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Abstract

Black-Box Optimization (BBO) methods can find
optimal policies for systems that interact with
complex environments with no analytical repre-
sentation. As such, they are of interest in many
Artificial Intelligence (AI) domains. Yet classi-
cal BBO methods fall short in high-dimensional
non-convex problems. They are thus often over-
looked in real-world AI tasks. Here we present a
BBO method, termed Explicit Gradient Learn-
ing (EGL), that is designed to optimize high-
dimensional ill-behaved functions. We derive
EGL by finding weak spots in methods that fit
the objective function with a parametric Neural
Network (NN) model and obtain the gradient sig-
nal by calculating the parametric gradient. Instead
of fitting the function, EGL trains a NN to esti-
mate the objective gradient directly. We prove
the convergence of EGL to a stationary point and
its robustness in the optimization of integrable
functions. We evaluate EGL and achieve state-of-
the-art results in two challenging problems: (1)
the COCO test suite against an assortment of stan-
dard BBO methods; and (2) in a high-dimensional
non-convex image generation task.

1. Introduction
Optimization problems are prevalent in many artificial in-
telligence applications, from search-and-rescue optimal de-
ployment (Zhen et al., 2014) to triage policy in emergency
rooms (Rosemarin et al., 2019) to hyperparameter tuning
in machine learning (Bardenet et al., 2013). In these tasks,
the objective is to find a policy that minimizes a cost or
maximizes a reward. Evaluating the cost of a single policy
is a complicated and often costly process that usually has
no analytical representation, e.g., due to interaction with
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real-world physics or numerical simulation. Black-Box Op-
timization (BBO) algorithms (Audet & Hare, 2017; Golovin
et al., 2017) are designed to solve such problems, when
the analytical formulation is missing, by repeatedly query-
ing the Black-Box function and searching for an optimal
solution while minimizing the number of queries (budget).

Related Work BBO problems have been studied in multi-
ple fields with diverse approaches. Many works investigated
derivative–free methods (Rios & Sahinidis, 2013), from the
classic Nelder–Mead algorithm (Nelder & Mead, 1965) and
Powell’s method (Powell, 1964) to more recent evolutionary
algorithms such as CMA-ES (Hansen, 2006). Another line
of research is derivative-based algorithms, which first ap-
proximate the gradient and then apply line-search methods
such as the Conjugate Gradient (CG) Method (Shewchuk
et al., 1994) and Quasi-Newton Methods, e.g. BFGS (No-
cedal & Wright, 2006). Other model-based methods such
as SLSQP (Bonnans et al., 2006) and COBYLA (Powell,
2007) iteratively solve quadratic or linear approximations
of the objective function. Some variants apply trust-region
methods and iteratively find an optimum within a trusted
subset of the domain (Conn et al., 2009; Chen et al., 2018).
Another line of research is more focused on stochastic dis-
crete problems, e.g. Bayesian methods (Snoek et al., 2015),
and multi-armed bandit problems (Flaxman et al., 2004).

More recent works have studied the applications of NNs in
BBO algorithms. (Mania et al., 2018; Vemula et al., 2019)
showed that Markov Decision Processes could be solved by
applying random search optimization over the weights of
a parameterized policy. (Sener & Koltun, 2020) suggested
learning an intermediate low dimensional manifold with a
NN to reduce the complexity of the random search. (Mah-
eswaranathan et al., 2018) suggested learning the objective
and using the parametric gradient with respect to the inputs
(Lillicrap et al., 2015) to guide a random search. (Saremi,
2019) studied NN architectures for learning gradients.

Our contribution In this paper, we suggest a new
derivative-based algorithm, Explicit Gradient Learning
(EGL), that learns a surrogate function for the gradient by
averaging the numerical directional derivatives over small
volumes bounded by ε radius. We control the accuracy of
our model by controlling the ε radius parameter. We then use
trust-regions and dynamic scaling of the objective function
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to fine-tune the convergence process to the optimal solution.
This results in a theoretically guaranteed convergence of
EGL to a stationary point. We compared the performance
of EGL to eight different BBO algorithms in rigorous sim-
ulations in the COCO test suite (Hansen et al., 2019) and
show that EGL outperforms all others in terms of final ac-
curacy. EGL was further evaluated in a high-dimensional
non-convex domain, involving searching in the latent space
of a Generative Adversarial Network (GAN) (Pan et al.,
2019) to generate an image with specific characteristics.
EGL again outperformed existing algorithms in terms of
accuracy and appearance, where other BBO methods failed
to converge to a solution in a reasonable amount of time.

