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Abstract

One popular trend in meta-learning is to learn
from many training tasks a common initialization
that a gradient-based method can use to solve a
new task with few samples. The theory of meta-
learning is still in its early stages, with several re-
cent learning-theoretic analyses of methods such
as Reptile (Nichol et al., 2018) being for convex

models. This work shows that convex-case analy-
sis might be insufficient to understand the success
of meta-learning, and that even for non-convex
models it is important to look inside the optimiza-
tion black-box, specifically at properties of the
optimization trajectory. We construct a simple
meta-learning instance that captures the problem
of one-dimensional subspace learning. For the
convex formulation of linear regression on this
instance, we show that the new task sample com-
plexity of any initialization-based meta-learning

algorithm is ⌦(d), where d is the input dimension.
In contrast, for the non-convex formulation of a
two layer linear network on the same instance,
we show that both Reptile and multi-task rep-
resentation learning can have new task sample
complexity of O(1), demonstrating a separation
from convex meta-learning. Crucially, analyses
of the training dynamics of these methods reveal
that they can meta-learn the correct subspace onto
which the data should be projected.

1. Introduction

We consider the problem of meta-learning, or learning-to-

learn (Thrun & Pratt, 1998), in which the goal is to use
the data from numerous training tasks to reduce the sample
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complexity of an unseen but related test task. Although there
is a long history of successful methods in meta-learning
and the related areas of multi-task and lifelong learning
(Evgeniou & Pontil, 2004; Ruvolo & Eaton, 2013), recent
approaches have been developed with the diversity and scale
of modern applications in mind. This has given rise to
simple, model-agnostic methods that focus on learning a
good initialization for some gradient-based method such as
stochastic gradient descent (SGD), to be run on samples
from a new task (Finn et al., 2017; Nichol et al., 2018).
These methods have found widespread applications in a
variety of areas such as computer vision (Nichol et al., 2018),
reinforcement learning (Finn et al., 2017), and federated
learning (McMahan et al., 2017).

Inspired by their popularity, several recent learning-theoretic
analyses of meta-learning have followed suit, eschewing cus-
tomization to specific hypothesis classes such as halfspaces
(Maurer & Pontil, 2013; Balcan et al., 2015) and instead
favoring the convex-case study of gradient-based algorithms
that could potentially be applied to deep neural networks
(Denevi et al., 2019; Khodak et al., 2019). This has yielded
results showing that meta-learning an initialization by using
methods similar to Reptile (Nichol et al., 2018) for con-
vex models leads to a reduction in sample complexity of
unseen tasks. These benefits are shown using natural no-
tions of task-similarity like the average distance between
the risk minimizers of tasks drawn from an underlying meta-
distribution. A good initialization in these models is one
that is close to the population risk minimizers for tasks in
this meta-distribution.

In this paper we argue that, even in some simple settings,
such convex-case analyses are insufficient to understand
the success of initialization-based meta-learning algorithms.
For this purpose, we pose a simple instance for meta-
learning linear regressors that share a one-dimensional sub-
space, for which we prove a sample complexity separa-
tion between convex and non-convex methods. In the pro-
cess, we provide a first theoretical demonstration of how
initialization-based meta-learning methods can learn good
representations, as observed empirically (Raghu et al., 2019).
Specifically, our contributions are the following:
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• We show, in the convex formulation of linear regression
on this instance, a new task sample complexity lower
bound of ⌦(d) for any initialization-based meta-learning

algorithm. This suggests that no amount of meta-training
data can yield an initialization that can be used by a
common gradient-based within-task algorithms to solve
a new task with fewer samples than if no meta-learning
had been done; thus initialization-based meta-learning
in the convex formulation fails to learn the underlying
task-similarity. The lower bounds also holds for more
general meta-learning instances that have the property
that the average prediction for an input across tasks is
independent of the input, as in true in many standard
meta-learning benchmarks.

• We show for the same instance that formulating the model
as a two-layer linear network – an over-parameterization
of the same hypothesis class – allows a Reptile-like proce-
dure to use training tasks from this meta-learning instance
and find an initialization for gradient descent that will
have O(1) sample complexity on a new task. To the best
of our knowledge, this is the first sample complexity anal-
ysis of initialization-based meta-learning algorithms in
the non-convex setting. Additionally, this demonstrates
that initialization-based methods can capture the strong
property of representation learning.

• Central to our proof is a trajectory-based analysis to ana-
lyze properties of the solution found by a specific proce-
dures like Reptile or gradient descent on a representation
learning objective. For the latter, we show that looking
at the trajectory is crucial as not all minimizers can learn
the subspace structure.

