
A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

A. Appendix Overview

Appendix is organized as follows:

In Appendix B we prove the lower bounds for convex meta-learning.

• Appendix B.1 has the proofs for stronger versions of the main lower bound result, Theorem 4.1, that shows lower
bounds for the within-task methods of GD�reg and GD⌘,t0step (MAML).

• Appendix B.2 has proofs for closed form solutions found by GD�reg and GD⌘,t0step given n samples for a new task. These
results are useful to prove the aforementioned theorems.

• Appendix B.3 contains proofs for auxiliary lemmas.

In Appendix C we prove the upper bounds for non-convex meta-learning.

• Appendix C.1 formalizes the steps mentioned in the proof sketch for Reptile from Section 6.1. It has the bulk of the
proofs about the dynamics of gradient-based algorithms.

• Appendix C.2 proves the main upper bound theorems, Theorem 5.1 and Theorem 5.2.

In Appendix D we prove the tightness of current distance-based convex meta-learning lower bounds (Theorem 7.1).

B. Convex proofs

B.1. Lower bounds

Before proving the lower bounds, we present the following lemma about the closed form solutions found by GD�reg and
GD⌘,t0step starting from an initialization w0; the proof of this can be found in Appendix B.2.

Note that every S = {(xi, yi)} ⇠ ⇢nv is unique determined by a matrix X 2 Rn⇥d and a noise vector ⇠ 2 Rn, where the
ith row of X is xi and ⇠i = yi � v>xi are i.i.d. samples from N (0,�2).

Lemma B.1. Let S = (X, ⇠) be a sample from ⇢v , X 2 Rn⇥d, ⇠ 2 Rn
. Let ⌃X = 1

n

nP
i=1

xix>
i 2 Rd⇥d

GD�reg(S;w0) = (Id � (⌃X + �Id)
†(⌃X + �Id))w0 + (⌃X + �Id)

†⌃Xv +
1

n
(⌃X + �Id)

†X>⇠

GD⌘,t0step(S;w0) = (Id � ⌘⌃X)t0w0 + (Id � (Id � ⌘⌃X)t0)⌃†
X⌃Xv +

1

n
(Id � (Id � ⌘⌃X)t0)⌃†

XX>⇠

Here we use A† to denote the Moore-Penrose pseudo-inverse of matrix A. Note that while the inverse exists for all � > 0,
we use the pseudo-inverse for � = 0. Also since X and ⇠ do not depend on v, the only dependence of GD�reg(S,w0) and
GD⌘,t0step(S,w0) on v is the second term in each of the equations. Since the solutions of both GD�reg and GD⌘,t0step are linear in
w0, v and ⇠, the following lemma will be useful; the proof can be found in Appendix B.3.

Lemma B.2. For S = (X, ⇠) sampled from ⇢v, X 2 Rn⇥d, ⇠ 2 Rn
, if Alg(S;w0) = AXw0 + BXv + CX⇠ for

AX ,BX < 0, then

En(Alg(·;w0), µw⇤) � E
X
[k(Id �BX)w⇤k

2]
| {z }

bias(Alg)

+ E
X
[�2tr(C>

XCX)]
| {z }

var(Alg)

where bias(Alg) is the error in predicting w⇤ and var(Alg) is error due to noise in labels in the training data S.

Note that the lower bound on excess risk does not depend on the initialization w0 or the matrix AX . We are now ready to
prove the following stronger version of Theorem 4.1.

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

Proving Theorem 4.1: We now prove strengthened versions of the theorem for GD�reg and GD⌘,t0step separately. From
Definition 7, we have n✏(Alg, µw⇤) = min

n2N
: En(Alg, µw⇤)  ✏ is the minimum number of samples needed to achieve

excess risk at most ✏.
(Theorem 4.1(a)). For every w0 2 Rd

, number of samples needed to have ✏ excess risk on a new task is

En(GD
�
reg(·;w0), µw⇤) �

8
>><

>>:

dkw⇤k2�2

kw⇤k2n+�2d if n � d

n
d

kw⇤k2�2

kw⇤k2+�2 + (d�n)
d kw⇤k

2
if n < d

Furthermore if kw⇤k = � = r � 1 and ✏ 2
⇣
0, r2

2

⌘
, then the number of samples needed to achieve excess error of ✏ is

min
��0

n✏(GD
�
reg(·;w0), µw⇤) �

dr2

2✏

Proof of Theorem 4.1(a). Consider m samples S from ⇢sw⇤ , where s 2 {±1}. As observed earlier, sampling S ⇠ ⇢sw⇤

corresponds to sampling X ⇠ N
n(0, Id) and ⇠ ⇠ N (0,�2In). From Lemma B.1, we get

GD�reg(S;w0) = (Id � (⌃X + �Id)
†(⌃X + �Id))w0 + (⌃X + �Id)

†⌃Xv +
1

n
(⌃X + �Id)

†X>⇠

Instantiating Lemma B.2 with AX = (Id � (⌃X + �Id)†(⌃X + �Id)), BX = (⌃X + �Id)†⌃X and CX = 1
n (⌃X +

�Id)†X>, we get

En(GD
�
reg(·;w0), µw⇤) = E

X

⇥
k(Id � (⌃X + �Id)

†⌃X)w⇤k
2
⇤
+ E

X


�2tr

✓
X

n
(⌃X + �Id)

†2X
>

n

◆�

=(a) E
X

⇥
k(Id � (⌃X + �Id)

†⌃X)w⇤k
2
⇤
+
�2

n2 E
X

h
tr((⌃X + �Id)

†2X>X)
i

= E
X

⇥
k(Id � (⌃X + �Id)

†⌃X)w⇤k
2
⇤

| {z }
bias(GD�

reg)

+
�2

n
E
X

h
tr((⌃X + �Id)

†2⌃X)
i

| {z }
var(GD�

reg)

where (a) follows from property about trace that tr(AB) = tr(BA) and the definition of ⌃X . We now lower bound the
bias and variance terms separately. Let ⌃X = V SV > be the full SVD, where S = diag(s1, . . . , sd) is a diagonal matrix
such that s1 � s2 � · · · � sd � 0. Let vi be the ith column of V . Note that V >V = V V > = Id.

Bias: The bias term can be handled by first noticing the following

bias(GD�reg) = w⇤
>(Id � (⌃X + �Id)

†⌃X)2w⇤ = w⇤
>(V V >

� (V SV > + �V V >)†V SV >)2w⇤

= w⇤
>(V V >

� V (S + �Id)
†V >V SV >)2w⇤ = w⇤

>V (Id � (S + �Id)
†S)2V >w⇤

=
dX

i=1

h(si,�)(w⇤
>vi)

2, where

h(s,�) =

(
�2

(s+�)2 if s > 0

1 if s = 0

We can split the expectation w.r.t. X into expectation w.r.t. S and the conditional expectation of V given S. A
crucial observation is that since the distribution of the rows of X is isotropic gaussian, no direction in space is special.
Thus, conditioned on S, the distribution of vi should be identical for all i and we must have that E

X
[vi|S] = 0 and

E
X
[viv>

i |S] = CId for some constant C. The constant C can be calculated by noting that kvik = 1. So we get

1 = E
X
[v>

i vi|S] = tr

✓
E
X
[viv>

i |S]

◆
= Ctr(Id) = Cd, giving C = 1

d . Then the bias is

bias(GD�reg) = E
S

"

E
V

"
dX

i=1

h(si,�)(w⇤
>vi)

2

����S
##

= E
S

"
dX

i=1

h(si,�) E
vi


(w⇤

>vi)
2

����S
�#

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

= E
S

"
dX

i=1

h(si,�) E
vi


w⇤

>viv
>
i w⇤

����S
�#

= E
S

"
dX

i=1

h(si,�)w⇤
> E

vi


viv

>
i

����S
�
w⇤

#

= E
S

"
dX

i=1

h(si,�)
kw⇤k

2

d

#
=

kw⇤k
2

d
E
S

"
dX

i=1

h(si,�)

#
(12)

Variance: We now look at the variance term

var(GD�reg) = E
X


�2

n
tr((⌃X + �Id)