The paper is organized as follows: BBO background and
motivation for the EGL algorithm are presented in Sections
2 and 3. The detailed description of the EGL algorithm
and its theoretical analysis are shown in Section 4. The
empirical evaluation of EGL’s performance and comparison
to state-of-the-art BBO algorithms are described in Section
5, and we conclude in Section 6. The proofs for all of the
theoretical statements are found in the Appendix.

2. Background
A function f : Ω → R, Ω ⊆ Rn is considered to be a
Black-Box if one can evaluate y = f(x) at x ∈ Ω, but has
no prior knowledge of its analytical form. A BBO algorithm
seeks to find x∗ = arg minx∈Ω f(x), typically with as few
evaluations as possible (Audet & Hare, 2017). Since, in
general, it is not possible to converge to the optimal value
with a finite number of evaluations, we define a budget C
and seek to find as good a solution as possible x? with less
than C evaluations (Hansen et al., 2010).

Many BBO methods operate with a two-phase iterative algo-
rithm: (1) search or collect data with some heuristic; and (2)
update a model to obtain a new candidate solution and im-
prove the heuristic. Traditionally, BBO methods are divided
into derivative-free and derivative-based methods. The for-
mer group relies on statistical models (Balandat et al., 2019),
physical models (Van Laarhoven & Aarts, 1987), or Evolu-
tionary Strategies (Back, 1996) to define the search pattern
and are not restricted to continuous domains, so they can
also be applied to discrete variables. Our algorithm, EGL,
falls under the latter category, which relies on a gradient
estimation to determine the search direction (Bertsekas &
Scientific, 2015). Formally, derivative-based methods are
restricted to differentiable functions, but here we show that
EGL can be applied successfully whenever the objective
function is merely locally integrable.

Recently, with the Reinforcement Learning renaissance (Sil-
ver et al., 2017; Schulman et al., 2015), new algorithms have
been suggested for the problem of continuous action control

(e.g., robotics control). Many of these can be viewed in the
context of BBO as derivative-based methods applied with
NN parametric models. One of the most prominent algo-
rithms is DDPG (Lillicrap et al., 2015). DDPG iteratively
collects data with some (often naive) exploration strategy
and then fits a local NN parametric model fθ around a can-
didate solution xk. To update the candidate, it approximates
the gradient∇f at xk with the parametric gradient∇fθ and
then applies a gradient descent step (Ruder, 2016).1 Algo-
rithm 1 outlines the DDPG steps in the BBO formulation.
We denote it as Indirect Gradient Learning (IGL) since it
does not directly learn the gradient∇f . In the next section,
we will develop arguments as to why one should learn the
gradient explicitly instead of using the parametric gradient.

Algorithm 1 Indirect Gradient Learning
Input: x0, α, C
k = 0

while budget C > 0 do
Build Local Model:

Collect data Dk = {(xk + εni, yi)}mi=1, ni ∼ N (0, I)
Fit a model fθk with
θk = arg minθ

∑m
i=1 |fθ(xk + εni)− yi|2

Gradient Descent:
xk+1 ← xk − α∇fθk (xk)
k ← k + 1

return xk

3. Motivation
In Algorithm 1 only the gradient information ∇f(xk) is
required to update the next xk candidate. However, the
gradient function is never learned directly, and it is only
inferred from the parametric model without any clear guar-
antee of its veracity. Hence we seek a method that learns the
gradient function ∇f explicitly. Clearly, directly learning
the gradient is infeasible since the Black-Box only outputs
the f(x) values. Instead, our approach would be to learn a
surrogate function for ∇f , termed the mean-gradient, by
sampling pairs of observations {(xi, yi), (xj , yj)}i,j and
averaging the numerical directional derivatives over small
volumes. This section formally defines the mean-gradient
and then formulates two arguments that motivate its use,
instead of ∇fθ. We then illustrate these arguments using
1D and 2D examples taken from the COCO test suite.

3.1. The Mean-Gradient

For any differentiable function f with a continuous gradient,
the first order Taylor expression is

f(x+ τ) = f(x) +∇f(x) · τ +O(‖τ‖2). (1)

1fθ is differentiable. Thus, it can be differentiated with respect
to its input x, as done in adversarial training (Yuan et al., 2019).



Explicit Gradient Learning

Figure 1. Comparing indirect gradient learning and explicit gradient learning for 4 typical functions: (a) parabolic; (b) piece-wise linear;
(c) multiple local minima; (d) step function.

Thus, locally around x, the directional derivative satisfies
∇f(x) · τ ≈ f(x + τ) − f(x). We define the mean-
gradient as the function that minimizes the Mean-Square-
Error (MSE) of such approximations in a vicinity of x.