• Finally, we revisit existing upper bounds for the convex
case. We show that our lower bound does not contradict
these upper bounds, since their task similarity measure
of average parameter distance is large in our case. We
complement this observation by proving that the existing
bounds are tight, in some sense, and going beyond them
will require additional structural assumptions.

Paper organization: We discuss related work in Sec-
tion 2. Section 3 sets up notation for the rest of the pa-
per, formalizes initialization-based meta-learning methods
and defines the subspace meta-learning instance that we
are interested in. The lower bound for linear regression is
stated in Section 4, while the corresponding upper bounds
for non-convex meta-learning with two-layer linear network
is provided in Section 5. While all proofs are provided in
the appendix, we give a sketch of the proofs for the up-
per bounds in Section 6 to highlight the key steps in the
trajectory-based analysis and discuss why such an analy-
sis is important. A discussion about tightness of existing
convex-case upper bounds can be found in Section 7.

2. Related Work

There is a rich history of theoretical analysis of learning-to-
learn (Baxter, 2000; Maurer, 2005; Maurer et al., 2016). Our
focus is on a well-studied setting in which tasks such as half-
space learning share a common low-dimensional subspace,
with the goal of obtaining sample complexity depending
on this sparse structure rather than on the ambient dimen-
sion (Maurer, 2009; Maurer & Pontil, 2013; Balcan et al.,
2015; Denevi et al., 2018; Bullins et al., 2019; Khodak et al.,
2019). While these works derive specialized algorithms, we
instead focus on learning an initialization for gradient-based
methods such as SGD or few steps of gradient descent (Finn
et al., 2017; Nichol et al., 2018). Some of these methods
have recently been studied in the convex setting (Denevi
et al., 2019; Khodak et al., 2019; Zhou et al., 2019). Our
results show that such convex-case analyses cannot hope
to show adaptation to an underlying low-dimensional sub-
space leading to dimension-independent sample complexity
bounds. On the other hand, we show that their guarantees
using distance-from-initialization are almost tight for the
meta-learning of convex Lipschitz functions.

To get around the limitations of convexity for the prob-
lem of meta-learning a shared subspace, we instead study
non-convex models. While the optimization properties of
gradient-based meta-learning algorithms have been recently
studied in the non-convex setting (Fallah et al., 2019; Ra-
jeswaran et al., 2019; Zhou et al., 2019), these results only
provide stationary-point convergence guarantees and do not
show a reduction in sample complexity, the primary goal
of meta-learning. Our theory is more closely related to
recent empirical work that tries to understand various in-
herently non-convex properties of learning-to-learn. Most
notably, Arnold et al. (2019) hypothesize and show some
experimental evidence that the success of gradient-based
meta-learning requires non-convexity, a view theoretically
supported by our work. Meanwhile, Raghu et al. (2019)
demonstrate that the success of the popular MAML algo-
rithm (Finn et al., 2017) is likely due to its ability to learn
good data-representations rather than adapt quickly. Our
upper bound, in fact, supports these empirical findings by
showing that Reptile can indeed learn a good representation
at the penultimate layer, and learning just a final linear layer
for a new task will reduce sample complexity for a new task.

Our results draw upon work motivated by understanding
deep learning that analyzes trajectories and implicit regu-
larization in deep linear neural networks (Saxe et al., 2014;
Gunasekar et al., 2018; Saxe et al., 2019; Gidel et al., 2019).
The analysis of solutions found by gradient flow in deep lin-
ear networks by (Saxe et al., 2014; Gidel et al., 2019) form
a core component of our analysis. In this vein, Lampinen &
Ganguli (2019) recently studied the dynamics of deep linear
networks in the context of transfer learning and show that
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jointly learning linear representations using two tasks will
yield smaller error on each one than individual task learn-
ing. However their guarantees are not for an unseen task
drawn from a distribution, but only for two given tasks, and
crucially not for gradient-based meta-learning methods.

3. Meta-Learning Setup

3.1. Notations

Let [N ] denote the set {1, . . . , N}. We use x for vectors,
M for matrices, Id for d dimensional identity matrix and
0d for the all-zero vector in d dimensions. k · k is used to
denote the `2 norm. For a function ` : X ⇥ Y ! Z, we
use `(x, ·) : Y ! Z to denote a function of the second
argument when the first argument is set to x. For a finite
set S, x ⇠ S denotes sampling uniformly from S. We
also need the ReLU function [x]+ = x {x � 0}. For a
sequence {a1, . . . , aT }, we use ai:j for j � i to denote the
set {ai, . . . , aj}.

