Appendix: Detecting Out-of-Distribution Examples with Gram Matrices
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A. Schematic Diagram
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Pairwise Correlations between the feature-maps of
every layer are computed using Gram matrices of various
orders. In the preprocessing stage, the class-specific
element-wise minimum and maximum values are noted
for each of the gram-matrices.
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Layerwise Deviation (6;(D)) is the sum total deviation
of the entries in all gram matrices {G,”} beP from their

A 4 Y A 4 Y . . .
corresponding minimum and maximum values extracted
6,(D) | 6r-1(D) | or(D) | from training data points classified as D.. In other words,
for all channel-pairs, if any of the computed correlation
values are greater (or lesser) than corresponding the
maximum (or minimum) value extracted for training data
points classified as D, the extent of deviation is noted.

A 4 Total deviation (A) is computed by summing across the
5/(D) deviations of all the layers. However, since the scale of
A(D) = 2 Eva [61] deviations of each layer are different, we normalize by
=1 Valol dividing it with Ey,[8;], the expected deviation at layer &;,
computed using the Validation Data.

Figure 1: The Schematic Diagram demonstrating the proposed algorithm

B. Description of OOD Datasets
The following includes the description of the out-of-distribution datasets:

1. TinyImagenet, a subset of ImageNet (Russakovsky et al.,2015) images, contains 10,000 test images from 200 different
classes. Each image is downsampled to size 32 x 32 and all 10,000 images are used, as given in the opensourced

version by (Liang et al., 2018]).

2. LSUN, the Large-scale Scene UNderstanding dataset (Yu et al.,2015) has 10,000 test images from 10 different scenes.
Each image is downsampled to size 32 x 32 and all 10,000 images are used, as given in the opensourced version by
(Liang et al., 2018).

3. iSUN, a subset of SUN images (Xiao et al.,|2010), consists of 8925 images. Each image is downsampled to size 32 x
32 and is used; the downsampled version of the dataset has been opensourced by (Liang et al., [2018)).
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4. SVHN, the Street View House Numbers dataset (Netzer et al.|[2011)), involves recognizing digits 0-9 in natural scene
images. The test partition consisting of 26,032 images is used.

C. Detailed Ablation Results

The results in the main paper correspond to the performance obtained when considering:

1. Feature Set: all gram matrix entries
2. Metric: layerwise deviations computed with respect to the mins and maxs.

3. Aggregation Scheme: the total deviation is then computed using Eq 5.
In this section, detailed ablation results are reported by considering other options. Specifically:

1. Alternate Feature Set: In addition to considering all gram matrix entries, we consider a proper partition of the gram
matrix: strictly diagonal elements, and strictly off-diagonal elements. The diagonal elements correspond to the unary
features, while the off-diagonal elements correspond to pairwise features. This can be done by appropriately changing
the definition of variable stat in Line 7 of Algorithm 1. In these experiments, we consider row-wise sums wherever the
size of stat is O(n?); in other words, we consider row-wise sums when considering off-diagonal elements and all gram
matrix entries.

2. Alternate Metric: An alternative formulation for computing feature-wise deviations can be to compute the deviation
from the means using the one-dimensional Mahalanobis distance. In the preprocessing stage, this would be done by
storing the Means and Variances of stat (feature-wise) instead of their Mins and Maxs. Under this new alternative, the
function ¢ defined in Eq 3 would be redefined as:

(value — mean)?

0 (mean,variance,value) = s (C.1)
variance
Accordingly, the layerwise deviation d; can be defined as:
IG7 (D)]
a0 =% % s (Means[DC] [1)[p][4], Variances[ D, [1] [p][i], Gf(D)[z’]) (€.2)
p=1 i=1

where G7 (D) would correspond to the statistic chosen in the previous step: diagonal entries only, row-wise sums of
off-diagonal entries only or row-wise sums of complete gram matrix.