†2⌃X)

�
= E

X


�2

n
tr((V SV > + �V V >)†

2
V SV >)

�

= E
X


�2

n
tr(V (S + �Id)

†2V >V SV >)

�
= E

X


�2

n
tr(V (S + �Id)

†2SV >)

�

= E
X


�2

n
tr((S + �Id)

†2SV >V)

�
= E

S


�2

n
tr((S + �Id)

†2S)

�

=
�2

n
E
S

"
dX

i=1

g(si,�)

#
, where

g(s,�) =

(
s

(s+�)2 if s > 0

0 if si = 0

Thus we get the following lower bound for the excess risk

En(GD
�
reg(·;w0), µw⇤) = bias(GD�reg) + var(GD�reg) �

kw⇤k
2

d
E
S

"
dX

i=1

h(si,�)

#
+
�2

n
E
S

"
dX

i=1

g(si,�)

#

= E
S

"
dX

i=1

kw⇤k
2

d
h(si,�) +

�2

n
g(si,�)

#

We will show that kw⇤k2

d h(s,�) + �2

n g(s,�) � kw⇤k2�2

kw⇤k2ns+�2d . While this is evident when s = 0, since h(0,�) = 1 and

g(0,�) = 0, for s > 0 the left hand side reduces to kw⇤k2

d
�2

(�+s)2 + �2

ns
s2

(�+s)2 . This is of the form ↵a2 + �b2 where

↵ = kw⇤k2

d ,� = �2

ns and a = �
(�+s) , b =

s
(�+s) satisfy a+ b = 1. The following simple lemma (proof in Appendix B.3)

will help us prove the desired inequality.

Lemma B.3. For ↵,� � 0, we have

min
a,b s.t. a+b=1

↵a2 + �b2 =
↵�

↵+ �

Using the above lemma, we get En(GD�reg(·;w0), µw⇤) � E
S


dP

i=1
f(si)

�
, where f(s) = kw⇤k2�2

kw⇤k2ns+�2d . The following

lemma (proof in Appendix B.3) is a simple application of Jensen’s inequality and aids us in completing the proof

Lemma B.4. For a function convex function f(·) : R ! R, we have

E
S

"
dX

i=1

f(si)

#
�

(
df(1) if n � d

nf(dn) + (d� n)f(0) if n < d

where the expectation is over S is for the distribution of eigenvalues of ⌃X when X ⇠ N (0, Id)n.

By noticing that f(·,�) is convex in the first argument, using Lemma B.4 and the fact that f(0) = kw⇤k2

d and f(1) =
kw⇤k2�2

kw⇤k2n+�2d and f(dn) =
kw⇤k2�2

kw⇤k2d+�2d , we get

En(GD
�
reg(·;w0), µw⇤) �

(
df(1) = dkw⇤k2�2

kw⇤k2n+�2d if n � d

nf(dn) + (d� n)f(0) = n kw⇤k2�2

kw⇤k2d+�2d + (d� n)kw⇤k2

d if n < d

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

which completes the proof for the first part of the theorem.

For the second part where kw⇤k = � = r � 1 and ✏ 2
⇣
0, r2

2

⌘
, it is not difficult to see that En(GD�reg(·,w0), µw⇤) �

dr2

n+d , 8n > 0. To find the minimum n � d such that En(GD�reg(·,w0), µw⇤)  ✏, we observe the following

✏ � En(GD
�
reg(·,w0), µw⇤) �

dr2

n+ d
=) n � d

✓
r2

✏
� 1

◆
�

(a) dr2

2✏

where (a) uses ✏  r2

2 . This gives us n✏(GD�reg(·,w0)) �
dr2

2✏ as desired.

We now prove the result for GD⌘,t0step.

(Theorem 4.1(b)). For every w0 2 Rd
, number of samples needed to have ✏ excess risk on a new task is

En(GD
⌘,t0
step(·;w0), µw⇤) �

8
>><

>>:

dkw⇤k2�2

kw⇤k2n+�2d if n � d

n
d

kw⇤k2�2

kw⇤k2+�2 + (d�n)
d kw⇤k

2
if n < d

Furthermore if kw⇤k = � = r � 1 and ✏ 2
⇣
0, r2

2

⌘
, then the number of samples needed to achieve excess error of ✏ is

min
⌘�0,t02N

n✏(GD
⌘,t0
step(·;w0), µw⇤) �

dr2

2✏

Proof of Theorem 4.1(b). From Lemma B.1 we have

GD⌘,t0step(S;w0) = (Id � ⌘⌃X)t0w0 + (Id � (Id � ⌘⌃X)t0)⌃†
X⌃Xv +

1

n
(Id � (Id � ⌘⌃X)t0)⌃†

XX>⇠

Instantiating Lemma B.2 with AX = (Id � ⌘⌃X)t0 , BX = (Id � (Id � ⌘⌃X)t0)⌃†
X⌃X and CX = 1

n (Id � (Id �

⌘⌃X)t0)⌃†
XX>, we get from a similar calculation to GD�reg

En(GD
⌘,t0
step(·;w0), µw⇤)

= E
X

h
k(Id � (Id � (Id � ⌘⌃X)t0)⌃†

X⌃X)w⇤k
2
i
+ E

X

1

n2

h
�2tr

⇣
X⌃†

X(Id � (Id � ⌘⌃X)t0)2⌃†
XX>

⌘i

= E
X

h
k(Id � ⌃†

X⌃X + (Id � ⌘⌃X)t0⌃†
X⌃X)w⇤k

2
i
+
�2

n2 E
X

h
tr
⇣
(Id � (Id � ⌘⌃X)t0)2⌃†

XX>X⌃†
X

⌘i

= E
X

h
k(Id � ⌃†

X⌃X + (Id � ⌘⌃X)t0⌃†
X⌃X)w⇤k

2
i
+
�2

n
E
X

h
tr
⇣
(Id � (Id � ⌘⌃X)t0)2⌃†

X⌃X⌃†
X

⌘i

= E
X

h
k(Id � ⌃†

X⌃X + (Id � ⌘⌃X)t0⌃†
X⌃X)w⇤k

2
i

| {z }
bias(GD

⌘,t0
step)

+
�2

n
E
X

h
tr
⇣
(Id � (Id � ⌘⌃X)t0)2⌃†

X

⌘i

| {z }
var(GD

⌘,t0
step)

We separately analyze the bias and variance terms

Bias: The bias term can be handled similarly by noticing that

bias(GD⌘,t0step) = E
X

h
w⇤

>(Id � ⌃†
X⌃X + (Id � ⌘⌃X)t0⌃†

X⌃X)2w⇤

i

= E
V ,S

⇥
w⇤

>(V V >
� V S†V >V SV > + (V V >

� ⌘V SV >)t0V S†V >V SV >)2w⇤
⇤

= E
S
E
V

⇥
w⇤

>V (Id � S†S + (Id � ⌘S)t0S†S)2V >w⇤
⇤

= E
S
E
V

"
dX

i=1

h(si, ⌘, t0)(w⇤
>vi)

2

#
= E

S

"
dX

i=1

h(si, ⌘, t0) E
vi

(w⇤
>vi)

2

#

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

=
kw⇤k

2

d
E
S

"
dX

i=1

h(si, ⌘, t0)

#
, where

h(s, ⌘, t0) = (1� ⌘s)2t0

Variance: We now look at the variance term

var(GD⌘,t0step) =
�2

n
E
X

h
tr((Id � (Id � ⌘⌃X)t0)2⌃†

X)
i
=
�2

n
E
X

⇥
tr((V V >

� (V V >
� ⌘V SV >)t0)2V S†V >)

⇤

=
�2

n
E
X

⇥
tr(V (Id � (Id � ⌘S)t0)2V >V S†V >)

⇤
=
�2

n
E
X

⇥
tr(V (Id � (Id � ⌘S)t0)2S†V >)

⇤

=
�2

n
E
S

⇥
tr((Id � (Id � ⌘S)t0)2S†)

⇤
=
�2

n
E
S

"
dX

i=1

g(si, ⌘, t0)