3.2. Task distribution and excess risk

We are interested in regression tasks of the following form

`⇢(✓) := E
(x,y)⇠⇢

(f(x, ✓)� y)2 (1)

where we abuse notation and use ⇢ to denote a task as well as
its associated data distribution. The input x is a vector in Rd

and y is real-valued scalar. The function f : Rd
⇥⇥ ! R is

a regressor of choice, e.g. a linear function or a deep neural
network, that is parametrized by ✓ 2 ⇥. Often one only
has access to samples S = {(xi, yi)}ni=1 from the unknown
distribution ⇢, and the empirical risk is defined as

`S(✓) = E
(x,y)⇠S

(f(x, ✓)� y)2 (2)

While various formalizations for meta-learning exist, we
present one that is most convenient for the presentation of
this work. In our meta-learning setting, we assume that there
is an underlying unknown distribution µ over tasks. Given
access to a T training tasks ⇢1, . . . , ⇢T sampled from µ, the
goal of a meta-learner Meta is to learn some underlying
structure that relates the tasks in µ and output a within-task
algorithm Alg = Meta(⇢1:T ) that can be used to solve a
new task sampled from µ. To solve a new task ⇢ ⇠ µ by
using training set S from ⇢, the meta-learned algorithm Alg
outputs parameters Alg(S) 2 ⇥. The average risk of an
algorithm that uses n samples from a new task is

Ln(Alg, µ) = E
⇢⇠µ

E
S⇠⇢n

`⇢(Alg(S))

We define the excess risk of Alg as En(Alg, µ) =
Ln(Alg, µ)� L

⇤(µ), where L⇤(µ) = E
⇢⇠µ

inf
✓2⇥

`⇢(✓) is the

minimum achievable risk by the class ⇥ with complete
knowledge of the distribution µ.

3.3. Initialization-based meta-learning

We focus on a popular approach in meta-learning that uses
training tasks to learn an initialization of the model parame-
ters. This initialization is fed into a pre-specified gradient-

based algorithm that updates model parameters starting from
this initialization by using samples from a new task. We
refer to these methods as initialization-based meta-learning
methods and they are restricted to return within-task al-
gorithms of the form Alg(·) = GD-Alg(·; ✓init), where
GD-Alg runs some gradient-based algorithm starting from
the initialization ✓init 2 ⇥ on an objective function that
depends on the input training set S. For example, we can de-
note the algorithm of gradient descent as GD(S; ✓init), that
runs gradient descent to convergence on the empirical risk
`S by starting from the initialization ✓init. The definitions
of the various initialization-based meta-learning and within-
task algorithms that we analyze are in sections 4.1 and 5.1.
In the subsequent sections, we will concretely define the
distribution of tasks µ and the meta-learning algorithms we
are interested in.

3.4. Meta-learning a subspace

For meta-learning to be meaningful, the tasks must share
some common structure. Here we focus on a structure that
assumes the existence of a low-dimensional representation
of the data that suffices to solve all the tasks, specifically, a
linear representation. To capture this idea, we construct a
simple but instructive meta-learning instance.

We are interested in tasks ⇢w for w 2 Rd, where the distri-
bution is defined as follows

(x, y) ⇠ ⇢w : x ⇠ N (0, Id), y ⇠ N (w>x,�2) (3)

The target y for x is a linear function of x plus a zero-mean
Gaussian noise1 added to it. The meta-learning instance

µw⇤ is defined as uniform distribution over two tasks ⇢w⇤

and ⇢�w⇤ for a fixed but unknown vector w⇤ 2 Rd. Note
that for every point x 2 Rd, only the projection of x onto
the direction of w⇤ is necessary to solve all tasks in µw⇤ .
Thus the hope is that a meta-learning algorithm picks up on
this structure and learns to project data onto this subspace
for sample efficiency on a new task. The average task risk
and excess risk for an algorithm Alg can then be written as

Ln(Alg, µw⇤) = E
s⇠{±1}

E
S⇠⇢n

sw⇤

`sw⇤(Alg(S))

En(Alg, µw⇤) = Ln(Alg, µw⇤)� L
⇤(µw⇤) (4)

In the subsequent sections, we describe the convex setting
of linear regression and the equally expressive non-convex
setting of a two-layer linear network regressor. Our main

1We can extend all results to y = w>x+ ⇠, where ⇠ is inde-
pendent of x, just has 0 mean and variance �2.
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result shows that while no meta-learning algorithm can learn
a meaningful initialization for a gradient-based within-task
algorithm in the convex setting, standard meta-learning algo-
rithms like Reptile on a two-layer linear network can in fact
learn to project the data on the one-dimensional subspace
and thus reduce the sample complexity for a new task from
⌦(d) to O(1).