We thus consider 2 options for computing the deviations: the Min/Max method presented in the main paper and the
Mean/Variance method (Gaussian) described above. While the Mean/Var assumes each entry of the gram matrix to be
normally distributed, the Min/Max assumes that each entry is uniformly distributed between the corresponding extrema
and has exponentially decreasing density beyond the extrema:

k if min < value < max

p(value|min, max) = { kexp Vall“;#m) if value < min (C.3)

max—value
[max]|

k exp ) if value > max
1

where, k = max—min,+Tlml+

— makes the above a valid probability density function. Note that both of the proposed

|max|

density models assume that the entries of the gram matrix are independent of each other. The corresponding §; can be
obtained as the sum of the log probability density estimates.

3. Alternate Aggregation Scheme: In order to compute the total deviation A from the layerwise deviations J;, we can
compute it by following Eq 5 or taking a simple sum as shown:

L
A(D) = Z ) (C.4)
=1

We refer to Eq 5 as the normalized estimate and Eq[C.4]as the unnormalized estimate.
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In all, the Table[T|reports detection rates in 12 settings: 3 choices for stat (only the diagonal entries of gram matrix G, only
the off-diagonal entries of G, or all of G) x 2 metrics for computing deviation (Min/Max or Mean/Variance) x 2 choices for
computing total deviation (Normalized sum or Unnormalized sum). All layers and all orders of gram matrix are considered
in Table 4.

TNR at TPR9S AUROC DTACC
Diagonal Elements Off Diagonal Elements Complete Gram Matrix Dingonal Eloments Off Diagonal Elements Complete Gram Matrix Dingonal Eloments Oif-Diagonal Elements Complete Gram Matrix

In-dist 00D - (Row-wise Sums) (Row-wise Sums) (Row-wise Sums) (Row-wi ums) (Row-wise Sums) (Row-wise Sums)

(model) Miny Meaw  Miv MY [ M Meaw MY MV | g Mean MV Me T e MV ME T N MV MV |y N ean | i Means MY MV | v Mg MV M | v Neans Mean/
Max Vo Max(U) 0% [ Max  var OV e ovae MOV e vee MOV v MV e vae MOV e v MBSV e v MOV e v Var
) o L oW v ) o w w 1)