#
, where

g(s, ⌘, t0) =

(
(1�(1�⌘s)t0)2

s if s > 0

0 if s = 0

Thus we get the following lower bound for the excess risk

En(GD
⌘,t0
step(·;w0), µw⇤) = bias(GD⌘,t0step) + var(GD⌘,t0step) �

kw⇤k
2

d
E
S

"
dX

i=1

h(si, ⌘, t0)

#
+
�2

n
E
S

"
dX

i=1

g(si, ⌘, t0)

#

= E
S

"
dX

i=1

kw⇤k
2

d
h(si, ⌘, t0) +

�2

n
g(si, ⌘, t0)

#

We will again show that kw⇤k2

d h(s, ⌘, t0) +
�2

n g(s, ⌘, t0) �
kw⇤k2�2

kw⇤k2ns+�2d . Again, this is obvious for s = 0 from the

definitions of h and g. For s > 0, we can write kw⇤k2

d h(s, ⌘, t0)+
�2

n g(s, ⌘, t0) =
kw⇤k2

d (1�⌘s)2t0 + �2

sn (1� (1�⌘s)t0)2,
which is again of the form ↵a2 + �b2 with a = (1� ⌘s)t0 , b = (1� (1� ⌘s)t0) satisfying a+ b = 1. Thus Lemma B.3

gives us the desired inequality, which directly implies En(GD�reg(·;w0), µw⇤) � E
S


dP

i=1
f(si)

�
, where f(s) = kw⇤k2�2

kw⇤k2ns+�2d .

This is exactly the same lower bound as in the proof of GD�reg , and thus the theorem follows from identical arguments.

B.2. Closed form solutions

We now prove Lemma B.1. Before that, we will state and prove the following simple lemmas about linear dynamics that
will be useful later.
Lemma B.5. For a symmetric psd matrix M 2 Rd⇥d

, let M = BSB�1
be its diagonalization. For b 2 Rd

that is in the

range of M , the solution to the system
dwt
dt = �Mwt + b starting from w0 is

wt = Be�tSB�1w0 +B(Id � e�tS)S†B�1b

w1 = (Id �M †M)w0 +M †b

where for a diagonal matrix S = diag(s1, . . . , sd), e�tS
is defined as diag(e�ts1 , . . . , e�tsd) and S†

is a diagonal matrix

with S†(i, i) = s�1
i if si > 0, otherwise S†(i, i) = 0.

Proof. Since b is the range of M , let b = Mb̄. The dynamics dwt
dt = �BSB�1wt + BSB�1b̄ can be rewritten

as d(B�1wt)
dt = �S(B�1wt + B�1b̄). Setting w̃t = B�1wt and b̃ = B�1b̄, we get dw̃t

dt = �S(w̃t + b̃). Since
S = diag(s1, . . . , sd) is a diagonal matrix, we can decouple the dynamics

dw̃t(i)

dt
= �si(w̃t(i)� b̃(i)), 8i 2 [d]

These scalar dynamics can be solved and it can be verified easily that w̃t(i) = e�tsiw̃0(i) + (1� e�tsi)b̃(i). By observing
that b̄ = M †b and b̃ = B�1b̄ = B�1M †b = S†B�1b, we can summarize the dynamics as w̃t = e�tSw̃0 + (Id �

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

e�tS)S†B�1b. Using w̃0 = B�1w0 and wt = Bw̃t, multiplying by B on both sides completes the first part of the
proof, i.e. wt = Be�tSB�1w0 +B(Id � e�tS)S†B�1b. Furthermore, as t ! 1, we see that e�tS

! diag(1{s1 =
0}, . . . ,1{sd = 0}) since for si 6= 0, e�tsi ! 0 while if si = 0 then e�tsi = 1 for every t 2 R. This completes the second
part of the proof.

Lemma B.6. For a symmetric psd matrix M 2 Rd⇥d
, let M = BSB�1

be its diagonalization. For b 2 Rd
that is in the

range of M , the solution to the system wt+1 �wt = �⌘(Mwt � b) starting from w0 is

wt = B(Id � ⌘S)tB�1w0 +B(Id � (Id � ⌘S)t)S†B�1b

= (Id � ⌘M)tw0 + (Id � (Id � ⌘M)t)M †b

Proof. Since b is the range of M , let b = Mb̄. The dynamics wt+1 � wt = �⌘BSB�1wt + ⌘BSB�1b̄ can be
rewritten as B�1wt+1 = �(Id � ⌘S)B�1wt + ⌘SB�1b̄. Setting w̃t = B�1wt and b̃ = B�1b̄, we get w̃t+1 =
�(Id � ⌘S)w̃t + ⌘Sb̃. Since S = diag(s1, . . . , sd) is a diagonal matrix, we can decouple the dynamics, for every i 2 [d],

w̃t+1(i) = �(1� ⌘si)w̃t(i) + ⌘sib̃(i)

= �(1� ⌘si)
t+1w̃0(i) + ⌘si

0

@
tX

j=0

(1� ⌘si)
j

1

A b̃(i)

This can be simplified to eventually get w̃t(i) = (1� ⌘si)tw̃0(i) + (1� (1� ⌘si)t)b̃(i). By observing that b̄ = M †b and
b̃ = B�1b̄ = B�1M †b = S†B�1b, we can summarize the dynamics as w̃t = (Id�⌘S)tw̃0+(Id�(Id�⌘S)t)S†B�1b.
Using w̃0 = B�1w0 and wt = Bw̃t, multiplying by B on both sides completes the proof, i.e. wt = B(Id�⌘S)tB�1w0+
B(Id � (Id � ⌘S)t)S†B�1b. By observing that B(Id � ⌘S)tB�1 = (Id � ⌘BSB�1)t = (Id � ⌘M)t, we get

wt = B(Id � ⌘S)tB�1w0 +B(Id � (Id � ⌘S)t)B�1BS†B�1b

= (Id � ⌘M)tw0 + (BB�1
�B(Id � ⌘S)tB�1)BS†B�1b

= (Id � ⌘M)tw0 + (Id � (Id � ⌘M)t)M †b

which completes the proof

Proving Lemma B.1: We restate the statement of the Lemma B.1 here for convenience.

(Lemma B.1). Let S = (X, ⇠) be a sample from ⇢v , X 2 Rn⇥d, ⇠ 2 Rn
. Let ⌃X = 1

n

nP
i=1

xix>
i 2 Rd⇥d

GD�reg(S;w0) = (Id � (⌃X + �Id)
†(⌃X + �Id))w0 + (⌃X + �Id)

†⌃Xv +
1

n
(⌃X + �Id)

†X>⇠

GD⌘,t0step(S;w0) = (Id � ⌘⌃X)t0w0 + (Id � (Id � ⌘⌃X)t0)⌃†
X⌃Xv +

1

n
(Id � (Id � ⌘⌃X)t0)⌃†

XX>⇠

Proof of Lemma B.1. We first prove the result for GD�reg . Recall the definition of the regularized loss from Equation 6 and
the dynamics for GD�reg

`S,�(w) =
1

n

nX

i=1

(w>xi � yi)
2 +

�

2
kwk

2;
dwt

dt
= �rw`S,�(wt)

where yi = v>xi + ⇠i. The gradient of `S,� is

rw`S,�(w) =
1

n

nX

i=1

(w>xi � yi)xi + �w =
1

n

nX

i=1

(w>xi � v>xi � ⇠i)xi + �w

=

1

n

nX

i=1

xix
>
i + �Id

!
w �

1

n

nX

i=1

xix
>
i

!
v �

1

n
X>⇠

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

= (⌃X + �Id)w � ⌃Xv �
1

n
X>⇠

If M = (⌃X+�Id) and b = ⌃Xv+ 1
nX

>⇠, then rw`S,�(w) = Mw�b and the dynamics are dwt
dt = �Mwt+b. Note

that b is in the range of M for every � � 0; this is obvious for � > 0 when M is full rank, but even � = 0, since b lies in the
span of rows of X , it lies in the span of ⌃X = 1

nX
>X . Thus by Lemma B.5, we get that w1 = (Id�M †M)w0+M †b.

Plugging in values of M and b gives the desired closed form for GD�reg .