Definition 1. The mean-gradient at x with ε > 0 averaging
radius is

gε(x) = arg min
g∈Rn

∫
Vε(x)

|g · τ − f(x+ τ) + f(x)|2dτ (2)

where Vε(x) ⊂ Rn is a convex subset s.t. ‖x′ − x‖ ≤ ε
for all x′ ∈ Vε(x) and the integral domain is over τ s.t.
x+ τ ∈ Vε(x).

Proposition 1 (controllable accuracy). For any differen-
tiable function f with a continuous gradient, there is
κg > 0, so that for any ε > 0 the mean-gradient satis-
fies ‖gε(x)−∇f(x)‖ ≤ κgε for all x ∈ Ω.

In other words, the mean-gradient has a controllable ac-
curacy parameter ε s.t. reducing ε improves the gradient
approximation. As explained in Sec. 4.2, this property is
crucial in obtaining the convergence of EGL to stationary
points. Unlike the mean-gradient, the parametric gradient
has no such parameter and the gradient accuracy is not di-
rectly controlled. Even for zero MSE error s.t. fθ(xi) ≡ yi
for all of the samples in the replay buffer (Mnih et al., 2015),
there is no guarantee of the parametric gradient accuracy.
On the contrary, overfitting the objective may severely hurt
the gradients approximation.

Moreover, the parametric gradient can be discontinuous
even when the parametric model has a Lipschitz continu-
ous (Hansen & Jaumard, 1995) gradient. For example, a
commonly used NN with ReLU activation is only piece-
wise differentiable. This leads to very erratic gradients even
for smooth objective functions. If the objective function
is not smooth (e.g., for noise-like functions or in singular
points), the gradient noise is exacerbated. On the other
hand, the next proposition suggests that, due to the integral
over Vε(x) that smooths the gradient, the mean gradient is
smooth whenever the objective function is continuous.
Proposition 2 (continuity). If f is continuous in V and
Vε(x) ⊂ V then gε is a continuous function at x.

The mean-gradient is not necessarily continuous in disconti-
nuity points of f . One can obtain an even smoother surro-
gate for∇f by slightly modifying the mean-gradient defini-
tion

gpε (x) = arg min
g∈Rn

∫∫
Vε(x)Bp(x)

|g ·(τ−s)−f(τ)+f(s)|2dsdτ,

where the integral domains are s ∈ Bp(x) and τ ∈ Vε(x).
Here, Bp(x) ⊂ Vε(x) is an n-ball perturbation set with
p < ε radius that dithers the reference point (which is fixed
at x in Definition 1). We term this modified version the
perturbed mean-gradient. Remarkably, while gpε is still a
controllably accurate model for Lipschitz continuous gra-
dients, as the integrand is x independent, gpε is continuous
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Figure 2. Visualizing explicit gradient learning with different ε for various 2D problems from COCO test suite: (a) sharp-ridge problem
194; (b) step-ellipsoid problem 97. Comparing EGL and IGL: (c) Schaffer F7 C1000 problem 255; (d) Schaffer F7 C10 problem 240.

whenever f is merely integrable. In practice, as gε is learned
with a Lipschitz continuous model, we find that both forms
are continuous for integrable functions. Nevertheless, Sec.
5 shows that gpε adds a small gain to the EGL performance.
Next, we demonstrate how the EGL smoothness (as opposed
to∇fθ) leads to more stable and efficient trajectories in both
continuous and discontinuous objective functions.

3.2. Illustrative Examples

To demonstrate these properties of the mean-gradient, we
consider 1D 2 and 2D problems from the COCO test suite.
We start by examining 4 typical 1D functions: (a) parabolic;
(b) piece-wise linear; (c) multiple local minima; and (d) step
function. We fit f with a NN and compare its parametric
gradient to the mean-gradient, learned with another NN.
The NN model is identical for both functions and is based
on our spline embedding architecture (see Sec. 4.4). The
results are presented in Fig. 1. The 1st row shows that the
fit f̂ is very strong s.t. the error is almost indistinguishable
to the naked eye. Nevertheless, the calculated parametric
gradient (2nd row) is noisy, even for smooth functions, as
the NN architecture is piece-wise linear. Occasionally, there
are even spikes that change the gradient sign. Traversing
the surface curves with such a function is very unstable
and inefficient. On the other hand, due to the smoothing
parameter ε = 0.1 and since the NN is Lipschitz continuous,
the mean-gradient is always smooth, even for singularity
points and discontinuous gradients.

