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Abstract
When presented with Out-of-Distribution (OOD)
examples, deep neural networks yield confident,
incorrect predictions; detecting OOD examples is
challenging, and the potential risks are high. In
this paper, we propose to detect OOD examples by
identifying inconsistencies between activity pat-
terns and predicted class. We find that characteriz-
ing activity patterns by Gram matrices and identi-
fying anomalies in Gram matrix values can yield
high OOD detection rates. We identify anomalies
in the Gram matrices by simply comparing each
value with its respective range observed over the
training data. Unlike many approaches, this can
be used with any pre-trained softmax classifier
and neither requires access to OOD data for fine-
tuning hyperparameters, nor does it require OOD
access for inferring parameters. We empirically
demonstrate applicability across a variety of archi-
tectures and vision datasets and, for the important
and surprisingly hard task of detecting far out-of-
distribution examples, it generally performs better
than or equal to state-of-the-art OOD detection
methods (including those that do assume access
to OOD examples).

1. Introduction
Even when deep neural networks (DNNs) achieve impres-
sive accuracy on challenging tasks, they do not always vis-
ibly falter on misclassified examples: in those cases they
can often make predictions that are both very confident and
completely incorrect. Yet, predictive uncertainty is essential
in real-world contexts tolerating minimal error margins such
as autonomous vehicle control and medical, financial and
legal fields.

In this work, we focus on flagging test examples that do
not contain any of the classes modeled in the train distribu-
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tion. Such examples are often referred to as being out-of-
distribution (OOD), and while their existence has been well-
known for some time, the challenges of identifying them
and a baseline method to do so in a variety of tasks such as
image classification, text classification, and speech recogni-
tion were presented by Hendrycks and Gimpel (2017). Re-
cently, Nalisnick et al. (2019a) identified a similar problem
with generative models: they demonstrate that flow-based
models, VAEs, and PixelCNNs cannot distinguish images
of common objects such as dogs, trucks, and horses (i.e.
CIFAR-10) from those of house numbers (i.e. SVHN), as-
signing a higher likelihood to the latter when the model is
trained on the former. They report similar findings across
several other pairs of popular image datasets.

While we might expect neural networks to respond differ-
ently to OOD examples than to in-distribution (ID) exam-
ples, exactly where and how to find these differences in activ-
ity patterns is not at all clear. Hendrycks and Gimpel (2017)
and others (Nguyen et al., 2015; Yu et al., 2011) showed
that looking at the maximal softmax value is insufficient. In
Section 2 we describe some other recent approaches to this
problem. In this work, we find that characterizing activity
patterns with Gram matrices—and their extensions that we
introduce—lets us quantify anomalies to allow state-of-the-
art (SOTA) detection rates on OOD examples.

Intuition. We identify out-of-distribution examples by
jointly considering the class assigned at the output layer
and the activity patterns in the intermediate layers. For
example, if an image is predicted to be a dog, yet the in-
termediate activity patterns are somehow atypical of those
seen by the network for other dog images during training,
then that is a strong indicator of an OOD example. This
effectively allows us to detect incongruence between the
prediction made by the network and the path by which it
arrived at that prediction. To describe the activation path
we need to describe the intermediate feature representations,
and as a proxy for describing those representations, we use
Gram Matrices as they not only describe the activations at
the individual channels but also summarize the pairwise
interactions between the channels.

Strengths. Unlike those previous works that assume ac-
cess to OOD examples and train an auxiliary classifier for
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identifying anomalous activity patterns, our method finds
differences in activity patterns without requiring access to
any OOD examples, and it works across architectures. We
hope this will also help further our understanding of how
neural networks respond differently to OOD examples in
general, not just how a particular network responds to ex-
amples coming from a particular distribution.

Contributions. This work includes the following contri-
butions:

1. We extend Gram matrices to compute effective feature
correlations.

2. Using the pth-order Gram matrices, we present a new
technique for computing class-conditional anomalies
in activity patterns.

3. We evaluate this technique on OOD detection, testing
on

• competitive architectures: DenseNet, ResNet;
• benchmark OOD datasets including: CIFAR-10,

CIFAR-100, SVHN, TinyImageNet, LSUN and
iSUN.

Note that no adversarial or other re-training is required;
we can use pre-trained models.

4. Crucially, our method does not require access to OOD
samples for tuning hyperparameters or for training
auxiliary models.

5. We report results which, for the challenging and im-
portant cases of far-from-distribution examples, are
generally better than or equal to the state-of-the-art
method for OOD detection that does require access to
OOD examples. 1

2. Related Work
Previous work which aims to improve OOD detection can
be roughly grouped by several themes:

Bayesian Neural Networks. A nice early Bayesian ap-
proach (Gal and Ghahramani, 2016) estimates predictive
uncertainty by using an ensemble of sub-networks instan-
tiated by applying dropout at test time. As opposed to
implicitly learning a distribution over the predictions by
learning a distribution over the weights, Chen et al. (2019)
and Malinin and Gales (2018) explicitly parameterize a
Dirichlet distribution over the output class distributions us-
ing DNNs in order to obtain a better estimate of predictive
uncertainty; the main differences between these methods

1The code is open-sourced at https://github.com/
VectorInstitute/gram-ood-detection

is that Chen et al. (2019) use ELBO, which only requires
the in-distribution dataset for training whereas Malinin and
Gales (2018) use a contrastive loss which requires access to
(optionally synthetic) OOD examples.