We now derive the closed form solution for GD⌘,t0step. Recall the dynamics of GD⌘,t0step

`S(w) =
1

n

nX

i=1

(w>xi � yi)
2; wt+1 = wt � ⌘rw`S(wt)

where again yi = v>xi + ⇠i. The gradient of `S is

rw`S(w) =
1

n

nX

i=1

(w>xi � yi)xi =
1

n

nX

i=1

(w>xi � v>xi � ⇠i)xi

=

1

n

nX

i=1

xix
>
i

!
w �

1

n

nX

i=1

xix
>
i

!
v �

1

n
X>⇠

= ⌃Xw � ⌃Xv �
1

n
X>⇠

Setting M = ⌃X and b = ⌃Xv+ 1
nX

>⇠, we get rw`S(w) = Mw�b and the dynamics are wt+1�wt = �⌘(Mwt�b).
Again since b is in the span of M , we can use Lemma B.1 to get wt0 = (Id � ⌘M)t0w0 + (Id � (Id � ⌘M)t0)M †b.
Plugging in the values of M and b completes the proof for GD⌘,t0step.

B.3. Other proofs

Proving Lemma B.2

Proof of Lemma B.2. We start by looking at the loss for sw⇤ for s 2 {±1}

E
S⇠⇢sw⇤

⇥
`sw⇤(Alg(·;w0))� �2

⇤
= E

S⇠⇢sw⇤

⇥
kAlg(S;w0))� sw⇤k

2
⇤

= E
X⇠Nn(0,Id)
⇠⇠N (0,�2Im)

⇥
kAXw0 +BX(sw⇤) +CX⇠ � sw⇤k

2
⇤

= E
X,⇠

kAXw0 � (Id �BX)sw⇤ +CX⇠k
2

=(a) E
X
k(AXw0 � (Id �BX)sw⇤k

2 + E
X,⇠

kCX⇠k
2

=(b) E
X
k(sAXw0 � (Id �BX)w⇤k

2 + E
X,⇠

kCX⇠k
2

where (a) uses the fact that X and ⇠ are independent and E
⇠
⇠ = 0 and (b) uses s2 = 1. Thus we get,

En(GD
�
reg(·;w0), µw⇤) = E

s⇠{±1}


E

S⇠⇢sw⇤

[`sw⇤(GD
�
reg(·;w0))

�
� �2

= E
s⇠{±1}


E

S⇠⇢sw⇤

[`sw⇤(GD
�
reg(·;w0))� �2]

�

= E
s⇠{±1}

E
X,⇠

⇥
k(sAXw0 � (Id �BX)w⇤k

2 + kCX⇠k
2
⇤

= E
X

E
s⇠{±1}

⇥
k(sAXw0 � (Id �BX)w⇤k

2
⇤
+ E

X,⇠

⇥
⇠>C>

XCX⇠
⇤

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

�
(a) E

X


k(E

s⇠{±1}
[s]AXw0 � (Id �BX)w⇤k

2

�
+ E

X,⇠

⇥
⇠>C>

XCX⇠
⇤

=(b) E
X

⇥
k(Id �BX)w⇤k

2
⇤
+ E

X


E
⇠
tr(C>

XCX⇠⇠
>)

�

=(c) E
X

⇥
k(Id �BX)w⇤k

2
⇤
+ E

X
[�2tr(C>

XCX)]

where (a) is true by convexity of the quadratic function in s, (b) uses ⇠>P ⇠ = tr(P ⇠⇠>) for any d⇥ d matrix P , (c) uses
the linearity of tr operator and the fact that E

⇠
⇠⇠> = �2Im when ⇠ ⇠ N (0,�2Im). This completes the proof. Note that we

only needed first and second moment conditions on ⇠ to prove this lemma.

Proving Lemma B.4

Proof of Lemma B.4. If n � d, we just follow the steps below that heavily use Jensen’s inequality due to the convexity of f .

E
S

"
dX

i=1

f(si)

#
= E

S


d E
i⇠[d]

[f(si)]

�
�

(a) dE
S


f

✓
E

i⇠[d]
[si]

◆�
= dE

S


f

✓
1

d
tr(S)

◆�
=(b) d E

X


f

✓
1

d
tr(⌃X)

◆�

�
(c) df

✓
1

d
E
X
[tr(⌃X)]

◆
= df

✓
1

d
tr(E

X
⌃X)

◆
=(d) df

✓
1

d
tr(Id)

◆
= df (1)

where (a) follows from Jensen’s inequality, (b) follows from the fact that tr(S) = tr(SV >V) = tr(V SV >) = tr(⌃X),

(c) follows from Jensen’s inequality and (d) follows from E
X
⌃X = E

X

1
n

nP
i=1

xix>
i = 1

n

nP
i=1

E
X
xix>

i = 1
n

nP
i=1

Id = Id.

When n < d, we know that X (and hence ⌃X) has rank at most n < d, thus the d � n smallest eigenvalues are 0, i.e.

si = 0 for n+ 1  i  d. Note that
dP

i=1
si =

nP
i=1

si = tr(S). Following the steps below,

E
S

"
dX

i=1

f(si)

#
= E

S

"
nX

i=1

f(si)

#
+ E

S

"
dX

i=n+1

f(si)

#
= E

S


n E

i⇠[n]
[f(si)]

�
+ E

S

"
dX

i=n+1

f(0)

#

� E
S


nf(E

i⇠[n]
[si])

�
+ (d� n)f(0) = E

S


nf

✓
1

n
tr(S)

◆�
+ (d� n)f(0)

= E
X


nf

✓
1

n
tr(⌃X)

◆�
+ (d� n)f(0) � nf

✓
1

n
tr(E

X
⌃X)

◆
+ (d� n)f(0)

= nf

✓
d

n

◆
+ (d� n)f(0)

C. Non-convex proofs

C.1. Theorems and Lemmas for Reptile

Let Āi+1, w̄i+1 = GDpop(`⇢i+1 , (Ai,wi)) be the solution for task ⇢i+1 that is found by gradient descent starting from
current initialization. Thus the reptile update is Ai+1 = (1 � ⌧)Ai + ⌧Āi+1 and wi+1 = (1 � ⌧)wi + ⌧w̄i+1. Let
w̄⇤ = w⇤/kw⇤k be the unit vector and let r = kw⇤k.
Lemma C.1. Given a sequence of tasks ⇢1:T where ⇢i = ⇢siw⇤ for si 2 {±1}. Starting with A0 = Id,w = 0d, then the

initialization learned by Reptile satisfies the following at every step i 2 [T]

Ai = (ai � )w̄⇤w̄⇤ + Id, wi = biw̄⇤

where

a0 = , b0 = 0

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

ci = a2i � b2i , ai+1 = (1� ⌧)ai + ⌧ āi+1, bi+1 = (1� ⌧)bi + ⌧ si+1b̄i+1

āi+1 =

s
ci +

p
4r2 + c2i
2

, b̄i+1 =

s
�ci +

p
4r2 + c2i
2

The following key lemma about the solution of gradient flow for a single task starting from an initialization is crucial to
prove the above lemma.
Lemma C.2. Starting from A(0) = (a(0)� )w̄⇤w̄>

⇤ + Id, w(0) = b(0)w̄⇤, with a(0) > b(0), the solution of gradient

flow on loss `sw⇤ for s 2 {±1}, is Ā, w̄ = GDpop(`sw⇤ , (A,w)), where

Ā = (ā� )w̄⇤w̄
>
⇤ + Id, w̄ = b̄w̄⇤ , where

ā =

s
c+

p
4r2 + c2

2
, b̄ = s

s
�c+

p
4r2 + c2

2
, c = a(0)2 � b(0)2

Proof of Lemma C.1. We prove this using a simple induction by assuming Lemma C.2. It is clear for i = 0 that a0 = 
and b0 = 0. Suppose Ai = (ai � )w̄⇤w̄⇤ + Id, wi = biw̄⇤. From Lemma C.2, we get that Āi+1 = (āi � )w̄⇤w̄⇤ +
Id, wi+1 = si+1b̄iw̄⇤. Doing the interpolation step completes the proof.