In the 3rd row we evaluate gε for different size ε parameters.
We see that by setting ε sufficiently high, the gradient be-
comes smooth enough, so there is no problem descending
over steps and multiple local minima functions. In practice,
we may use this property and start the descent trajectory
with a high ε. This way, the optimization process does not
commit too early to a local minimum and searches for re-
gions with lower valleys. After refining ε the process will

2Since COCO does not have built-in 1D problems; we gener-
ated 1D problems based on 2D problems with f1D(x) : f2D(x, x)

settle into a local minimum, which in practice would be
much lower than minima found around the initial point.

The next experiment (Fig. 2) is executed on 2D problems
from the COCO test suite. In Fig. 2(a-b) we present the
gradient-descent steps with the mean-gradient and a constant
ε. In 2(a) the objective has a singular minimum, similar to
the |x| function’s minimum (Fig.1(a)). As ε gets smaller,
the gradients near the minimum get larger and there is a
need to reduce the learning-rate (α) in order to converge.
2(b) presents a step function. Again, we observe that for a
smaller ε the gradient has high spikes in the discontinuity
points, leading to a noisier trajectory. For that purpose, the
EGL algorithm decays both α and ε during the learning
process (see Sec. 4 for details). This lends much smoother
trajectories, as can be seen in Fig. 2(c-d). Here we executed
both EGL and IGL with the same α, ε decay pattern. We
observe that the IGL trajectories are noisy and inefficient
since the parametric gradient error is not bounded. On the
other hand, EGL smoothly travels through a ravine (Fig.
2(c)) and converges to a global minimum (Fig. 2(d)).

4. Design & Analysis
In this section, we lay out the practical EGL algorithm and
analyze its asymptotic properties.

4.1. Monte-Carlo Approximation

To learn the mean-gradient, one may evaluate the integral in
Eq. (2) with Monte-Carlo samples and learn a model that
minimizes this term. Formally, for a model gθ : Ω → Rn
and a dataset Dk = {(xi, yi)}mi=1, define the loss function

Lk,ε(θ) =

m∑
i=1

∑
xj∈Vε(xi)

|(xj−xi) ·gθ(xi)−yj+yi|2 (3)

and learn θ∗k = arg minθ Lk,ε(θ), e.g. with gradient descent.
This formulation can be used to estimate the mean-gradient
for any x. Yet, practically, in each optimization iteration,
we only care about estimating it in close proximity to the



Explicit Gradient Learning

current candidate solution xk. Therefore, we assume that
the dataset Dk holds samples only from Vε(xk).

The accuracy of the learned model gθ∗k heavily depends
on the number and locations of the evaluation points and
the specific parameterization for gθ. Still, for f with a
Lipschitz continuous gradient, i.e. f ∈ C+1, we can set
bounds for the model accuracy in Vε(xk) with respect to
ε. For that purpose, we require a set of at least m ≥ n+ 1
evaluation points in Dk which satisfy the following poised
set definition.

Definition 2 (poised set for regression). Let Dk =
{(xi, yi)}m1 , m ≥ n + 1 s.t. xi ∈ Vε(xk) for all i. De-
fine the matrix X̃i ∈ Mm×n s.t. the j-th row is xi − xj .
Now define X̃ = ( X̃T

1 ··· X̃
T
m )

T . The set Dk is a poised set
for regression in xk if the matrix X̃ has rank n.

Intuitively, a set is poised if its difference vectors xi − xj
span Rn. For the poised set, and a constant parameterization,
the solution of Eq. (3) is unique and it is equal to the Least-
Squares (LS) minimizer. If f has a Lipschitz continuous
gradient, then, with an admissible parametric model, the
error between gθ(x) and ∇f(x) can be proportional to ε.
We formalize this in the following theorem and corollary.

Theorem 1. Let Dk be a poised set in Vε(xk). The regres-
sion problem

gMSE = arg min
g

∑
i,j∈Dk

|(xj − xi) · g − yj + yi|2 (4)

has the unique solution gMSE = (X̃T X̃)−1X̃T δ, where
δ ∈ Rm2

s.t. δi·(m−1)+j = yj − yi. Further, if f ∈ C1+

and gθ ∈ C0 is a parameterization with (equal or) lower
regression loss than gMSE , the following holds for all x ∈
Vε(xk):

‖∇f(x)− gθ(x)‖ ≤ κgε (5)

Corollary 1. For the Dk poised set, any Lipschitz contin-
uous parameterization of the form gθ(x) = F (Wx) + b
is a controllably accurate model (Audet & Hare, 2017) in
Vε(xk) for the optimal set of parameters θ∗k.