4. Convex Meta-Learning Lower Bound

In this section, we use a regression function f that is linear
in x to solve the meta-learning instance µw⇤ . We have
⇥ = Rd, the parameters are ✓ = w,w 2 Rd and the
regressor is f(x,w) := w>x. Using the definition of the
distribution in Equation 3, for s 2 {±1} we get

`sw⇤(w) = E
(x,y)
⇠⇢sw⇤

(w>x� y)2 = kw � sw⇤k
2 + �2 (5)

Thus we have L
⇤(µw⇤) = E

s⇠{±1}
inf

w2Rd
`sw⇤(w) = �2.

4.1. Within-task algorithms

As described in Section 3.2, we consider within-task algo-
rithms that are based on gradient descent. A meta-learner
is allowed to learn an initialization w0 2 Rd that is used
as a starting point to run a gradient-based algorithm on a
new task. We will show lower bounds for the following
algorithms

GD⌘,t0
step(S;w0) - GD for t0 steps:

Runs gradient descent with learning rate ⌘ for t0 steps on
`S (defined in Equation 2). Starting from w0, follow the
dynamics below and return wt0 .

wt+1 = wt � ⌘rw`S(wt)

GD�
reg(S;w0) - �-regularized GD:

Runs gradient descent with vanishingly small learning rate
(gradient flow) to convergence on `S,�

`S,�(w) = E
(x,y)⇠S

⇥
(w>x� y)2

⇤
+

�

2
kwk

2 (6)

Starting from w0, follow the dynamics below, return w1.

dwt

dt
= �rw`S,�(wt)

In the next section we will provide lower bounds on the
excess risk for all initialization-based meta-learning algo-
rithms that return initializations for the above algorithms.
Note that some of these algorithms have been used in prior
work; most notably, GD⌘,t0

step is the base-learner used by
MAML (Finn et al., 2017), so our convex-case lower-bounds
hold directly for any initialization it might learn.

4.2. Lower bounds

We use the definition of excess risk En from Equation 4
and formally define sample complexity for a meta-learned
within-task algorithm below
Definition 4.1 (Sample complexity). The minimum num-

ber of samples needed from a new task for a within-task

algorithm Alg to have excess risk smaller than ✏ is

n✏(Alg, µw⇤) = min{n 2 N : En(Alg, µw⇤)  ✏} (7)

We will proceed to show a lower bound for all meta-learning
algorithms that return an initialization to be used by algo-
rithms GD⌘,t0

step and GD�
reg described in the previous subsec-

tion. We assume that kw⇤k = � = r to make the noise of
the same order as the signal and for simplicity of presenta-
tion. The lower bounds in more generality can be found in
Appendix B.1.

Theorem 4.1. Suppose kw⇤k = � = r and ✏ 2

⇣
0, r2

2

⌘
.

For every initialization w0 2 Rd
, the number of samples

needed to have ✏ excess risk on a new task is

min
��0

n✏(GD
�
reg(·;w0), µw⇤) = ⌦

✓
dr2

✏

◆

min
⌘>0,t02N+

n✏(GD
⌘,t0
step(·;w0), µw⇤) = ⌦

✓
dr2

✏

◆

Remark 4.1. The lower bound is strong due of the following

• The bound holds even if the meta learner has seen in-
finitely many tasks sampled from µ and has access to the

population loss for each task.

• Even regularization techniques like explicit `2-

regularization or early stopping cannot benefit from a

meta-learned initialization.

• The condition ✏  r2/2 is not restrictive since a trivial

learner that outputs 0d for all task has error exactly r2.

• The lower bound also holds for more general meta-

learning instances. For any distribution over the optimal

classifiers that satisfies E
⇢w⇠µ

[w] = 0d, the lower bound

will depends on the variance of the optimal regressors

across tasks, i.e. r = E
⇢w⇠µ

[kwk
2]. The zero-mean prop-

erty is similar to many standard meta-learning bench-

marks where average prediction across tasks for an input

is independent of the input. This holds for sine regression

(Finn et al., 2017) due to symmetry around zero and for

Omniglot (Lake et al., 2017) and Mini-ImageNet (Ravi &

Larochelle, 2017) due to label-shuffling.

This demonstrates that the convex formulation does not do
justice to the practical efficacy of such algorithms. We pro-
vide the proof of this result and even tigher lower bounds in
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the appendix. The proofs are based on finding a closed-form
expression for the solutions found by GD�

reg and GD⌘,t0
step and

showing that, in fact, no initialization has better excess risk
than the trivial initialization of 0d.

5. Non-Convex Meta-Learning Upper Bound

We now use a two layer linear network as the regressor
f . The parameters in this case are ✓ = (A,w),A 2

Rd⇥d,w 2 Rd. The regressor f is then defined as
f(x, (A,w)) := w>Ax. As before,

`sw⇤((A,w)) = kA>w � sw⇤k
2 + �2 (8)

Again it is easy to see that L⇤(µw⇤) = �2. We now describe
the within-task algorithms of interest and the initialization-
based meta-algorithms for which we show guarantees.