Using any pre-trained softmax deep neural network
with OOD examples. Lee et al. (2018b)—to the best
of our knowledge, the current SOTA technique by a sig-
nificant margin—compute the Mahalanobis distance be-
tween the test sample’s feature representations and the class-
conditional gaussian distribution at each layer; they then
represent each sample as a vector of the Mahalanobis dis-
tances, and finally train a logistic regression detector on
these representations to identify OOD examples. Another
technique in this category is ODIN (Liang et al., 2018): they
use a mix of temperature scaling at the softmax layer and
input perturbations to achieve better results. In fact, both
Lee et al. (2018b) and Liang et al. (2018) add small input
perturbations to achieve better results; the former do so to in-
crease the confidence score, while the latter do so to increase
the softmax score. Quintanilha et al. (2019) achieve results
comparable to that of Lee et al. (2018b) by training a logistic
regression detector that looks at the means and standard de-
viations of various channels activations. Unlike the previous
two techniques, Quintanilha et al. (2019) achieves compa-
rable results even without the use of input perturbations,
which allows it to be applicable to non-continuous domains.
Our work, too, does not involve input perturbations.

Recently, Abdelzad et al. (2019) propose to detect OOD
examples by training a one-class detector over the repre-
sentations of an intermediate layer, chosen for each OOD
detection task.

All of these techniques depend on OOD examples for fine-
tuning hyperparameters (Liang et al., 2018; Abdelzad et al.,
2019) or for training auxiliary OOD classifiers (Lee et al.
(2018b); Quintanilha et al. (2019)). Furthermore, these clas-
sifiers neither transfer between one non-training distribution
and another, nor do they transfer between networks, so sep-
arate classifiers must be trained for each (In-Distribution,
OOD, Architecture) triplet. In many real-world applications,
we may not be able to assume advance access to all possible
OOD distributions. Motivated by this observation, our work
does not require access to OOD samples.

Alternative Training Strategies. Lee et al. (2018a)
jointly train a classifier, a generator and an adversarial dis-
criminator such that the classifier produces a more uniform
distribution on the boundary examples generated by the
generator; they use OOD examples to fine-tune hyperpa-
rameters. DeVries and Taylor (2018) train neural networks
with a multi-task loss for jointly learning to classify and esti-
mate confidence. Shalev et al. (2018) use multiple semantic
dense representations as the target instead of sparse one-hot
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vectors and use a cosine-similarity based measure for de-
tecting OODs. Building on the idea proposed by Lee et al.
(2018a), Hendrycks et al. (2019a) propose an Outlier Expo-
sure (OE) technique. They regularize a softmax classifier
to predict uniform distribution on (any) OOD distribution
and show the resulting model can identify examples from
unseen OOD distributions; this differs significantly from
previous works which used the same OOD distributions for
both training and testing. Unlike other methods, they retain
the architecture of the classifier and introduce just one ad-
ditional hyperparameter—the regularization rate—and also
demonstrate that their model is quite robust to the choice
of OOD examples chosen for the regularization. However,
while the OE method is able to generalize across differ-
ent non-training distributions, it understandably does not
achieve the rates of Lee et al. (2018b) on most cases. In
the same vein, Vernekar et al. (2019) propose a strategy
to generate boundary OOD examples to train a classifer
with a reject option. Similarly, Yu and Aizawa (2019) pro-
pose to train a two-head CNN on in-distribution data with
different decision boundaries by encouraging a higher dis-
crepancy in predictions on unlabeled OOD data. Concurrent
with this work, Hsu et al. (2020) build upon Techapanurak
and Okatani (2019) and propose to train a neural network
which also learns a temperature scaling function that is ap-
plied to the logits before computing the softmax values;
while also including a probabilistic interpretation, the au-
thors demonstrate remarkable improvements in detecting
out-of-distribution examples by using just in-distribution
examples. Our technique is complementary to these tech-
niques and can be applied to a classifier trained with any
of these techniques to construct a more robust detector; in
order to illustrate this, we include results on combining our
method with Outlier Exposure in Section 4.2.

Golan and El-Yaniv (2018) show how self-supervised clas-
sifiers trained to predict geometrical transformations in the
input image can be used for one-class OOD detection. Re-
cently, Hendrycks et al. (2019b) make significant advances
in detecting near-distribution outliers without having any
knowledge of the exact out-of-distribution examples by us-
ing in-distribution examples in a self-supervised training
setting.

Generative Models. Ren et al. (2019) hypothesize that
stylistic factors might impact the likelihood assignment and
propose to detect OOD examples by computing a likelihood
ratio which depends on the semantic factors that remain
after the dominant stylistic factors are cancelled out. On
the other hand, Nalisnick et al. (2019b) argue that samples
generated by a generative model reside in the typical set,
which might not necessarily coincide with areas of high
density. They demonstrate empirically that OOD examples
can be identified by checking if an input resides in the
typical set of the generative model. Unlike the standard

experimental setting, they aim to identify distributional shift,
which predicts if a batch of examples are OOD. Several
other recent works (Huang et al., 2019; Serrà et al., 2019;
Daxberger and Hernández-Lobato, 2019; Song et al., 2019;
Choi and Chung, 2020; Serrà et al., 2020) also aim to solve
these problems.