iSUN 99.1 96.3 95.7 738 ] 993 97.1  97.0 9021 993 97.1 971 89.3 1 997 992 987 96.2 1 99.7 99.4 99.0 98.1 998 994 99.0 98.0 [ 97.9 957 955 921 98.0 962 96.0 935 ] 981 96.2 934
CiFaR.10 LSUN 995 983 970 777|996 988 981 936|996 988 980 04l [ 998 905 987 967 | 998 997 900 985|999 997 900 984 | 985 970 960 930|986 9.6 966 946 | 986 976 945
(ResNet) TinylmgNet | 98.6 93.8 96.2 682 | 988 972 957 88.5 | 98.7 972 957 87.5 | 99.6 99.1 983 95.6 | 99.6 99.4 988 97.8 | 997 99.4 988 97.7 | 975 95.6 947 91.2 | 977 963 953 93.1 | 978 96.4 929
SVHN 978 707 948 199|976  BL1 948 407 | 976 802 949 382|995 952 989 884 | 994 962 988 920 | 95 962 989 9I8 | 970 901 950 847|966 909 949 80| 967 908 86.7
CIFAR-100 | 333 294 425 329 | 329 272 418 293 | 329 274 422 292 | 197 784 849 833 | 78.8 758 841 790 | 790 76.1 842 792 | 724 717 782 768 | 71.5 69.1 774 721 | 717 69.4 722
iSUN 938 1.8 50.0 338 | 954 859 672 550 | 948 853 654 52.8 | 987 955 921 87.8 | 989 974 945 92.7 | 988 973 942 923 | 945 89.3 854 811 | 953 922 879 86.1 | 95.6 920 85.6
CIFAR-100 LSUN 95.6 70.8 ?56 329 972 87.5 642 520 | 96.6 86.8 624 ?97 99.1 959 91 X} 87.8 | 993 978 946 ‘)Z? 99.2 97.7 943 924 | 954 90.1 857 81.4 | 963 93.1 884 86.6 9{37 93.0 86.1
ResNep TmeNet | 941 680 514 346|953 842 681 528 | 048 35 666 SO8 | 88 OS50 925 71| 990 972 948 925|989 Ol 946 020|946 885 859 801|952 I8 884 859|950 OL6 85.4
SVHN 831 298 532 260|790 344 SL8 296 | 808 339 556 292|965 847 923 808 | 957 868 9L6 835 | 960 867 922 831|902 7.5 851 736|892 803 843 753 | 896 803 749
CIFAR10 | 129 181 192 182 114 175 175 179|122 176 181 180|693 712 766 746 | 673 700 753 719 | 679 701 755 720 | 646 660 711 691 | 630 648 698 665 | 634 650 66.6
SUN B9 71 988 963 | 991 978 990 975 | 90 978 990 975 | 998 995 998 993 | 998 996 998 996 | 998 996 998 995 | 978 965 978 959 | 979 969 978 968 | 979 968 967
CIFAR-10 LSUN 99.4 98.8 99.4 98.4 | 995 992 995 99.0 | 995 99.1 994 98.9 | 99.9 998 999 99.7 | 999 99.8 999 99.8 | 99.9 99.8 999 99.8 | 98.7 98.0 986 97.4 | 986 982 985 98.1 [ 98.6 98.1 98.1
(Demeery TmyImeNet | 987 975 986 970 | 988 980 988 977 | 988 979 987 977997 995 997 993|997 996 997 995|997 96 97 995|979 968 918 963|978 Ol 977 970|979 970 97.0
SVHN 966 818 969 882|959 847 964 869 | 961 840 965 71| 92 976 993 976 9.0 969 992 974 | 991 968 992 974 | 963 923 965 923 | 958 OLI 960 920 959  90.9 920
CIFAR-100 | 26.4 28.9 29.0 282 | 27.0 252 301 248 | 267 255 30.1 25.1 | 685 75.1 689 741 | 721 727 733 724 | 720 729 734 725 | 66.5 68.8  66.6 67.8 | 67.6 672 689 66.6 | 673 673 66.6
iSUN 96.0 84.2 955 919 1 96.1 888 955 9571 959 885 953 958 [ 99.1 972 989 9821 99.0 979 989 99.0 [ 99.0 978 989 99.0 [ 95.7 914 954 936 957 926 953 9551 956 926 955
cirara100 SUN 974 815 969 955|975 914 970 978|972 912 968 978|994 978 993 990 | 994 983 993 994 | 993 983 993 994|964 927 961 953|965 937 962 967| %64 937 96.7
(Demseney  TIVImeNet | 958 814 954 902|959 869 953 942|957 864 952 943|990 966 989 98| 90 975 989 987 | 990 974 989 987|955 904 952 929|955 L8 952 047|955 917 94.7
SVHN 894 597 888 645|873 632 864 674|893 629 89 673|974 925 973 926|970 927 969 934|973 927 971 934 | 924 857 920 860|917 860 914 70| 924 862 87.1
CIFAR-10 10.5 16.4 111 13.7 | 10.6 156 102 139 | 106 156 102 138 | 644 70.1 650 66.7 | 63.7 683 642 66.2 | 642 68.7  64.6 662 | 60.6 649 613 62.2 | 59.7 634 605 61.6 | 604 638 615
iSUN 99.3 99.8 98.1 96.9 | 995 99.9 978 985 | 994 99.9 979 98.6 | 99.8 99.9 988 98.3 | 99.8 999 99.0 99.0 | 998 99.9  99.0 99.0 | 98.0 984 96.6 96.3 | 98.1 985 964 96.8 | 98.1 98.5 96.8
SVHN LSUN 99.6 99.9 98.5 97.4 | 99.6 99.9 983 99.0 | 99.6 99.9 984 99.0 | 99.9 999 989 98.4 | 998 999  99.1 99.1 | 998 999  99.1 99.1 | 98.5 989 968 96.5 | 985 989 967 97.0 | 985 98.9 97.0
(ResNet)  TinylmgNet | 990 996 978 965 | 993 996 978 981 | 993 996 984 990 | 997 998 988 983 | 997 998 990 990 | 97 998 990 990 | 976 981 964 962 | 979 982 964 966 | 979 982 96.6
CIFAR-10 82.6 93.7 86.1 86.8 | 859 949 865 90.5 | 858 949  86.6 90.5 | 96.8 98.6 971 97.3 | 973 988 973 978 | 973 988 973 97.8 | 911 949 925 94.0 | 920 952 928 943 | 920 952 94.2
iSUN 99.3 99.6 99.4 99.1 1 993 994 994 9791 994 994 99.4 98.0 [ 99.8 999 999 998 1 998 999 998 995 998 999 998 995 983 988 984 983 [ 984 985 984 9731 983 98.6 973
SVHN  LSUN 9.5 997 997 994|995 994 996 982|995 994 996 983 | 999 999 999 990 | 998 999 999 996 | 998 999 999 996 | 986 989 987 985 | 986 986 987  976| 986 987 97.7
(DenseNet) ~ TinyImgNet | 99.2 99.5 99.3 99.2 | 99.1 992 992 98.0 | 99.1 992 992 98.1 | 99.7 999 998 99.8 | 99.7 99.8 998 99.6 | 99.7 99.8 998 99.6 | 97.9 985  98.1 98.2 | 98.0 983  98.1 973 | 979 98.3 97.3
CIFAR-10 | 766 935 769 918 | 812 943 856 90.1 | 804 942 847 901|945 985 949 981|956 986 965 976 | 955 986 964 977 | 881 943 886 935|892 947 907 926 89.1 947 926
Summary MEAN 954 866 879 773 | 956 900 904 837 957 899 904 833 | 990 975 977 956 | 90 980 981 969 | 990 980 981 968 | 960 937 941 916|961 944 945 929 | 962 944 928
Y STD-DEV | 62 172 181 270) 60 147 135  213| 57 149 135 20| 13 34 27 52| 13 29 22 39| 12 29 22 40| 29 52 45 68| 28 45 39 56| 28 45 51