Proof of Lemma C.2. The proof uses ideas from Saxe et al. (2014; 2019); Gidel et al. (2019), where the dynamics of linear
networks is analyzed in the case where the subspace of the initialization is aligned with the target sw̄⇤. We provide a
proof of this lemma by borrowing the key ideas those works. Let U 2 Rd⇥d be an orthonormal matrix, i.e. U>U = Id,
whose first column is w̄⇤. Thus we can rewrite A(0) = U⇤1(0)U>, where ⇤1(0) 2 Rd⇥d is a diagonal matrix that looks
like ⇤1(0) = diag(a(0),, . . . ,), w(0) = U⇤2(0), where ⇤2(0) = (b(0), 0, . . . , 0) 2 Rd and sw⇤ = U⇤⇤, where
⇤⇤ = (sr, 0, . . . , 0) 2 Rd. The loss to run gradient flow on is `sw⇤(A,w) = kA>w � sw⇤k

2. Dynamics of gradient flow
is

dA(t)

dt
= �rA`sw⇤(A(t),w(t)) = sw(t)w⇤

>
�w(t)w(t)>A(t)

dw(t)

dt
= �rw`sw⇤(A(t),w(t)) = sA(t)w⇤ �A(t)A(t)>w(t)

Just like Saxe et al. (2014); Gidel et al. (2019), we define ⇤1(t) = U>A(t)U , ⇤2(t) = U>w(t), ⇤⇤ = U>w⇤. Thus

d⇤1(t)

dt
= ⇤2(t)⇤

>
⇤ � ⇤2(t)⇤2(t)

>⇤1(t)

d⇤2(t)

dt
= ⇤1(t)⇤⇤ � ⇤1(t)⇤1(t)

>⇤2(t)

By a similar argument, we see that the time derivative of ⇤1 is non-zero only for the first diagonal entry while the derivative
of ⇤2 is non-zero only for the first entry. Thus the entire dynamics can be summarized by the dynamics of two scalar values

da(t)

dt
= b(t)sr � b(t)2a(t)

db(t)

dt
= a(t)sr � a(t)2b(t)

Using the hyperbolic change of coordinates of (a(t), b(t)) = (
p
c cosh(✓/2),

p
c sinh(✓/2)) and the analysis in Appendix

A from Saxe et al. (2014), we have that the fixed point of the dynamics is at ✓̄ = sinh�1(2rs/c), thus giving the solutions

ā =
p
c cosh(✓̄/2) =

s
c+

p
4r2 + c2

2

b̄ =
p
c sinh(✓̄/2) =

s
�c+

p
4r2 + c2

2

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

We now prove the key theorem that shows how the reptile update amplifies the component of the first layer in the direction
of w⇤. Precisely, it shows that with high probability over sampling of the training tasks, aT from Lemma C.1 is large for
appropriate choice of T and ⌧ .

Theorem C.3. Suppose {ai, bi, ci}Ti=1 follow the dynamics from Lemma C.1 with {s1, . . . , sT } ⇠ {±1}T . Then with

probability at least 1 � �, aT � min

⇢ p
r

2
p
⌧ log(T/�)

,
p
r (⌧T)1/4

2

�
. Picking ⌧ = T�1/3 log(2T/�)�2/3

, we get that

aT �

p
rT 1/6 log(2T/�)�1/6

2 = ⌦̃(
p
rT 1/6)

Proof. The proof has 3 mains steps

• Step 1: ai is non-decreasing and the increment in ai is a decreasing function of |aibi|. Also |aibi|  r.

• Step 2: With high probability, |bi| is small

• Step 3: Either |aibi| is small, which gives an increment in ai, otherwise, or ai = ⌦(1/|bi|) is large since |bi| is small

Step 1: We first prove that ai is non-decreasing, which happens if āi+1 � ai for every i.

ā2i+1 � a2i =
ci +

p
4r2 + c2i
2

� a2i =
a2i � b2i +

p
4r2 + (a2i � b2i)

2 � 2a2i
2

=

p
4r2 + (a2i � b2i)

2 � (a2i + b2i)

2
=

p
4(r2 � a2i b

2
i) + (a2i + b2i)

2 � (a2i + b2i)

2

Thus |aibi| < r will ensure that ai is non-decreasing. We show that using induction, |a0b0| = 0 and assume |aibi|  r.
Notice that since ā2i+1 � b̄i+1 = a2i � b2i , we have that (|ai|� |āi+1|)(|bi|� |b̄i+1|) � 0.

|ai+1bi+1| = |(1� ⌧)2aibi + ⌧2āi+1b̄i+1 + ⌧(1� ⌧)aib̄i+1 + ⌧(1� ⌧)biāi+1

 (1� ⌧)2|aibi|+ ⌧2|āi+1b̄i+1|+ ⌧(1� ⌧)[|ai||b̄i+1|+ |bi||āi+1|]

 (1� ⌧)2r + ⌧2r + ⌧(1� ⌧)[|ai||bi|+ |āi+1||b̄i+1|] + ⌧(1� ⌧)(|ai|� |āi+1|)(|b̄i+1|� |bi|)

 (1� ⌧)2r + ⌧2r + ⌧(1� ⌧)[r + r] + 0 = r

Thus finishing the first step in the proof.

Step 2: We now move to the second step about |bi| being small.

Proposition C.4. With probability at least 1� � over {s1, . . . , sT }, |bi| 
p
2r⌧ log(2T/�), for every i 2 [T]

From the dynamics, we have Xi+1 = bi+1 � (1� ⌧)bi = ⌧si+1b̄i+1. Note that b̄i+1 depends only on s1:i and |b̄i+1| 
p
r,

thus conditioned on s1:i, Xi+1 is ⌧
p
r sub-gaussian and E[Xi+1|s1:i] = ⌧ E[si+1b̄i+1|s1:i] = 0 = ⌧ b̄i+1 E[si+1|s1:i] = 0.

It is easy to verify that we can rewrite bi+1 = Xi+1 + (1� ⌧)Xi + (1� ⌧)2Xi�1 + · · ·+ (1� ⌧)iX1, where we also use
the fact that b0 = 0. Using Markov’s inequality we get

Pr(bi+1 > ⌫) = Pr(etbi+1 > et⌫)  e�t⌫ E etbi+1 = e�t⌫ E e
t
i+1P
j=0

(1�⌧)jXi+1�j

= e�t⌫ E
i+1Y

j=0

et(1�⌧)
jXi+1�j = e�t⌫

iY

j=0

E[et(1�⌧)
jXi+1�j |s1:i�j]


(a) e�t⌫

iY

j=0

e
t2⌧2r(1�⌧)2j

2 = e�t⌫e

t2⌧2r
iP

j=0
(1�⌧)2j

2

 e�t⌫e

t2⌧2r
1P

j=0
(1�⌧)2j

2 = e�t⌫e
t2⌧2r

2(1�(1�⌧)2) = e�t⌫e
t2⌧2r

2(2⌧�⌧2)

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning


(b) e�t⌫e

t2⌧r
2

Where for (a) we use the fact that (1� ⌧)jXi+1�j is zero mean and (1� ⌧)2j⌧2r-subgaussian when conditioned on s1:i�j ,
and for (b) we use ⌧ < 1. Picking the optimal value of t = ⌫

⌧r , we get Pr(bi+1 > ⌫)  e�
⌫2

2⌧r . By using the symmetry

of bi+1 (since the sequence {�s1, . . . ,�sT } will give �bi+1 instead), we get that Pr(bi+1 < �⌫)  e�
⌫2

2⌧r and by union

bound we get that Pr(8i 2 [T], |bi| > ⌫)  2Te�
⌫2

2⌧r . Setting ⌫ =
q

2r⌧ log(2T�), we get Pr(8i 2 [T], |bi| > ⌫)  �

Step 3: Let � =
q

2⌧ log(2T�); from step 2 we have |bi| 
p
r�, 8i 2 [T]. An easy induction can also show that

|bi| 
p
r. To show aT is large, we assume that aT < ↵ for some ↵ and see how large T can be without leading to a

contradiction. We also assume that ↵ � 1, this assumptions will be justified in the end. Since ai is non-decreasing, we also
get that ai  ↵

p
r, 8i 2 [T]. If aibi � rp

2
for any i, then we have ai �

rp
2bi

�

p
rp
2�

which would finish the proof. If
aibi <

rp
2

for every i, then we will prove that there is at least a constant increment in ai. Let �i = āi+1 � ai; as shown in
step 1, �i � 0.