3. Extending Gram Matrices for
Out-of-Distribution Detection

Overview In light of the above considerations, we are in-
terested in proposing a method that does not require access
to any OOD examples, that does not introduce hyperparam-
eters that need tuning, and that works across architectures.
Gram matrices can be used to compute pairwise feature
correlations, and are often used in DNNs to encode stylistic
attributes like textures and patterns (Gatys et al., 2016). We
extend these matrices as will be described below, and then
use them to compute class-conditional bounds of feature
correlations at multiple layers of the network. Starting with
a pre-trained network, we compute these bounds over only
the training set, and then use them at test time to effectively
discriminate between in-distribution samples and out-of-
distribution samples. Unlike other SOTA algorithms, we do
not need to “look” at any out-of-distribution samples to tune
any parameters; the only tuning required is that of a normal-
izing factor, which we compute using a randomly-selected
validation partition of the (in-distribution) test set.

Notation If the considered deep convolutional network
has L layers and the lth layer has nl channels, we consider
feature co-occurrences between the

∑
1<=l<=L

nl∗(nl+1)
2

pairs of feature-maps. (Note that by “layer” we refer to any
set of values obtained immediately after applying convolu-
tion or activation functions.) We use the following notation:

Fl(D) The feature map at the l-th layer for input
image D; when referring to an arbitrary
image D, we just write Fl. It can be stored
in a matrix of dimensions nl× pl, where nl
is the number of channels at the l-th layer
and pl, the number of pixels per channel,
is the height times the width of the feature
map.

Dc , f(D) The predicted class for input image D
Tr The set of all train examples
Va The set of all validation examples. 10%

of the examples not used in training are
randomly chosen as validation examples.

The set of all test examples is disjoint as usual from Tr
and Va. We assume that only the test set may contain
out-of-distribution examples.
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Gram Matrices and Higher order Gram Matrices We
summarize the activities at the l-th layer using the Gram
matrix:

Gl = FlF
>
l (1)

where Fl is an nl × pl matrix as defined above.

In order to compute Gram Matrices with more prominent
activations of the feature maps, we define a higher-order
Gram matrix, which we write Gpl , to be a matrix computed
identically to the regular Gram matrix, but where, instead
of using a raw channel activation a, we use ap, the pth

power of each activation. Gpl is therefore computed using
F pl , where the power of Fl is computed element-wise; in
an effort to retain uniform scale across all orders of Gram
matrices for a given layer, we compute the (element-wise)
p-th root. The p-th order Gram matrix is thus computed as:

Gpl =
(
F pl F

p>

l

) 1
p

(2)

We show in Section 5 that higher p values help significantly
in improving the OOD detectability. In our experiments, we
limit the value of p to 10, as exponents beyond 10 are not
worth the extra computation that is needed to avoid overflow
errors2.

The flattened upper (or lower) triangular matrix along with
the diagonal entries is denoted as Gpl . The set of all orders
of Gram matrices (in our case {1, . . . 10}) to be considered
is denoted by P . The schematic diaGram of the proposed
algorithm is shown in Fig. 1 (in Appendix A).

Notably, while the Mahalanobis method describes each layer
with just their channel-wise means, we use the higher-order
Gram matrices to also include their higher-order raw mo-
ments; specifically, a Gram matrix of order p contains the
2p-th moments of the individual channels along the diago-
nal and p-th moment of the hadamard product between the
channels in its off-diagonal elements.

Preprocessing If we compute Gpl for every layer l and
every order p ∈ P , we obtain a total of NS =∑
p∈P

∑L
l=1

1
2nl(nl+1) correlations for any image D. The

preprocessing involves computing the class-specific min-
imum and maximum values for the correlations: for ev-
ery class c, the minimum and maximum values for each
of the NS correlations are computed over all training ex-
amples D classified as c. We keep track of the minimum
and maximum values of the NS correlations for all the
classes in 4-D arrays Mins and Maxs, each of the order(
C × L× |P | × max

1≤l≤L
nl(nl+1)

2

)
. Since each layer has

different number of channels, the 4-th dimension must be
2The maximum activation values observed in the convolution

layers of a ResNet trained on Cifar-10 (open-sourced by Lee et al.
(2018b)) are 6.5 and 6.3 on train and test partitions.

large enough to accommodate the layer with the highest
number of channels.

Algorithm 1 Compute the minimum and maximum values of feature co-occurrences
for each class, layer and order

Input:
C: Number of output classes
L: Number of Layers in entire network
P: Set of all orders of Gram Matrix to consider
Tr: The train data

Output:
Mins, Maxs

1: Mins[C][L][P]
[

max
1≤l≤L

nl(nl+1)

2

]
←∞ . Stores the Mins for each class,

layer and order

2: Maxs[C][L][P]
[

max
1≤l≤L

nl(nl+1)

2

]
← −∞ . Stores the Maxs for each

class, layer and order
3: for c in [1, C] do
4: Trc = {D |D ∈ Tr s.t. f(D) = c} . All the training examples

predicted as c
5: for D ∈ Trc do
6: for l in [1, L] do
7: for p in P do
8: stat =Gp

l (D) . The flattened upper triangular matrix

9: for i in
[
1,

nl(nl+1)

2

]
do

10: Mins[c][l][p][i] = min(Mins[c][l][p][i],stat[i])
11: Maxs[c][l][p][i] = max(Maxs[c][l][p][i],stat[i])
12: return Mins, Maxs