5.1. Within-task and meta-learning algorithms

We are interested in the following within-task algorithms.

GDpop(⇢; (A0,w0)) - Population GD:
Runs gradient descent with vanishingly small learning
rate (gradient flow) to convergence on `⇢. Starting from
(A0,w0), follow the dynamics below, return (A1,w1).

dAt

dt
= �rA`⇢((At,wt));

dwt

dt
= �rw`⇢((At,wt))

GD2�
reg(S; (A0,w0)) - Second-layer regularized GD:

Runs gradient descent with tiny learning rate (gradient flow)
to convergence on `S,�(·;A0)

`S,�(w;A0) = E
(x,y)⇠S

(w>A0x� y)2 +
�

2
kwk

2 (9)

Starting from w0, follow the dynamics below by only up-
dating w, return (A0,w1)

dwt

dt
= �rw`S,�(wt;A0))

We will be showing guarantees for initializations learned by
two meta-learning algorithms, Reptile and RepLearn.
A meta-learner receives T training tasks {⇢1, . . . , ⇢T } sam-
pled independently from µw⇤ ; each task is either ⇢w⇤ or
⇢�w⇤ . For simplicity of analysis, we assume that the learner
has access to the population losses for these tasks, since we
are mainly concerned about the new task sample complexity.
While simplistic, showing guarantees even in this setting
requires a non-trivial analysis. Note that the lower bound
for linear regression holds even with access to population
loss function for any number of training tasks. The first
meta-learning algorithm of interest is the following

Reptile(⇢1:T , (A0,w0)) - Reptile:

Starting from (A0,w0), the initialization maintained by the

algorithm is sequentially updated as (Ai+1,wi+1) = (1�
⌧)(Ai,wi)+⌧GDpop(`⇢i+1 , (Ai,wi)) for some 0 < ⌧ < 1.
At the end of T tasks, return AT .

On encountering a new task, Reptile slowly interpolates
between the current initialization and the solution for the
new task obtained by running gradient descent on it starting
from the current initialization. As mentioned earlier, this
method has enjoyed empirical success (McMahan et al.,
2017). The second algorithm of interest is reminiscent to
multi-task representation learning.

RepLearn(⇢1:T , (A0,w0,1:T )) - Representation learn-

ing: Starting from (A0,w0,1:T ), run gradient flow on
the following objective function: Lrep(A,w1:T ) =

1
T

TP
i=1

`⇢i(A,wi), return A1 at the end.

dAt

dt
= �rALrep(At,wt,1:T )

dwt,i

dt
= �rwt,iLrep(At,wt,1:T ), i 2 [T ]

This is a standard objective for multi-task representation
learning used in prior work, occasionally equipped with a
regularization term for w1:T . For our analysis we do not
need an explicit regularizer, just like Saxe et al. (2014) and
Gidel et al. (2019).

5.2. Upper bounds

Recall that En(GD2�
reg(·; (A,0d)), µw⇤) is the excess risk

for the initialization A that is used by GD2�
reg. We will

show that with access to a feasible number of training tasks,
both Reptile and RepLearn can learn an initializa-
tion with small En. We first prove the upper bounds for
Reptile under the assumption that kw⇤k = � = r.
Theorem 5.1. Starting with (A0,w0) = (Id,0d), let

AT = Reptile(⇢1:T , (A0,w0)) be the initialization

learned from T tasks {⇢1, . . . , ⇢T } ⇠i.i.d. µT
w⇤ . If T �

poly(d, r, 1/✏, log(1/�),) and ⌧ = O(T�1/3), then with

probability at least 1� � over sampling of T tasks,

min
��0

En(GD2
�
reg(·; (AT ,0d)), µw⇤)  ✏+

cr2

n

for a small constant c. Thus with the same probability, we

have

min
��0

n✏(GD2
�
reg(·;AT ,0d), µw⇤) = O

✓
r2

✏

◆

Remark 5.1. Our guarantees are for the within-task al-

gorithm GD2�
reg that only updates the second layer. This

supports the empirical findings from (Raghu et al., 2019)

that initialization-based methods can learn good representa-

tions and just require learning a final linear layer for a new
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task. Analysis for the setting where both layers are updated

for a new task is more non-trivial and left for future work.

The proof can be found in Appendix C.2. Thus we can show
that a standard meta-learning method like Reptile can
learn a useful initialization for a gradient-based within-task
algorithm like GD2�

reg. A sketch of the proof in Section 6
will demonstrate that the Reptile update surprisingly am-
plifies the component along w⇤ in the spectrum of the first
layer A, while keeping the components orthogonal to w⇤
unchanged. Interestingly, even though both w⇤ and �w⇤
appear as tasks, the meta-initialization  > 0 ensures that
they do not cancel each other out in the first layer, unlike
in the second layer. In contrast to the convex-case lower
bound, we only need O(r2/✏) samples for a new task, thus
showing gap of d between convex and non-convex meta-
learning in our setting. We now show a similar result for
RepLearn under the assumption of kw⇤k = � = r.