(�i + ai)
2
� a2i =

ci +
p
4r2 + c2i
2

� a2i =
a2i � b2i +

p
4r2 + (a2i � b2i)

2

2
� a2i

=

p
4(r2 � a2i b

2
i) + (a2i + b2i)

2 � (a2i + b2i)

2

�
(a)

p
2r2 + (a2i + b2i)

2 � (a2i + b2i)

2

�
(b)

p
2r2 + r2(↵2 + 1)2 � r(↵2 + 1)

2
= r

p
2 + (↵2 + 1)2 � (↵2 + 1)

2

= r
1p

2 + (↵2 + 1)2 + (↵2 + 1)
�

rp
2(↵2 + 1)2 + (↵2 + 1)

=
r

(
p
2 + 1)(↵2 + 1)

where (a) follows because |aibi| <
rp
2

and (b) follows from the fact that
p

x+ y2 � y �
p
x+ z2 � z whenever y < z,

where x here is 2r2, y is a2i + b2i and z is r↵2 + r. Thus we get

�i �

r
r

(
p
2 + 1)(↵2 + 1)

+ a2i � ai �
(a)
r

r

(
p
2 + 1)(↵2 + 1)

+ r↵2 �
p
r↵

=
p
r

"s
1

(
p
2 + 1)(↵2 + 1)

+ ↵2 � ↵

#
=

p
r

1
(
p
2+1)(↵2+1)q
1

(
p
2+1)(↵2+1)

+ ↵2 + ↵

�

p
r

(
p
2 + 1)(↵2 + 1)3/2

:= �

From the dynamics, ai+1 = ai + ⌧(āi+1 � ai) � ai + ⌧�i � ai + ⌧� = a0 + (i + 1)⌧�. Thus aT � T ⌧�. But we
assumed that aT  ↵

p
r, so we have

p
r↵ � T ⌧� �

T ⌧
p
r

(
p
2 + 1)(↵2 + 1)3/2

�
T ⌧

p
r

(
p
2 + 1)(↵2 + ↵2)3/2

=
T ⌧

p
r

(
p
2 + 4)↵3

Thus we get that ↵ > (T⌧)1/4

2 . This completes the proof

We now prove why the initialization learned at the end of Reptile will help with sample complexity of new task. We denote
X ⇠ N (0, Id)n as sampling n i.i.d. vectors from N (0, Id) and stacking them into a matrix X 2 Rn⇥d, and ⌃X := 1

nxix>
i

Lemma C.5. Given a symmetric and invertible A 2 Rd⇥d
as the first layer, the excess risk for learning the second layer is

En(GD2
�
reg(·; (A,0d)), µw⇤) = E

X⇠N (0,Id)n
[�2kA(A⌃XA+ �Id)

�1A�1w⇤k
2]

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

+
�2

n
E

X⇠N (0,Id)n
tr
�
A(A⌃XA+ �Id)

�1A⌃XA(A⌃XA+ �Id)
�1A

�

Proof of Lemma C.5. By definition, we have

En,�(A, µw⇤) = E
s⇠{±1}

E
S⇠⇢nsw⇤

`sw⇤(GD2
�
reg(S; (A,0d)))� �2

= E
s⇠{±1}

E
S⇠⇢nsw⇤

ksw⇤ � GD2�reg(S; (A,0d)))k
2

We first compute the inner expectation for s = 1, a similar calculation will work for s = �1. First, we state the solution for
GD for the regularized loss `S,� starting from A and we prove this later. Let S = (X,y) be all the samples and predictions,
where X 2 Rn⇥d and y 2 Rn. Define ⇠ = y �X>w⇤ to be the noise in the predictions; by the definition of ⇢w⇤ , we have
that ⇠ ⇠ N (0,�2In). We can now write the solution to GD2�reg by using Lemma B.5 as

GD2�reg(S; (A,0d)) = (A⌃XA+ �Id)
�1(A⌃Xw⇤ +

1

n
AX>⇠)

The intuition is that `S,�(·,A) has a unique solution because of the regularization, and gradient descent converges to that
unique solution. Using this, we can compute the excess risk for ⇢w⇤

E
S⇠⇢nw⇤

kw⇤ �A GD2�reg(S; (A,0d))k
2 = E

X⇠N (0,Id)
n

⇠⇠N (0,�In)

kw⇤ �A(A⌃XA+ �Id)
�1(A⌃Xw⇤ +

1

n
AX>⇠)k2

= E
X⇠N (0,Id)n

kA
�
Id � (A⌃XA+ �Id)

�1(A⌃XA)
�
A�1w⇤k

2

+ E
X⇠N (0,Id)

n

⇠⇠N (0,�In)

kA(A⌃XA+ �Id)
�1 1

n
AX>⇠k2

= E
X⇠N (0,Id)n

�2kA(A⌃XA+ �Id)
�1A�1w⇤k

2

+
�2

n
E

X⇠N (0,Id)n
tr
�
A(A⌃XA+ �Id)

�1A⌃XA(A⌃XA+ �Id)
�1A

�

Lemma C.6. Suppose A = (↵� )w̄⇤w̄>
⇤ + Id, where ↵ � , then for ↵ = poly(✏�1, d,, kw⇤k

2),� = ⇥
�
↵3/2

�
and

n = ⌦(log(✏�1
kw⇤k2)), we have the following,

E
X⇠N (0,Id)n

[�2kA(A⌃XA+ �Id)
�1A�1w⇤k

2]  ✏

E
X⇠N (0,Id)n

tr
�
A(A⌃XA+ �Id)

�1A⌃XA(A⌃XA+ �Id)
�1A

�
 2 + ✏

Proof. We write the SVD of A as the following,

A = U

2

6664

↵


. . .


3

7775
U> := UD↵,U

>

where D↵, := ↵e1e>1 + (Id � e1e>1), and we know U>w⇤ = kw⇤ke1.

For simplicity, from now on we write ⌃ := U>⌃XU which is identically distributed as ⌃X , and we let v 2 Rd denote the
top eigenvector of D↵,⌃D↵,. Now we use an eigenvector perturbation argument to show v is close to e1 if ↵ is much
larger than . For this purpose, we write D↵,⌃D↵, = ↵2⌃11e1e>1 + E where

E := D↵,⌃(Id � e1e
>
1) + (Id � e1e

>
1)⌃D↵, + 2(Id � e1e

>
1)⌃(Id � e1e

>
1)

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

It is clear that

kEkF 
�
2kD↵,k2kId � e1e

>
1 kF + 2kId � e1e

>
1 k

2
F

�
k⌃kF


�
2↵d+ d2

�
tr(⌃)

By the Davis-Kahan theorem (Davis & Kahan, 1970), we have

kvv> � e1e
>
1 kF  2

p
2
kEkF

↵2⌃11
 C

�
2↵d+ d2

�
tr(⌃)

↵2⌃11

where C is an absolute constant. Furthermore, we can bound the eigenvalues of D↵,⌃D↵, using Weyl’s inequality:
���1(D↵,⌃D↵,)� ↵2⌃11

��  kEkF 
�
2↵d+ d2

�
tr(⌃)

8i : 2  i  d, |�i(D↵,⌃D↵,)|  kEkF 
�
2↵d+ d2

�
tr(⌃)

where �1 denotes the largest eigenvalue and �i’s are the rest. It follows that

�2kA(A⌃XA+ �Id)
�1A�1w⇤k

2 = �2kw⇤k
2
kD↵,(D↵,⌃D↵, + �Id)

�1D�1
↵,e1k

2


�2kw⇤k

2

(↵2⌃11 � (2↵d+ d2) tr(⌃) + �)2
kD↵,vv

> 1

↵
e1k

2 + kD↵,(Id � vv>)
1

↵
e1k

2
kw⇤k

2


�2

(↵2⌃11 � (2↵d+ d2) tr(⌃) + �)2
kw⇤k

2 +

✓
1 +

d

↵

◆2

kvv> � e1e
>
1 k

2
F kw⇤k

2


�2

(↵2⌃11 � (2↵d+ d2) tr(⌃) + �)2
kw⇤k

2 +

✓
1 +

d

↵

◆2 �2↵d+ d2
�2

tr(⌃)2

(↵2⌃11)2
kw⇤k

2

where C 0 is another absolute constant.