Computing Layerwise Deviations Given the class-specific
minimum and maximum values of the NS feature correla-
tions, we can compute the deviation of the test sample from
the images seen at train time with respect to each of the lay-
ers. In order to account for the scale of values, we compute
the deviation as the percentage change with respect to the
maximum or minimum values of feature co-occurrences;
the deviation of an observed correlation value from the mini-
mum and maximum correlation values observed during train
time can be computed as:

δ(min,max,value) =


0 if min ≤ value ≤ max
min−value
|min| if value < min

value−max
|max| if value > max

(3)

The deviation of a test image with respect to a given layer l
is the sum total of the deviations with respect to each of the∑
p∈P

1
2nl(nl + 1) correlation values:

δl(D) =
P∑

p=1

1
2
nl(nl+1)∑

i=1

δ
(

Mins[Dc][l][p][i],Maxs[Dc][l][p][i], G
p
l
(D)[i]

)
(4)

Total Deviation of a test image D (∆(D)), is computed
by taking the sum total of the layerwise deviations (δl(D)).
However, the scale of layerwise deviations (δl) varies with
each layer depending on the number of channels in the layer,
number of pixels per channel and semantic information con-
tained in the layer. Therefore, we normalize the deviations
by dividing it by EVa [δl], the expected deviation at layer δl,
computed using the validation data. Note that we use the
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same normalizing factor irrespective of the class assigned.

∆(D) =

L∑
l=1

δl(D)

EVa [δl]
(5)

Additionally, we can take into account the maximum soft-
max probability (MSP) by dividing the above term with the
MSP. This marginally improves the detection rate in some
cases.

Threshold As is standard (Lee et al., 2018b), a threshold,
τ , for discriminating between out-of-distribution data and
in-distribution data is computed as the 95th percentile of
the total deviations of test data (∆(D)). In other words, the
threshold is computed so that 95% of test examples have
deviations lesser than the threshold τ ; the threshold-based
discriminator can be formally written as:

isOOD(D) =

{
True if ∆(D) > τ,

False if ∆(D) ≤ τ
(6)

Computational Complexity. For a single example, extract-
ing upper diagonal elements takes O

(∑
l
nl(nl+1)

2

)
. Thus,

the pre-processing and test-time computation of deviations
are both quadratic in the number of channels. In order to
reduce computational time and make it linear in the number
of channels, we can in fact compute deviations based on
row-wise sums rather than individual elements. This would
mean that the variable stat, defined in line 8 of Algorithm
1, would now contain row-wise sums of Gpl instead of the
flattened upper triangular matrix; the inner loop of Eq. 4
would loop over nl elements instead of 1

2nl(nl + 1) ele-
ments while also reducing the storage required for Mins and
Maxs. In practise, we found that computing the anomalies
this way yields differences of less than 0.5%, and usually
imperceptible, so the results described in the next section
were computed in this way.

Relationship to Mahalanobis detection Our algorithm
is inspired by the Mahalanobis algorithm and bears sev-
eral similarities. In fact, both the algorithms compute the
total deviation ∆ in terms of class-conditional layerwise
deviations δl as:

∆ =
∑
l

αlδl (7)

One immediate difference is that while the Mahalanobis
algorithm uses channel-wise means as descriptions of layer-
wise activations Fl, we use higher-order Gram matrices as a
(more tightly coupled) description of Fl. More importantly,
however, a core difference between the algorithms is in the
way the scaling values αl and the layerwise-deviations δl
are computed: while the Mahalanobis algorithm uses Ma-
halanobis distances to compute the δl values and trains a

Can work with
pre-trained Net?

Can work without knowledge
of OOD test examples?

DPN (Malinin and Gales, 2018) 7 3
Semantic (Shalev et al., 2018) 7 3
Variational Dirichlet (Chen et al., 2019) 7 3

Mahalanobis (Lee et al., 2018b) 3 7
ODIN (Liang et al., 2018) 3 7

OE (Hendrycks et al., 2019a) 7 3

Baseline (Hendrycks and Gimpel, 2017) 3 3
Ours 3 3

Table 1: List of closely related methods. Note: OE uses OOD
examples during training, but unrelated to test

logistic regression classifier to infer the αl values, we com-
pute the δl values as deviations from the extrema and αl
values using the validation dataset as described above.

4. Experiments - Detecting OOD
In this section, we demonstrate the effectiveness of the pro-
posed metric using competitive deep convolutional neural
network architectures such as DenseNet and ResNet on vari-
ous computer vision benchmark datasets such as: CIFAR-10,
CIFAR-100, SVHN, TinyImageNet, LSUN and iSUN.

For fair comparison and to aid reproducibility, we use the
pretrained ResNet (He et al., 2016) and DenseNet (Huang
et al., 2017) models open-sourced by Lee et al. (2018b),
i.e. ResNet34 and DenseNet3 models trained on CIFAR-10,
CIFAR-100 and SVHN datasets. For each of these models,
we considered the corresponding test partitions as the in-
distribution (positive) examples. For CIFAR-10 and CIFAR-
100, we considered the out-of-distribution datasets used by
Lee et al. (2018b): TinyImagenet, LSUN and SVHN. Addi-
tionally, we also considered the iSUN dataset. For ResNet
and DenseNet models trained on SVHN, we considered
CIFAR-10 dataset as the third OOD dataset. Details on
these datasets are available in Appendix B.

We benchmark our algorithm with the works listed in Table
1 using the following metrics:

1. TNR@95TPR is the probability that an OOD (neg-
ative) example is correctly identified when the true
positive rate (TPR) is as high as 95%. TPR can be com-
puted as TPR = TP/(TP +FN), where TP and FN
denote True Positive and False Negative respectively.

