernel K 5, defined on
Lo(Z), the RKHS H y associated is defined as

Hy =

Felo@:f=35" amem, (“’”) el
2 Wgo i 2

endowed with the inner product (f,g) = >, <0 @mbm/ tim-
From this definition, we see that, as the rate of decay of the
eigenvalues of the integral operator gets slower, the RKHS
gets larger. Therefore composing layers allows the function
space generated by the network to grow and therefore allows
the function space of the target function to grow, while the
rates remain the same.

6. Related works

In (Caponnetto & De Vito, 2007), the authors obtained
optimal convergence rates of the regularized least-squares
estimator for any RKHS yet given a hypothetical set of
distributions. Indeed the authors consider a subset of the
set of all the distributions for which the eigenvalue decay of
the integral operator associated to the kernel is polynomial.
This assumption may be too stringent or unsuited for the
kernel we consider here. Recall that the eigenvalue decay
we are dealing with here is geometric instead.

We show how to control the eigenvalue decay of the integral
operator associated to the kernels introduced in Prop. 1 un-
der general assumptions on the activation functions. This
control allows us to circumvent abstract assumptions stated
in terms of sets of distributions leading to the desired eigen-
value decay as in (Caponnetto & De Vito, 2007). Thus,

thanks to the spectral characterization of the kernels we
consider, we can actually put forth a non-trivial set of distri-
butions for which the RLS estimator with the corresponding
RKHS-s enjoys optimal convergence rates from a nonpara-
metric learning viewpoint. Moreover, this set of distribu-
tions is independent of the choice of the RKHS (except for
the source condition which can just be fixed). Therefore
we are able to compare the convergence rates obtained for
the different RKHS-s defined in Prop. 1 on this set of dis-
tributions. In particular, we can compare convergence rates
depending on different network depths.

In (Bach, 2017), the author considers a single-hidden layer
neural network with affine transforms and homogeneous
functions acting on vectorial data. In this particular case,
the author provides a detailed theoretical analysis of gen-
eralization performance. See e.g. (Barron, 1994; Anthony
& Bartlett, 2009; Mohri et al., 2012) for related classical
approaches and (Zhang et al., 2016; 2017) for more recent
ones to analyze multi-layer perceptrons.

Recent works (Bartlett et al., 2017; Neyshabur et al., 2018)
studied various kinds of statistical bounds for multi-layer
perceptrons. In (Bietti & Mairal, 2017), statistical bounds
for convolutional kernel networks are presented. These
statistical bounds typically depend on the product of spectral
norms of matrices stacking layer weights. When put in our
context, these bounds do not involve the full eigenspectrum
of the integral operator associated with each layer.

We focused here on multi-layer convolutional networks on
images. With appropriate changes, a similar analysis can
be carried out for signal data, with sub-signals/windows in
place of sub-images/patches, and any lattice-structured data
(including e.g. voxel data).

7. Conclusion.

We have presented an approach to convolutional networks
that allowed us to draw connections to nonparametric statis-
tics. In particular, we have brought to light a decomposition
akin to a functional ANOVA decomposition that explains
how a convolutional network models interactions between
sub-images or patches of images. This correspondence al-
lows us to interpret how a convolutional network overcomes
the curse of dimensionality when learning from dense im-
ages. The extensions of our work beyond least-squares
estimators would be an interesting venue for future work.
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