Table 1: Detailed Ablation Results demonstrating the detection rates under 12 different settings. The MEAN and STD-DEV are computed
by using all elements in the table excepting the CIFAR-10 vs CIFAR-100 and CIFAR-100 vs CIFAR-10 entries.

By analysing the ablation results, we attempt to answer the following questions:

1. Are pairwise features more useful than unary features? We observe that the Min/Max metric can work
equally well with both unary and pairwise features; in some cases, the unary features are marginally better (Ex:
ResNet/CIFAR-10 vs SVHN) and in some cases, the pairwise features are marginally better (Ex: ResNet/CIFAR-100
vs iISUN/LSUN/TinyImgNet). Interestingly, the behavior of the Mean/Var metric is different: the performance with
pairwise features are significantly higher than with unary features in 19 out of 28 tested cases. For example, the TNR at
TPRI5 for ResNet/CIFAR-100 vs TinyImgNet is 68.0 with unary features and 84.2 with pairwise features.

We notice that using the unary features (diagonal entries) sometimes did well when pairwise features (off-diagonal
entries) did not do well, and vice versa, so using both gives the kind of effect that we want in an ensemble: models that
cover and work well over different parts of the space. Therefore, an overall message of our experiments is that it is
worthwhile to consider all elements of the gram matrix.