Finally, we note that n⌃ii ⇠ �2(n), i.e., �2 distribution with n degree of freedom for all i 2 [d]. Thus by standard
concentration bound, we have Pr [⌃11 � 0.9 ^ tr(⌃)  2d] � 1� exp(�⌦(n)). To evaluate the expectations, we condition
on two events, namely ⌃11 � 0.9^tr(⌃)  2d and its complement. Thus in the case where ↵ = ⌦

�
max{✏�1d44kw⇤k

2
}
�
,

� = ⇥(↵3/2) and n = ⌦
�
log(✏�1

kw⇤k)
�
, we have

E
X⇠N (0,Id)n

[�2kA(A⌃XA+ �Id)
�1A�1w⇤k

2]

 kw⇤k
2 exp(�⌦(n))

+ (1� exp(�⌦(n)) kw⇤k
2

�2

(0.9 · ↵2 � 4↵d2� 2d22 + �)2
+ 4

✓
1 +

d

↵

◆2 �2↵d+ d2
�2

d2

(0.9 · ↵2)2

!

 ✏

For the second part, we have

E
X⇠N (0,Id)n

kA(A⌃XA+ �Id)
�1AX>

k
2
F  E

X⇠N (0,Id)n
[kAk

2
2 tr((A⌃XA+ �Id)

�2A⌃XA)]

= E
X⇠N (0,Id)n

"
↵2

dX

i=1

�i(D↵,⌃D↵,)

(�i(D↵,⌃D↵,) + �)2

#

 E
X⇠N (0,Id)n


�1(D↵,⌃D↵,)

�1(D↵,⌃D↵,) + �
·

↵2

�1(D↵,⌃D↵,) + �
+ (d� 1)

↵2

�2
kEkF

�

 E
X⇠N (0,Id)n


↵2

�1(D↵,⌃D↵,) + �
+ (d� 1)

↵2

�2
�
2↵d+ d2

�
tr(⌃)

�

 E
X⇠N (0,Id)n


↵2

↵2⌃11 � (2↵d+ d2) tr(⌃) + �

�

| {z }
:=}

+
↵2

�2
(2d32 + d22)

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

In order to bound }, we first condition on the event of E := ⌃11 �
1p
↵
^ tr(⌃)  d

p
↵

8 which occurs with overwhelming
probability. In fact, we have by the standard concentration bound and the CDF of �2(n) distribution, i.e., Pr[⌃11 

1p
↵
] 

(1/↵)n/4 that

Pr[E] � 1� ↵�n/4
� exp(�⌦(

p
↵)

It follows that

}  E
X⇠N (0,Id)n


↵2

↵2⌃11 � (2↵d+ d2) tr(⌃) + �

����E
�
Pr[E]

+ E
X⇠N (0,Id)n


↵2

↵2⌃11 � (2↵d+ d2) tr(⌃) + �

����¬E
�
(1� Pr[E])

 E
X⇠N (0,Id)n


↵2

↵2⌃11 � (2↵d+ d2) tr(⌃) + �

����E
�
Pr[E] + ↵2(1� Pr[E])

 E
X⇠N (0,Id)n


↵2

↵2⌃11 � (2↵d+ d2) tr(⌃) + �

����E
�
+ ↵2

⇣
↵�n/4 + exp(�⌦(

p
↵))
⌘

 E
X⇠N (0,Id)n


↵2

0.5 · ↵2⌃11 + �

����E
�⇣

1� ↵�n/4
� exp(�⌦(

p
↵))
⌘
+ ↵2

⇣
↵�n/4 + exp(�⌦(

p
↵))
⌘

 E
X⇠N (0,Id)n


↵2

0.5 · ↵2⌃11 + �

����E
�
+ ↵2

⇣
↵�n/4 + exp(�⌦(

p
↵))
⌘

 E
X⇠N (0,Id)n


2

⌃11

�
+ ↵2

⇣
↵�n/4 + exp(�⌦(

p
↵))
⌘


2n

n� 2
+ ↵2

⇣
↵�n/4 + exp(�⌦(

p
↵))
⌘

where we use the fact that E[2/⌃11|E]  E[2/⌃11] and the expectation of inverse �2 distribution. Putting it together and
assuming ↵ = ⌦

�
poly(✏�1d32)

�
,� = ↵3/2 and n � 10, we conclude

E
X⇠N (0,Id)n

kA(A⌃XA+ �Id)
�1AX>

k
2
F


2n

n� 2
+ ↵2

⇣
↵�n/4 + exp(�⌦(

p
↵))
⌘
+
↵2

�2
(2d32 + d22)

 2 + ✏

C.2. Proof of Main Results

Reptile: We finally prove the main theorem about the success of Reptile.

(Theorem 5.1). Starting with (A0,w0) = (Id,0d), let AT = Reptile(⇢1:T , (A0,w0)) be the initialization learned

using T tasks {⇢1, . . . , ⇢T } ⇠i.i.d. µT
w⇤ . If T � poly(d, r, 1/✏, log(1/�),) and ⌧ = O(T�1/3), then with probability at

least 1� � over sampling of T tasks,

min
��0

En(GD2
�
reg(·; (AT ,0d)), µw⇤)  ✏+

cr2

n

for a small constant c. Thus with the same probability, we have

min
��0

n✏(GD2
�
reg(·;AT ,0d), µw⇤) = O

✓
r2

✏

◆

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

Proof of Theorem 5.1. The theorem essentially follows from Lemma C.1, Theorem C.3, Lemma C.5 and Lemma C.6.
From Lemma C.1 and Theorem C.3, we get that with probability at least 1� � choosing ⌧ = T�1/3 log(2T/�)�2/3 will
ensure AT = (↵ � )w̄⇤w̄⇤ + Id with ↵ = ⌦(

p
rT 1/6). Combining Lemma C.5 and Lemma C.6 we know that if

↵ = ⌦(poly(✏�1, d,, r)), then En(GD2�reg(·; (A,0d)), µw⇤) 
✏
2 + c�2

n = ✏
2 + cr2

n . To ensure ↵ is this large, we just
need that the number of tasks to satisfy T = poly(✏�1, d,, r, log(��1)) for the appropriate polynomial from Lemma C.6.
Thus for En(GD2�reg(·; (A,0d)), µw⇤)  ✏, we just need n = ⌦

⇣
r2

✏

⌘
samples for a new task, completing the proof.

Representation learning: We now prove the main theorem about the success of RepLearn.