Theorem 5.2. With (A0,w0,1:T ) = (Id,0d, . . . ,0d), let

AT = RepLearn(⇢1:T , (A0,w0,1:T )), be the initializa-

tion learned using T tasks {⇢1, . . . , ⇢T } ⇠i.i.d. µT
w⇤ . If

T � poly(d, r, 1/✏, log(1/�),), then with probability at

least 1� � over sampling of the T tasks,

min
��0

En(GD2
�
reg(·; (AT ,0d)), µw⇤)  ✏+

cr2

n

for a small constant c. With the same probability, we have

min
��0

n✏(GD2
�
reg(·;AT ,0d), µw⇤) = O

✓
r2

✏

◆

Yet again we can show a new task sample complexity of
O(r2/✏). We now sketch the proofs of the upper bounds to
highlight the interesting parts of the proof and to show the
need for a trajectory-based analysis.

6. Proof Sketch

We first present a proof sketch for the guarantees pro-
vided for the Reptile algorithm in Theorem 5.1 and
for RepLearn in Theorem 5.2. Following that we will
present an argument for why a trajectory-based analysis is
necessary, by looking more closely at the representation
learning objective.

6.1. Reptile sketch

For simplicity assume kw⇤k = 1. Let the T training
tasks be ⇢1, . . . , ⇢T , where ⇢i = ⇢siw⇤ for si is uniformly
sampled from {±1}. Recall the update: (Ai+1,wi+1) =
(1� ⌧)(Ai,wi) + ⌧GDpop(`⇢i+1 , (Ai,wi)). The proof in-
volves showing the following key properties of the dynamics
of GD2�

reg and the interpolation updates:

Step 1: Starting from A0 = Id,w = 0d, the initializa-
tion learned by the meta-learning algorithm always satisfies
Ai = (ai � )w⇤w⇤

> + Id, wi = biw⇤.

Thus the updates by Reptile ensure that A is only up-
dated in the direction of w⇤w⇤

> and w is updated in the
direction of w⇤. This is proved by induction, where the
crucial step is to show that if at time i we start with Ai,wi

that satisfy the above condition, then interpolating towards
the output of GDpop still maintains this condition. Step 2
below shows exactly this and, in fact, we can get the exact
dynamics for the sequence {ai, bi}.

Step 2: Initialized with A = (a� )w⇤w⇤
> + Id,w =

bw⇤ for a > b � 0, the solution found by GDpop is Ā, w̄ =
GDpop(⇢sw⇤ , (A,w)) where Ā = (ā � )w⇤w⇤

> + Id,
w̄ = b̄w⇤, for ā = f(a, b, s) and b̄ = g(a, b, s)

f(a, b, s) =

s
(a2 � b2) +

p
4 + (a2 � b2)2

2

g(a, b, s) = s

s
�(a2 � b2) +

p
4 + (a2 � b2)2

2

This, along with step 1, gives us the dynamics of ai, bi

ai+1 = ai + ⌧(f(ai, bi, si+1)� ai)

bi+1 = bi + ⌧(g(ai, bi, si+1)� bi)
(10)

This is the step where we use the analysis of the trajectory
of gradient flow on two-layer linear networks that was done
first in Saxe et al. (2014) and later made robust in Gidel et al.
(2019). While their focus was on the case where the two
layers are initialized at exactly the same scale, we need to
analyze the case where A and w are initialized differently;
this was analyzed in the appendix of Saxe et al. (2014). In
fact, as we will see in step 3, having  6= 0 when w0 = 0d

is crucial in showing that A can learn the subspace. Refer
to Figure 6.1 for more insights into the dynamics induced
by f and g.

Step 3: We show a very important property satisfied by
the dynamics of ai, bi described in Equation 10: ai is an
increasing sequence. Since the sequence s1:T is a random
sequence in {±1}T , aT and bT are random variables. How-
ever even though si+1 has 0 mean, si+1 only affects the sign
of bi but not ai, as evident in Equation 10. In fact, we can
show that if initialized with  > 0, ai always increases; the
same is however not true for bi. We show that for the meta-
initialization of a0 =  and b0 = 0, with high probability,
aT = ⌦̃

⇣
min

n
1

2
p
⌧
, (⌧T )1/4

o⌘
. Picking ⌧ = O

�
T�1/3

�
,

we get that aT = ⌦̃(T 1/6). Thus for an appropriate choice
of the interpolating parameter ⌧ , aT ! 1 as T ! 1. So
we know that in the limit, AT is basically a rank one matrix
in the direction of w⇤w⇤