2. Is it neccessary to use Min/Max metric? Except in 6 cases (ResNet: CIFAR-10 vs CIFAR-100, ResNet: CIFAR-100
vs CIFAR-10, DenseNet: CIFAR-10 vs CIFAR-100, DenseNet: CIFAR-100 vs CIFAR-10, ResNet: SVHN vs CIFAR-
10 and DenseNet: SVHN vs CIFAR-10), the min/max metric consistently performs better than the mean/var metric.
Additionally, it is not clear if the Mean/Var estimate performs better with normalized sums or unnormalized sums: for
example, observe that Mean/Var estimate performs very poorly with the unnormalized estimate for ResNet/CIFAR-100,
while the performance of Mean/Var for DenseNet/CIFAR-100 is competitive with the performance of Min/Max only
when an unnormalized estimate is computed.

One can observe that computing the one-dimensional Mahalanobis distance for each component of the statistic derived
from the Gram Matrix and later computing the total sum is equivalent to representing each input image by a big vector
(say, Z) derived from the Gram Matrices computed across various layers, constructing class-conditional distributions
of Z (assuming that each component of Z is normally distributed and independent of the other components) and
subsequently computing the probability of an unseen Z. In early research, we noticed the following problems with the
Mean/Var estimate:

(a) The individual components of gram matrices do not follow normal distribution strictly and Mean/Var assigns
lower probabilities to the in-distribution images as well.

(b) The total deviation A — computed by simply summing across the layerwise deviations, §; — was not able to
accurately summarize the information contained in the different d;s. Specifically, information about the layer
where the input example had a higher deviation was lost when a simple sum was taken.
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The proposed Min/Max idea solves problem (a) by employing a weaker metric: deviation from extrema instead of
the mean. It can also be said that the Min/Max metric considers a uniform probability density between the extrema.
Problem (b), which exists even for this newer metric, is solved by the normalization scheme described in the main
paper for computing the sum total deviation.

Higher Order Gram Matrices The Min/Max metric is a weak approximation to the true probability density. On
conducting a thorough analysis of how the OOD examples were able to fool the metric, it appeared that the intermediate
features had several tiny activations that could yield innocuous gram matrix entries. For example, observe in Fig. 2 of
the main paper that the Min/Max metric already gets a detection rate close to that of Mahalanobis by using just Order-1
Gram Matrices. Higher-order gram matrices as described in the main paper provide a natural way to mitigate these effects.
More importantly, they help in obtaining descriptive summaries of the high-dimensional feature representations through the
higher-order non-central moments — of channels and inter-channel hadamard products — contained in them

Notable observations from Figures 2 through 7 (all layers are considered but only one order of gram matrix is considered at
a time):

e Ensemble effect: In 24/28 cases, higher order gram matrices improve detection rates. Higher order gram matrices help
both the Min/Max and the Mean/Var metrics. In most cases, the even powers are more helpful than the odd powers; in
some cases, the odd powers are more helpful (Ex: DenseNet/CIFAR-100 vs CIFAR-10). Despite these variations, it is
possible to get an ensemble effect by considering all possible powers as demonstrated in the main paper.

e In ResNet:CIFAR-10 vs CIFAR-100 and DenseNet:CIFAR-10 vs CIFAR-100, the higher order gram matrices yield
lower detection rates. We find these exceptions interesting, and would like to understand them better in future.

Summary The unambiguous message from this ablation study is that the Gram matrix contains useful information which
can be used for detecting OOD examples. While the standard Mean/Variance metric does not always work well, the
proposed Min/Max metric yields consistent performance competitive with state-of-the-art methods. The use of higher-order
Gram matrices further boosts the overall performance. Although the Min/Max method can work very well for "far-from-
distribution" examples, it does not work well when a fine grained estimate is needed (for example, CIFAR-10 vs CIFAR-100).
We hope the strong empirical proof that Gram matrices contain useful information can motivate the development of OOD
detectors with powerful density estimators.

C.1. Importance of higher-order Gram Matrices

Figure 2: ResNet/CIFAR-10: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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1

Figure 3: ResNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 4: ResNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.

Figure 5: DenseNet/CIFAR-10: The TNR at TPR9S trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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Figure 6: DenseNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.