2. Detection Accuracy measures the maximum pos-
sible classification accuracy over all possible
thresholds in discriminating between in-distribution
and out-of-distribution examples. For those
methods which assign a higher-score to the in-
distribution examples, it can be calculated as
maxτ {0.5Pin(f(x) ≥ τ) + 0.5Pout(f(x) < τ)}; for
those methods which assign a lower score to
in-distribution examples, it can be calculated as
maxτ {0.5Pin(f(x) ≤ τ) + 0.5Pout(f(x) > τ)}.
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In-dist
(model) OOD TNR at TPR 95% AUROC Detection Acc.

Baseline / ODIN / Mahalanobis / Ours

CIFAR-10
(ResNet)

iSUN 44.6 / 73.2 / 97.8 / 99.3 91.0 / 94.0 / 99.5 / 99.8 85.0 / 86.5 / 96.7 / 98.1
LSUN (R) 49.8 / 82.1 / 98.8 / 99.6 91.0 / 94.1 / 99.7 / 99.9 85.3 / 86.7 / 97.7 / 98.6
LSUN (C) 48.6 / 62.0 / 81.3 / 89.8 91.9 / 91.2 / 96.7 / 97.8 86.3 / 82.4 / 90.5 / 92.6
TinyImgNet (R) 41.0 / 67.9 / 97.1 / 98.7 91.0 / 94.0 / 99.5 / 99.7 85.1 / 86.5 / 96.3 / 97.8
TinyImgNet (C) 46.4 / 68.7 / 92.0 / 96.7 91.4 / 93.1 / 98.6 / 99.2 85.4 / 85.2 / 93.9 / 96.1
SVHN 50.5 / 70.3 / 87.8 / 97.6 89.9 / 96.7 / 99.1 / 99.5 85.1 / 91.1 / 95.8 / 96.7
CIFAR-100 33.3 / 42.0 / 41.6 / 32.9 86.4 / 85.8 / 88.2 / 79.0 80.4 / 78.6 / 81.2 / 71.7

CIFAR-100
(ResNet)

iSUN 16.9 / 45.2 / 89.9 / 94.8 75.8 / 85.5 / 97.9 / 98.8 70.1 / 78.5 / 93.1 / 95.6
LSUN (R) 18.8 / 23.2 / 90.9 / 96.6 75.8 / 85.6 / 98.2 / 99.2 69.9 / 78.3 / 93.5 / 96.7
LSUN (C) 18.7 / 44.1 / 64.8 / 64.8 75.5 / 82.7 / 92.0 / 92.1 69.2 / 75.9 / 84.0 / 84.2
TinyImgNet (R) 20.4 / 36.1 / 90.9 / 94.8 77.2 / 87.6 / 98.2 / 98.9 70.8 / 80.1 / 93.3 / 95.0
TinyImgNet (C) 24.3 / 44.3 / 80.9 / 88.5 79.7 / 85.4 / 96.3 / 97.7 72.5 / 78.3 / 89.9 / 92.2
SVHN 20.3 / 62.7 / 91.9 / 80.8 79.5 / 93.9 / 98.4 / 96.0 73.2 / 88.0 / 93.7 / 89.6
CIFAR-10 19.1 / 18.7 / 20.2 / 12.2 77.1 / 77.2 / 77.5 / 67.9 71.0 / 71.2 / 72.1 / 63.4

CIFAR-10
(DenseNet)

iSUN 62.5 / 93.2 / 95.3 / 99.0 94.7 / 98.7 / 98.9 / 99.8 89.2 / 94.3 / 95.2 / 97.9
LSUN (R) 66.6 / 96.2 / 97.2 / 99.5 95.4 / 99.2 / 99.3 / 99.9 90.3 / 95.7 / 96.3 / 98.6
LSUN (C) 51.8 / 70.6 / 48.2 / 88.4 92.9 / 93.6 / 80.2 / 97.5 86.9 / 86.4 / 75.6 / 92.0
TinyImgNet (R) 58.9 / 92.4 / 95.0 / 98.8 94.1 / 98.5 / 98.8 / 99.7 88.5 / 93.9 / 95.0 / 97.9
TinyImgNet (C) 56.7 / 87.0 / 84.2 / 96.7 93.8 / 97.6 / 95.3 / 99.3 88.1 / 92.3 / 89.9 / 96.1
SVHN 40.2 / 86.2 / 90.8 / 96.1 89.9 / 95.5 / 98.1 / 99.1 83.2 / 91.4 / 93.9 / 95.9
CIFAR-100 40.3 / 53.1 / 14.5 / 26.7 89.3 / 90.2 / 58.5 / 72.0 82.9 / 82.7 / 57.2 / 67.3