>. In the next step we show why
such an AT reduces sample complexity.
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Step 4: To gain intuition for why the learned AT reduces
sample complexity, notice that the only information about
input x that is needed to make predictions for all tasks
in µw⇤ is its projection on w⇤. Thus if all data points
are projected on w⇤, we could just learn a 1-dimensional
classifier on the projected data. So after this projection,
the task would be reduced to a 1-dimensional regression
problem that has a sample complexity of O(1/✏). With
AT = (aT � )w⇤w⇤

> + Id, we are learning a classifier
for a new task on the linearly transformed data ATx instead.
For large enough T , aT is large enough that AT almost acts
like a projection onto the subspace of w⇤, thus leading to a
reduction in sample complexity from ⌦(d/✏) to O(1/✏).

6.2. RepLearn sketch

Recall that the representation learning algorithm runs gra-
dient descent on Lrep by starting from (Id,0d, . . . ,0d),
where

Lrep(A,w1, . . . ,wT ) =
1

T

>X

i=1

`⇢i(A,wi)

=
1

T

TX

i=1

kA>wi � siw⇤k
2 + �2

=
1

T
kA>W �W⇤k

2 + �2

where W 2 Rd⇥T has wi as its ith column and W⇤ 2

Rd⇥T has siw⇤ as its ith column. This objective is a special
case of the deep linear regression objective studied in Saxe
et al. (2014); Gidel et al. (2019), except with an unbalanced
initialization for A and W . Using a very similar analysis
technique, one can show that gradient flow on this objective
will converge to A1 = (a1 � )w⇤w⇤

> + Id, where
for a sufficiently small , a1 = ⌦(T 1/4). Just like the
previous section, the first layer has learned the subspace and
will reduce sample complexity of a new task to O(1/✏).

6.3. Why trajectory is important

As evident in the proof sketches above, we relied heavily
on analyzing the specific trajectory of different methods,
whether it is for gradient descent on a specific objective
function or the interpolation updates in Reptile. A nat-
ural question is whether simple analysis techniques that
only look at properties of all minimizers of some objec-
tive function can lead to similar conclusions. We answer
this question for the representation learning objective neg-
atively. In particular, we construct a minimizer of the ob-
jective Lrep where the first layer does not learn any struc-
ture about the subspace and will have ⌦(d/✏) new task
sample complexity. This bad minimizer is very simple:
A = Id,wi = siw⇤, 8i 2 [T ]. While the existence of such
a solution is not too surprising, it does illustrate that analyz-

ing the dynamics of the specific algorithms used might be
as important as the objective functions themselves.

7. Tightness of Existing Bounds

In providing a first non-convex sample complexity analysis
of gradient-based meta-learning, our results have also ex-
posed a fundamental limitation of convex methods: in the
presence of very natural subspace structure they are unable
to learn an initialization that exploits it to obtain a good sam-
ple complexity. There is thus a tension between this result
and recent upper bounds that use other intuitive assumptions
on the task-distribution to show reduced sample complexity
of similar or identical methods (Denevi et al., 2019; Khodak
et al., 2019; Zhou et al., 2019). Broadly, these results show
that gradient-based meta-learning methods can adapt to a
similarity measure that depends on the closeness of mini-
mizing parameters for the tasks. For convex models they
obtain upper bounds on the excess risk of form

En(Alg, µ) = O

✓
GV
p
n

◆
(11)

for large enough number of training tasks T , where V 2 =
min�2⇥ E⇢⇠µk��Proj⇥⇤

⇢
(�)k2 is the average variation of

the optimal task parameters, for ⇥⇤
⇢ = argmin✓2⇥ `⇢(✓),

and G is the Lipschitz constant with respect to the Euclidean
norm.

These results, however, do not contradict our convex-case
lower bounds in Section 4 because our tasks are not similar
in the same sense. While the parameters lie on a subspace,
the average variation of optimal parameters remains large.
However, while the distance-based task-similarity measure
is natural and intuitive, we believe that a low-dimensional
representation structure such as ours may be more explana-
tory for the success of gradient-based meta-learning algo-
rithms. In fact the importance of representation learning
in the success of popular gradient-based methods has been
shown by existing empirical results (Raghu et al., 2019).