Figure 7: DenseNet/SVHN: The TNR at TPR9S trends for Min/Max and Mean/Var as the order of Gram Matrix is varied.
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C.2. Significance of Depth

Figure 8: DenseNet/CIFAR-10: The TNR at TPR9S trends for Min/Max and Mean/Var as we go deeper in the network.

Figure 9: DenseNet/CIFAR-100: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.

Figure 10: ResNet/CIFAR-10: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 11: ResNet/CIFAR-100: The TNR at TPR9S trends for Min/Max and Mean/Var as we go deeper in the network.
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Figure 12: DenseNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.

Figure 13: DenseNet/SVHN: The TNR at TPR95 trends for Min/Max and Mean/Var as we go deeper in the network.

D. Combining OE + Ours

In-dist 00D MSP Ours Ours + MSP

(WRN 40-2) TNR at TNR at TNR at

TPR 95% AUROC DTACC TPR 95% AUROC DTACC TPR 95% AUROC DTACC

iSUN 98.3 99.3 96.9 98.9 99.8 97.8 99.8 99.9 99.0

LSUN (R) 98.5 99.4 97.0 99.4 99.9 98.4 99.8 99.9 99.1

LSUN (C) 98.0 99.4 96.9 89.5 97.8 92.5 98.6 99.6 97.3

CIFAR-10 | TinyImgNet (R) 93.9 98.5 94.6 98.5 99.7 97.6 99.5 99.9 98.5

TinyImgNet (C) 95.2 98.7 95.2 95.9 99.1 95.7 99.1 99.8 97.8

SVHN 98.0 99.5 96.9 97.6 99.4 96.8 99.3 99.8 98.2

CIFAR-100 73.9 94.8 87.9 38.9 80.1 73.3 72.9 93.9 87.0

iSUN 50.9 89.8 82.3 96.3 99.1 95.9 95.6 98.9 96.0

LSUN (R) 58.3 92.0 84.7 98.4 99.6 97.3 97.4 99.3 97.4

LSUN (C) 69.5 94.0 86.6 69.7 92.6 85.3 83.1 96.3 89.7

CIFAR-100 | TinyImgNet (R) 36.1 85.1 77.5 96.3 99.1 95.9 92.8 98.2 94.6

TinyImgNet (C) 41.6 86.3 78.6 90.1 97.7 92.8 87.1 96.9 91.1

SVHN 56.2 92.5 85.6 84.8 96.5 90.8 85.6 96.8 90.4

CIFAR-10 174 78.4 71.7 7.5 59.3 57.3 16.5 71.7 71.6

Table 2: Table shows results when our method is combined with OE. The experiment was conducted with WideResNet trained with
outlier-exposure, open-sourced by (Hendrycks et al.|[2019). MSP uses Maximum Softmax Probability; "Ours" refers to the metric A (Eq.

5); "Ours+MSP" is obtained by using A’ (x) = Az) — MSP.

maxgeva A(z)
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E. Few more OOD results
E.1. Comparing with OE

In-distribution | OOD %ise) OE %“;;e) Ours
CIFAR-10 Gaussian 85.6 99.3 43.5  100.
Rademacher 524 99.5 48.3  100.
Blob 83.8 994 529 99.8
Texture 572 87.8 37.0 853
SVHN 712 952 454  96.1
LSUN 613 879 582 99.5
CIFAR-100 Gaussian 45.7 879 18.2  100.
Rademacher 61.0 82.9 15.6  100.
Blob 62.0 87.9 38.4 98.6
Texture 28.5 45.6 199 68.5
SVHN 30.7 57.1 235 854
LSUN 26.0 425 182 97.2
SVHN Gaussian 94.6 100. 87.65 100.
Bernoulli 95.6 100. 9225 100.
Blob 96.3 100. 93.35 100.
Texture 92.8 99.8 72.6 949
Cifar-10 94.0 99.9 73.8 83.0
LSUN 93.6 99.9 75.7  99.5

Table 3: Comparison of Mean TNR @TPR95 values.