CIFAR-100
(DenseNet)

iSUN 14.9 / 37.4 / 87.0 / 95.9 69.5 / 84.5 / 97.4 / 99.0 63.8 / 76.4 / 92.4 / 95.6
LSUN (R) 17.6 / 41.2 / 91.4 / 97.2 70.8 / 85.5 / 98.0 / 99.3 64.9 / 77.1 / 93.9 / 96.4
LSUN (C) 28.6 / 57.8 / 42.1 / 65.5 80.2 / 91.4 / 81.7 / 91.4 72.7 / 83.3 / 74.0 / 83.6
TinyImgNet (R) 17.6 / 42.6 / 86.6 / 95.7 71.7 / 85.2 / 97.4 / 99.0 65.7 / 77.0 / 92.2 / 95.5
TinyImgNet (C) 24.6 / 51.0 / 60.1 / 89.0 76.2 / 88.3 / 88.8 / 97.7 69.0 / 80.2 / 81.6 / 92.5
SVHN 26.7 / 70.6 / 82.5 / 89.3 82.7 / 93.8 / 97.2 / 97.3 75.6 / 86.6 / 91.5 / 92.4
CIFAR-10 18.9 / 16.8 / 7.7 / 10.6 75.9 / 74.2 / 60.1 / 64.2 69.7 / 68.6 / 57.8 / 60.4

SVHN
(DenseNet)

iSUN 78.3 / 82.2 / 99.9 / 99.4 94.4 / 94.7 / 99.9 / 99.8 89.6 / 89.7 / 99.2 / 98.3
LSUN (R) 77.1 / 81.1 / 99.9 / 99.5 94.1 / 94.5 / 99.9 / 99.8 89.1 / 89.2 / 99.3 / 98.6
TinyImgNet (R) 79.8 / 84.1 / 99.9 / 99.1 94.8 / 95.1 / 99.9 / 99.7 90.2 / 90.4 / 98.9 / 97.9
CIFAR-10 69.3 / 71.7 / 96.8 / 80.4 91.9 / 91.4 / 98.9 / 95.5 86.6 / 85.8 / 95.9 / 89.1

SVHN
(ResNet)

iSUN 77.1 / 79.1 / 99.7 / 99.4 92.2 / 91.4 / 99.8 / 99.8 89.7 / 89.2 / 98.3 / 98.1
LSUN (R) 74.3 / 77.3 / 99.9 / 99.6 91.6 / 89.4 / 99.9 / 99.8 89.0 / 87.2 / 99.5 / 98.5
TinyImgNet (R) 79.0 / 82.0 / 99.9 / 99.3 93.5 / 92.0 / 99.9 / 99.7 90.4 / 89.4 / 99.1 / 97.9
CIFAR-10 78.3 / 79.8 / 98.4 / 85.8 92.9 / 92.1 / 99.3 / 97.3 90.0 / 89.4 / 96.9 / 92.0

Table 2: Comparison of OOD Detection Performance for all combinations of model architecture and training dataset are shown. The
hyperparameters of ODIN and the hyperparameters and parameters of Mahalanobis are tuned using a random sample of the OOD dataset.

3. AUROC is the measure of the area under the plot of
TPR vs FPR. For example, for those methods which
assign a higher score to the in-distribution examples,
this measures the probability that an OOD example is
assigned a lower score than an in-distribution example.

Experimental setup: We use a pre-trained network to
extract class-specific minimum and maximum correlation
values for all pairs of features across all orders of Gram
matrices. Subsequently, the total deviation is computed for
each example following Eq. 5. Since the total deviation
values depend on the randomly selected validation examples,
we repeat the experiment 10 times to get a reliable estimate
of the performance. The OOD detection performance for
several combinations of model architecture, in-distribution
dataset and out-of-distribution dataset are shown in Table
2. The results for Outlier Exposure (OE) are available in
Table 3; some more results for OE and the results for DPN,
Variational Dirichlet and Semantic are available in Appendix
E.1 and Appendix E.2 respectively.

The results of Table 2 show that at a glance, over
a total of 32 combinations of model architecture/in-
distribution-dataset/far-out-of-distribution-datasets, the pro-
posed method outperforms the previous competing methods

in 22 of them, is on par in 7 of them, and gives second
highest results on 3 of them3. Furthermore, it does so with-
out requiring access to samples from the OOD dataset. If
the hyperparameters and/or parameters of Mahalanobis and
ODIN algorithms are fine-tuned using FGSM adversarial
examples instead of the real OOD examples, their perfor-
mance decreases. We also observe that our performance is
similar for both architectures.

We also performed experiments with fully-connected net-
works by using three different MLP architectures trained
on MNIST; Fashion-MNIST (Xiao et al., 2017) and KM-
NIST (Clanuwat et al., 2018) were considered as the out-
of-distribution datasets (Results are provided in Appendix
E.3).

4.1. Ablation Tests

The above results are obtained when we consider all ele-
ments of Gram matrix (Algorithm 1), compute deviations
from extrema (Eq 3) and finally, compute the total deviation
with normalized layerwise deviations (Eq 5). Additionally,

3This is based on the TNR at TPR 95% value; AUROC and
Detection Accuracy results are comparable.



Detecting Out-of-Distribution Examples with Gram Matrices

In-dist Mean TNR @ TPR95
OE
Base OE Ours

(Base) Ours

CIFAR-10 65.1 90.5 51.7625 98.7
CIFAR-100 37.3 61.5 19.15 93.4
SVHN 93.7 99.9 76.65 95.2

Table 3: Comparison of results with OE (Hendrycks et al., 2019a).
Since OE uses a different model from ours, we also report the cor-
responding baseline accuracy. We extract the mean TNR @ TPR95
for our technique by considering both ResNet and DenseNet mod-
els. Some more results are available in Appendix E.1.

all layers and all orders were considered. We perform abla-
tion experiments that aim to answer the following questions:

Q1 What if strictly diagonal elements or strictly off-
diagonal elements are considered instead of complete
Gram Matrix?