Additionally we argue that existing upper bounds may not
be very meaningful in the context of current practical appli-
cations. The term GV in Equation 11 can be lower bounded
by Jensen’s inequality

GV = G
r

min
�2⇥

E⇢⇠µk�� Proj⇥⇤
⇢
(�)k2

� GE⇢⇠µk�� Proj⇥⇤
⇢
(�)k

� min
�2⇥

E⇢⇠µ`⇢(�)� `⇤⇢

where min�2⇥ E⇢⇠µ`⇢(�) is the minimum achievable risk
by a single common parameter for all tasks from the class ⇥
and `⇤⇢ = min✓2⇥ `⇢(✓). In common meta-learning settings,
the average risk E⇢⇠µ`⇢(�) of any fixed parameter � 2 ⇥
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Figure 1. The two figures correspond to a run with T = 1000 tasks, ⌧ = 0.3, (a0, b0) = (0.1, 0) and kw⇤k = 1. The first figure
shows what the updates from Equation 10 looks like at step i when si+1 = �1. It can be shown that āi+1 = f(ai, bi, si+1) and
b̄i+1 = g(ai, bi, si+1) always satisfy ā2

i+1 � b̄i+1 = a2
i � b2i , thus the solution (āi+1, b̄i+1) will be the intersection of the curves

xy = si+1 = �1 and y2 � x2 = a2
i � b2i and (ai+1, bi+1) is the appropriate interpolation. The second figure shows the entire dynamics

of (ai, bi) for the same setting. As evident, ai is always increasing while bi fluctuates around its mean value of 0.

is large, e.g. due to label-shuffling in tasks like Omniglot
(Lake et al., 2017) and Mini-ImageNet (Ravi & Larochelle,
2017) or due to symmetry in the tasks around zero like in
the sine wave task (Finn et al., 2017).

Given the above drawbacks, it is natural to ask if this bound
of GV can be improved in the convex settings prior work
considers. We answer this negatively. Below we adapt an
information-theoretic argument from Agarwal et al. (2012)
to show that such a dependence is unavoidable when ana-
lyzing a distance-based task-similarity notion for convex
G-Lipschitz functions, and thus that existing results are
almost tight:

Theorem 7.1. For any G, V > 0, there exists a domain Z ,

parameter class ⇥ ✓ Rd
and a distribution µ over tasks

such every ⇢ ⇠ µ is a distribution over Z and `⇢(✓) =
Ez⇠⇢`z(✓) where `z : ⇥ ! R is convex and G-Lipschitz

w.r.t. the Euclidean norm for every z 2 Z . Additionally, ⇥
satisfies

min
�2⇥

E⇢⇠µk�� Proj⇥⇤
⇢
(�)k  V

and

En(Alg, µ) = ⌦

✓
GV min

⇢
1
p
n
,
1
p
d

�◆

for any algorithm Alg : Zn
! ⇥ that returns a parameter

given a training set.

A consequence of this theorem is that without additional
assumptions other than convexity, Lipschitzness and small
average parameter variation, one cannot hope to improve

upon existing bounds. This, coupled with the fact that the
existing bounds can be large in practical settings, makes a
case for the need for more structural assumptions and a shift
to non-convexity for analyses of meta-learning.

8. Conclusions and Future Work

In this work we look at the family of initialization-based
meta-learning methods that has enjoyed empirical success.
Using a simple meta-learning problem of linear predictors
in a 1-dimensional subspace, we show a gap in the new task
sample complexity between meta-learning using linear re-
gression and meta-learning using two-layer linear networks.
This is, to our knowledge, is the first non-convex sample
complexity analysis of initialization-based meta-learning
and it also captures the idea that such methods can learn
good representations. There are many interesting future
directions to be pursued.

• k-subspace learning: while the lower bound for the con-
vex setting trivially holds if the task predictions came
from a k-dimensional subspace for k > 1, showing that
an algorithm like Reptile can have sample complexity of
O(k) is an open problem. While this can be proved for
the representation learning objective using a very sim-
ilar analysis, showing it for Reptile, which only learns
one second layer instead of T unlike the representation
learning objective, might require stronger tools. There is
experimental evidence suggesting that such a statement
might be true.

• Weaker distributional assumptions: while showing upper
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bounds was non-trivial under current assumptions, one
would hope to show guarantees under weaker and more
realistic assumptions, such as a more general data dis-
tribution, different input distributions across tasks, and
access to only finitely many samples from training tasks.

• One common bottleneck for the above points is a ro-
bust analysis of the dynamics of linear networks when
the initializations are not appropriately aligned. While
Gidel et al. (2019) provide a perturbation analysis for
this, ✏-perturbation at the initialization scales as ✏ect

2

in
the final solution, where t is the time for which gradient
descent/flow is run. It would be nice to have an analy-
sis with a more conservative error propagation, perhaps
exploiting structured perturbations.

• Deep neural network: while analysis for linear networks
can be a first cut to understanding non-convex meta-
learning, it would be interesting to see if the insights
gained from this setting are useful for the more interest-
ing setting of non-linear neural networks.
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