(Theorem 5.2). Starting with (A0,w0,1:T) = (Id,0d, . . . ,0d), let AT = RepLearn(⇢1:T , (A0,w0,1:T)), be the

initialization learned using T tasks {⇢1, . . . , ⇢T } ⇠i.i.d. µT
w⇤ . If T � poly(d, r, 1/✏, log(1/�),), then with probability at

least 1� � over sampling of the T tasks,

min
��0

En(GD2
�
reg(·; (AT ,0d)), µw⇤)  ✏+

cr2

n

for a small constant c. Thus with the same probability, we have

min
��0

n✏(GD2
�
reg(·;AT ,0d), µw⇤) = O

✓
r2

✏

◆

Proof of Theorem 5.2. The proof of this is very similar to the proof of Theorem 5.1 above. Just as in that proof, we need to
show that for a large enough T , AT := ARepLearn

T = (↵� )w⇤w⇤
> + Id for a large enough ↵. The theorem will then

follow from Lemma C.5 and Lemma C.6 just as in the previous proof. To prove the closed form solution for AT , we use the
following lemma that is very similar to Lemma C.2

Lemma C.7. Starting from A(0) = (a(0)�)w̄⇤w̄>
⇤ +Id, wi(0) = 0d, i 2 [T], with a(0) > 0, the solution of gradient

flow on loss Lrep(A,w1:T) for s 2 {±1}, is Ā, w̄1:T , where

Ā = (ā� )w̄⇤w̄
>
⇤ + Id, w̄i = b̄iw̄⇤ , where

ā =

s
a(0)2 +

p
4r2T + a(0)4

2
, b̄i = si

s
�a(0)2 +

p
4r2T + a(0)4

2

Proof. We first rewrite the representation learning objective using the derivation in Section 6.2 as follows

Lrep(A,w1:T) =
1

T
kA>W �W⇤k

2 (13)

where W 2 Rd⇥T ,W⇤ 2 Rd⇥T and the ith column of W is wi and the ith column of W⇤ is siw⇤. Just as in Lemma C.2,
we define U to be an orthogonal matrix whose first column is w̄⇤. We also define V 2 RT to be the vector of the signs of
the tasks, i.e. V = 1p

T
(s1, . . . , sT). We can then rewrite A(0) = U⇤1(0)U>, where ⇤1(0) 2 Rd⇥d is a diagonal matrix

that looks like ⇤1(0) = diag(a(0),, . . . ,), W (0) = U⇤2(0)V >, where ⇤2(0) = (b(0), 0, . . . , 0) 2 Rd with b(0) = 0
and W⇤ = U⇤⇤V >, where ⇤⇤ = (

p
Tr, 0, . . . , 0) 2 Rd. Note that U>U = Id and V >V = 1

The dynamics of gradient flow on Lrep using Equation 13 is

dA(t)

dt
= W (t)W⇤

>
�W (t)W (t)>A(t)

dW (t)

dt
= A(t)W⇤ �A(t)A(t)>W (t)

By defining ⇤1(t) = U>A(t)U , ⇤2(t) = U>W (t)V , ⇤⇤ = U>W⇤V , we can multiply the above dynamics by U> on
the left and V on the right, and use the properties above to get

d⇤1(t)

dt
= ⇤2(t)⇤

>
⇤ � ⇤2(t)⇤2(t)

>⇤1(t)

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

d⇤2(t)

dt
= ⇤1(t)⇤

>
⇤ � ⇤1(t)⇤1(t)

>⇤2(t)

Just like Lemma C.2, this reduces to a scalar dynamics and the solution we get is Ā = U ⇤̄1U>, W̄ = U ⇤̄2V >, where
⇤̄1 = diag(ā,, . . . ,), ⇤̄2 = (b̄, 0, . . . , 0) and

ā =

s
a(0)2 +

p
4r2T + a(0)4

2
, b̄ =

s
�a(0)2 +

p
4r2T + a(0)4

2

This completes the proof of the lemma.

Back to the main theorem, we see from the above lemma that ↵ = ⌦(
p
rT 1/4), where AT = (↵� )w⇤w⇤

> + Id. So
making T = poly(✏�1, d,, r, log(��1)) large enough will make ↵ large enough to invoke Lemma C.5 and Lemma C.6 to
complete the proof, just like in the proof of Theorem 5.1.

D. Information-Theoretic Lower-Bounds for the Convex Case

Theorem D.1. For any G, V > 0, there exists a domain Z , parameter class ⇥ ✓ Rd
and a distribution µ over tasks such

every ⇢ ⇠ µ is a distribution over Z and `⇢(✓) = Ez⇠⇢`z(✓) where `z : ⇥ ! R is convex and G-Lipschitz w.r.t. the

Euclidean norm for every z 2 Z . Additionally, ⇥ satisfies

min
�2⇥

E⇢⇠µk�� Proj⇥⇤
⇢
(�)k  V

and

En(Alg, µ) = ⌦

✓
GV min

⇢
1
p
n
,
1
p
d

�◆

for any algorithm Alg : Zn
! ⇥ that returns a parameter given a training set.

Proof. This result extends the result of Agarwal et al. (2012, Theorem 1) to the case of distributions over functions; all
equations and statements referenced in this proof are from that paper. We first define the domain Z , parameter class ⇥,
meta-distribution µ and the within-task distributions and losses.

Parameter class: We use a `2 ball of radius V as the class, i.e. ⇥ = {✓ 2 Rd : k✓k  V/2}.

Domain and loss: We defined Z to be a tuple of an index and a bit, i.e. Z = [d]⇥ {0, 1}. For a given z 2 Z , we define `z
as follows

`z(✓) =

8
>><

>>:

G
���✓(i) + V

2
p
d

��� if z = (i, 1), i 2 [d]

G
���✓(i)� V

2
p
d

��� if z = (i, 0), i 2 [d]

Note that `z is convex and G-Lipschitz for every z 2 Z .

Meta-learning distribution: We define the distribution µ on the vertices of the hypercube {±1}d. First we let V be the
d
4 -packing of the hypercube in the Hamming distance defined in Agarwal et al. (2012). Each task ⇢↵ is parametrized by a
vertex ↵ 2 V . To sample a new task ⇢↵ ⇠ µ, we sample ↵ ⇠ V uniformly and return ⇢↵ that we define below.

Data distribution: For a given task ⇢↵ ⇠ µ, we define a distribution over Z . Sampling z ⇠ ⇢↵ is equivalent to first
sample an index uniformly at random, i ⇠ [d], and then independently sampling a bit from a biased Bernoulli distribution
b ⇠ Ber

�
1
2 + ↵(i)�

�
, for some � 2 (0, 1/4), and returning (i, b). Thus the population loss for ⇢↵ becomes

`⇢↵(✓) =
dX

i=1

✓
1

2
+ ↵(i)�

◆ ����✓(i) +
V

2
p
d

����+
✓
1

2
� ↵(i)�

◆ ����✓(i) +
V

2
p
d

����

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning

It is not difficult to see that the minimizer of the population loss ✓⇤⇢↵ 2 Rd in fact lies in ⇥ and is

✓⇤⇢↵(i) =

(
�

V
2
p
d

if ↵(i) = 1
V

2
p
d

if ↵(i) = �1

Crucially, we note that since ✓⇤⇢↵ 2 ⇥ for every ↵ 2 V , we get that

min
�2⇥

E⇢⇠µk�� Proj⇥⇤
⇢
(�)k  E⇢⇠µk0d � ✓⇤⇢↵k = V

Given this setup, we are ready to prove a lower bound for En(Alg, µ) using the result from Agarwal et al. (2012). We
define the class of functions G(�) = {`⇢↵ : ↵ 2 V} and define g↵ = `⇢↵ . Note that this is the same definition of G(�) as in
Agarwal et al. (2012).

We now follow their proof of Theorem 1, where in addition to the randomness of sampling from the task-distribution ⇢↵ we
must consider the randomness of sampling ↵ ⇠ V . This manifests only in the application of Lemmas 2 and 3 from their
paper. We can modify their proof of Lemma 2 to only assume

En(Alg, µ) = E
↵⇠V

[�(Alg,↵)] 
 (�)

9
, where �(Alg,↵) = E

S⇠⇢n↵
[`⇢↵(Alg(S))� `⇤⇢↵]

instead of Equation 21 which effectively assumes max↵2V �(Alg,↵)  (�)
9 , where (�) is defined in Equation 19. We

can modify the application of Markov’s inequality, to get

E
↵⇠V

PS⇠⇢n↵(Alg(S) 6= ↵)  E
↵⇠V

PS⇠⇢n↵(�(Alg,↵) � (�)/3)  E
S⇠⇢n↵

�(Alg,↵)
 (�)/3



 (�)/9
 (�)/3

 1/3

where the first step is the same as in their proof, second step from Markov’s inequality and third is from the assumption. The
main difference from their proof, just like the assumption, is that we take expectation over ↵ 2 V rather than a maximum.

For Lemma 3, note that the result already includes the randomness of sampling ↵ ⇠ Unif(V). Applying these results in
the proof of Theorem 1, we use � = 36"

p
d

GV for target error " to obtain n = ⌦(G2V 2/"2) for all d � 11 and " 
GV

144
p
d

,
completing the proof.