Q2 What happens if the deviation is computed from the
mean instead of the extrema?

Q3 What happens if we do not normalize the layerwise
deviations when aggregating them?

Q4 Which layer representations are most useful?

Q5 Which orders of Gram matrices are most useful?

As the answers to Q4 and Q5 were found to be independent
of each other and Q1-Q3, we consider all layers and orders
when answering Q1-Q3.

Q1, Q2, Q3. Matrix feature set / deviation metric / ag-
gregation scheme. In order to answer Q1-Q3, we conduct
12 experiments: 3 choices for Q1 × 2 choices for Q2 × 2
choices for Q3. As a broad summary, we find that, while
there is no single rule that is unbroken by an exception,
our proposed combination—i.e. using the complete Gram
matrix, using the min/max metric, and using normalization
as in Eq 5—is generally more robust than any of the other
combinations that we tried. More details on the ablation
tests and discussions are available in Appendix C.

In answering Q4 and Q5, we consider the most robust setting
that we identified by answering Q1-Q3.

Q4 Which layer representations are most useful? To
explore this, we construct detectors which use corre-
lations derived from just one residual or dense block
at a time while considering all orders of Gram matri-
ces. Representative results are shown in Figure 1. We
consider all combinations of model/in-distribution/out-
of-distribution-dataset, and generally find that the
lower level representations are much more informa-
tive in discriminating between in-distribution and out-
of-distribution datasets. However, the difference in
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Figure 1: Significance of depth: The TNR@TPR95 is computed
by constructing detectors which make use of all the Gram matrices
but consider only one residual or dense block at a time. ResNet32
has 4 residual blocks and DenseNet3 has 3 dense blocks.
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Figure 2: The importance of higher order Gram matrices: The
TNR@TPR95 is computed by constructing detectors which make
use of only one of the Gram matrices but consider all layers.

detective power depends on the in-distribution dataset
considered: for example, the difference in detective
power between higher-level representations and lower-
level representations is bigger for Cifar-100 than for
Cifar-10. More graphs are available in Appendix C.2.

Q5 Which orders of Gram matrices are most useful?
Here we construct detectors which make use of only
one order of Gram matrix at a time, while comput-
ing correlations based on the representations of all
residual and dense blocks. Representative results
are shown in Figure 2. We again consider all com-
binations of model/in-distribution/out-of-distribution-
dataset, and usually find that the higher order Gram
matrices are more informative in discriminating be-
tween in-distribution and out-of-distribution datasets.
Ignoring the variations at orders greater than 4, we
find that the TNR @ 95TPR increases with higher or-
ders and finally saturates. More graphs are available in
Appendix C.1.

4.2. Limitations and Future Work

Near-distribution Outliers Traditionally, OOD detec-
tion algorithms have been evaluated by considering far-out-
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In-dist
(WRN 40-2) OOD TNR at TPR95

MSP Ours Ours +
MSP

CIFAR-10

iSUN 98.3 98.9 99.8
LSUN (R) 98.5 99.4 99.8
LSUN (C) 98.0 89.5 98.6
TinyImgNet (R) 93.9 98.5 99.5
TinyImgNet (C) 95.2 95.9 99.1
SVHN 98.0 97.6 99.3
CIFAR-100 73.9 38.9 72.9

CIFAR-100

iSUN 50.9 96.3 95.6
LSUN (R) 58.3 98.4 97.4
LSUN (C) 69.5 69.7 83.1
TinyImgNet (R) 36.1 96.3 92.8
TinyImgNet (C) 41.6 90.1 87.1
SVHN 56.2 84.8 85.6
CIFAR-10 17.4 7.5 16.5

Table 4: Table shows results when our method is combined
with OE. The experiment was conducted with WideResNet
trained with outlier-exposure, open-sourced by Hendrycks et al.
(2019a). MSP uses Maximum Softmax Probability; "Ours" refers
to the metric ∆ (Eq. 5); "Ours+MSP" is obtained by using
∆′(x) = ∆(x)

maxx∈Va ∆(x)
−MSP. For each model/in-distribution/out-

distribution triplet, the highest AUROC and DTACC numbers also
correspond to the bold-faced columns; detailed results are available
in Appendix D.

of-distribution datasets (e.g. as introduced in Hendrycks
and Gimpel (2017) and expanded in Liang et al. (2018)).
Hendrycks et al. (2019b) point out that the task of detecting
near-distribution outliers is much more challenging than that
of detecting far-distribution outliers. Following the conven-
tion in Hendrycks et al. (2019b), we consider CIFAR10 vs
CIFAR100 tasks as near-distribution outliers and the rest
as far-distribution outliers. We note that while near- and
far- distribution outliers is an intuitive and potentially useful
concept, the distinction between them is not well-defined.
“Near-OOD” tends to be implicitly used to refer to those ex-
amples that are sufficiently similar-looking to the training set
that it is not possible to detect them without learning more
about the structure of in-distribution examples(Hendrycks
et al., 2019b). Surprisingly, coming up with a generic algo-
rithm for detecting these far-out-of-distribution examples
have been challenging, prompting earlier papers to make as-
sumptions about the source of out-of-distribution examples.