Following (Hendrycks et al.l |2019), we created the gaussian, rademacher, blob and bernoulli synthetic datasets. Their
descriptions are as follows: Gaussian anomalies have each dimension i.i.d. sampled from an isotropic Gaussian distribution.
Rademacher anomalies are images where each dimension is -1 or 1 with equal probability, so each dimension is sampled
from a symmetric Rademacher distribution. Bernoulli images have each pixel sampled from a Bernoulli distribution if the
input range is [0, 1]. Blobs data consist of algorithmically generated amorphous shapes with definite edges. Textures is a
dataset of describable textural images (Cimpoi et al., 2014).

E.2. Comparing with DPN, VD and Semantic.

TNR Detection TNR Detection

(010))] Method @ AUROC Accurac (00))] Method @ AUROC Accurac
TPRYS Y TPRYS y
DPN 42.60 90.20 79.50 Semantic 41.60 85.20 88.40
VD 92.30 98.30 94.10 VD 80.20 94.20 87.80
Baseline 49.80 91.00 85.30 . Baseline 16.89 75.80 70.11
LSUN  opiN 82.10 94.10 86.70 SUN opiN 4521 85.48 78.47
Mahalanobis 98.80 99.70 97.70 Mahalanobis 89.91 97.91 93.05
Ours 99.85 99.89 98.66 Ours 95.12 98.9 95.18
DPN 71.60 93.00 86.40 Semantic 20.50 79.00 57.80
VD 82.90 96.80 91.30 VD 85.50 95.90 90.40
Tiny Baseline 41.00 91.00 85.10 LSUN Baseline 18.80 75.80 69.90
ImgNet ODIN 67.90 94.00 86.50 ODIN 23.20 85.60 78.30
Mahalanobis 97.10 99.50 96.30 Mahalanobis 90.89 98.2 93.5
Ours 99.48 99.72 97.82 Ours 97.14 99.28 96.19
DPN 79.90 95.90 87.30 Semantic 37.60 83.10 75.60
VD 71.30 93.20 86.40 VD 83.70 95.30 89.70
SVHN Baseline 50.50 89.90 85.10 Tiny Baseline 20.40 77.20 70.80
ODIN 70.30 96.70 91.10 ImgNet ODIN 36.1 87.6 80.1
Mahalanobis 87.80 99.10 95.80 Mahalanobis 90.92 98.20 93.30
Ours 98.14 99.50 96.71 Ours 95.12 98.97 95.13

(a) ResNet/CIFAR-10 (b) ResNet/CIFAR-100

Table 4: We compare our method with DPN, VD and Semantic by reporting results where available.
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E.3. Results for Fully-connected Networks

Architecture (010))] Method TNR @ TPR95 AUROC Detection Accuracy
Baseline 47.66 73.96 73.91

300 KMNIST Ours 98.57 99.66 97.37

. Baseline 4493 66.93 71.07

Fashion-MNIST ¢y o 93.51 98.64 94.36

Baseline 59.79 75.17 79.49

300-150 KMNIST Ours 97.8 99.4 96.55

) Fashion-MNIST Baseline 70.73 77.10 83.00
ashio Ours 95.2 99.00 95.17

KMNIST Baseline 70.4 79.75 83.38

300-150-50 Ours 97.5 99.11 96.4
Fashion-MNIST Baseline 73.92 76.54 84.67

ashio Ours 95.7 98.94 95.48

Table 5: The method even works quite well with a fully-connected neural network trained on MNIST. The results are shown for 300-unit
single layer MLP, 300-150 two-layer MLP and 300-150-50 MLP.

F. SVHN images
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Figure 14: Some images selected from the test partition of SVHN which have unusual feature correlations as determined by our method.
Some images we found interesting include what appears to be a porch lamp (Row 2 Col 5) and an 8 inside a 0 (Row 2 Col 3).
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