Our method is aimed at detecting far distribution classi-
fiers, and, like nearly all other current far-OOD detectors,
it does not perform very well for near OOD examples (re-
fer to CIFAR-10 vs CIFAR-100 results in Table 2). To
the best of our knowledge, Outlier Exposure Hendrycks
et al. (2019a) and Classification augmented with rotation
prediction Hendrycks et al. (2019b) yield the state-of-the-
art detection rates on the CIFAR-10 vs CIFAR-100 tasks;
impressively, the self-supervised technique achieves results
comparable to OE. Since our method is complementary to
modifications in training approaches, we show the result of
combining our method with OE in Table 4: summarily, the
combination of the two methods is more robust than either
of the methods individually.

Appreciating the challenges and practical importance of
identifying near-distribution outliers, Ahmed and Courville
(2019) propose new benchmark tasks. In our experiments on
these tasks, we found that our metric performed comparably
to the other baseline methods and did not yield exceptional
detection rates as observed when applied to far-distribution
outlier detection. It remains to be explored if it is possible to
identify the near-distribution outliers using any pre-trained
network without explicit knowledge of the source of out-of-
distribution examples – as is the case with our metric.

Connection to Style-transfer. The outstanding performance
on the far-distribution outlier detection tasks and limited
performance on near-distribution (and stylistically similar)
outlier detection task of CIFAR-10 vs CIFAR-100 may ap-
pear related to the use of Gram matrices, which are them-
selves known to capture stylistic features. However, detailed
experimental results do not clearly support this, as explained
below.

First, we note that while style transfer using Gram matrices
does not work well with ResNets and DenseNets, we get
slightly better detection rate with ResNets and DenseNets
than with VGGNets. Second, it has been empirically demon-
strated that two images having similar textures have similar
order-1 Gram matrices at lower layers. In contrast, we found
that higher-order Gram matrices—key to the performance of
our OOD system as indicated in Figure 2—can be different
even when the corresponding order-1 Gram matrices are
similar. Third, we consider Gram matrices at all layers and
do not specifically compute and compare those typically
associated with “style”.

Gram matrices might contain more useful information than
what the results portray: we suspect that the limited perfor-
mance on this task is related to the choice of the metric used
to compute δl and discuss it further below.

Improved estimation of δl Higher-order Gram matrices,
in combination with an improved estimation of δl may—in
future—help in obtaining better results than those contained
in Table 2. For example, while we found the deviation
from extrema gave overall strongest results, considering
deviation from means gave an advantage on some specific
cases. E.g., considering deviation from means improves
the TNR@TPR95 for the SVHN vs CIFAR-10 task to 94%
for both ResNet and DenseNet architectures (see Appendix
C). It is possible that other density models could be used to
obtain improved estimates of δl.

Implicit Confidence Prediction An important observa-
tion from Table 4 is that the softmax predictions (when
trained with OE) and layerwise deviations contain mutually
exclusive information; this is best observed in the CIFAR-
100 vs LSUN (C) case. Additionally, the performance of
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our metric using a network trained with outlier-exposure is
comparable to the results obtained using a network trained
with cross-entropy loss. Given the demonstrated feasibility
of reliably detecting OOD examples using internal feature
representations without making any assumptions over the
data source4, a natural future research question is whether
modifications in training procedures and/or network archi-
tectures could implicitly yield reliable confidence estimates
that are more sensitive to anomalies in intermediate feature
representations.

5. Discussion and Conclusion
Beyond explicit OOD detection, this line of work may ulti-
mately help better interpret neural networks’ responses to
OOD examples. As an initial exploratory example, we use
our method to examine certain elements of the dataset. In
Figure 3, we show some images from the standard MNIST
dataset that had among the highest class-conditional de-
viation values, i.e. that were flagged as being potentially
out-of-distribution. In Figure 4, we also explore the in-class
variation among images that get flagged as OOD at indi-
vidual layers of the network (pre-aggregation), by showing
the top-10 anomalous plane images at each of four distinct
layers. This suggests that different kinds of outlying exam-
ples might be detected at different layers. Finally, Figure 5
shows some (non-plane) CIFAR-10 images that we selected
from among those flagged with unusual correlations. In
Appendix F, we include additional images from SVHN.

Conclusion. Out-of-distribution detection is a challenging
and important problem. We have proposed and reported on a
relatively simple OOD detection method based on pairwise
feature correlations. We conduct a variety of ablation tests
and also show examples of unusual images detected in the
standard data sets. Our method gives new state of the art
detection results on far out-of-distribution examples without
requiring access to anything other than the training data
itself.

Figure 3: Some images from train and test partitions of MNIST
which have unusual feature correlations as determined by our
method.

4We would like to remind the reader that Lee et al. (2018b)
and Quintanilha et al. (2019) originally demonstrated that inter-
nal feature representations do contain information about out-of-
distribution examples; however, their technique involved training
auxiliary classifiers, which in turn required them to make assump-
tions over the source of out-of-distribution data.

Figure 4: Each row shows 10 images, predicted to be planes, but
having the highest deviations as identified by detectors constructed
using 10th order Gram matrices computed over the representations
of exactly one of the four ResNet blocks. I.e. the first row corre-
sponds to the first ResNet block and the fourth row corresponds to
the fourth ResNet block. In each row, images are sorted by their
deviation values with the right-most images having the highest
deviation values. Qualitatively, we have sometimes observed a
progression wherein the outliers at the early layers tend to have a
clearly defined shape, over a clear background, while the outliers
at the later layers tend to be harder to discern.

Figure 5: Some images selected from the test partition of CIFAR-
10 which have unusual feature correlations as determined by our
method. All classes apart from planes were considered.
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