This is obvious as we can simply setW = 0 and b = gMSE .
In this work, we are interested in using NNs which are much
stronger parameterizations than constant models. If the NN
satisfies the Lipschitz continuity property (e.g., with spectral
normalization) and has at least a biased output layer, then its
optimal set of parameters θ∗k has lower regression loss than
gMSE and it is therefore a controllably accurate model.3

Finally, to incorporate learning of the perturbed mean gradi-
ent, we slightly modify Eq. (3). Note that we cannot directly
dither the reference point xi as we would need to collect

3Provided that the optimization process recovers θ∗k, which is
not necessarily true in practice.

more samples. Instead, we may dither the gθ argument by
evaluating it in x̄ir = xi + nr where nr is uniformly sam-
pled in an n-ball with radius p. Thus, the perturbed loss
function for small p s.t. p� ε is

Lk,ε,p(θ) =
∑

i,j∈Dk,nr

|(xj − xi) · gθ(x̄ir)− yj + yi|2 (6)

4.2. Asymptotic Analysis

In this part, we assume that the function f has a Lipschitz
continuous gradient s.t. ‖∇f(x)−∇f(x′)‖ ≤ κf‖x− x′‖.
In this case, the classical gradient descent theorem states that
the update xk+1 = xk − α∇f(xk) with learning parameter
α ≤ 1

κf
converges to a stationary point x∗ s.t. ‖f(xk)‖ → 0

for k →∞ (Nesterov, 2013; Lee et al., 2016).

EGL descends over a surrogate function of the gradient
that contains some amount of error. Far from x∗, where
‖∇f‖ is large, the error in gε is small enough s.t. every new
candidate improves the solution, i.e. f(xk+1) ≤ f(xk). If
the stationary point x∗ is locally convex, then, as xk gets
closer to x∗, the gradient ‖∇f‖ decreases, and eventually
the error, i.e. gε(xk)−∇f(xk), becomes so significant that
improvement is no longer guaranteed. Nevertheless, our
analysis shows that a proper choice of εk yields monotonic
decreasing steps that converge to a stationary point.

Theorem 2. Let f : Ω → R have a Lipschitz continuous
gradient and a Lipschitz constant κf . Suppose a control-
lable mean-gradient model gε with error constant κg, the
gradient descent iteration xk+1 = xk − αgε(xk) with α s.t.

5ε
‖∇f(xk)‖ ≤ α ≤ min( 1

κg
, 1
κf

) guarantees a monotonically

decreasing step s.t. f(xk+1) ≤ f(xk)− 2.25 ε
2

α .

Corollary 2. If Theorem 2 is satisfied for all k, the gradi-
ent descent iteration converges to a stationary point x∗ s.t.
1
K

∑K
k=1 ‖f(xk)‖2 ≤ 12|f(x0)−f(x∗)|

αKK
.

Utilizing Theorem 2 we can design an algorithm that con-
verges to a stationary point. For that purpose we must
make sure that the learning rate abides the requirement
α ≤ min( 1

κg
, 1
κf

). Since this factor cannot be easily esti-
mated, a practical solution is to decay α during the optimiza-
tion process. However, to converge, the ratio ε

α must also
decay to zero. This means that ε must decay to zero faster
than α. Algorithm 2 provides both of these conditions, so it
is guaranteed to converge to a local minimum for ε̄→ 0.

This analysis assumes a Lipschitz continuous gradient, but
since EGL is also designed for non-smooth functions, our
practical algorithm alleviates the requirement for strictly
monotonically decreasing steps. Instead, it calculates a
running mean over the last candidates to determine when to
decrease α and ε. The complete practical EGL algorithm
is found in the Appendix Sec. E. It also includes input and
output mapping and scaling, as described in the next section.
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Algorithm 2 Convergent EGL
Input: x0, α, ε, γα < 1, γε < 1, ε̄
k = 0

while ε ≤ ε̄ do
Build Model:

Collect data {(xi, yi)}m1 , xi ∈ Vε(xk)
Learn a local model gε(xk)

Gradient Descent:
xk+1 ← xk − αgε(xk)

if f(xk+1) > f(xk)− 2.25 ε
2

α
then

α← γαα
ε← γαγεε

k ← k + 1

return xk

4.3. Dynamic Mappings

Unlike supervised learning with a constant dataset, BBO is
a dynamic problem. The input and output statistics change
over time as the optimization progresses. There are several
sources for this drift. First, traversing via gε changes the
input’s first moment by updating the center of the samples
xi and the output’s first moment by collecting smaller costs
yi. At the same time, squeezing ε and α over time decreases
the second moment statistics by reducing the variety in
{(xi, yi)}. NNs are sensitive to such distribution changes
(Brownlee, 2018) and require tweaking hyperparameters
such as learning rate and initial weight distribution to main-
tain high performance. Default numbers (e.g. learning rate
of 10−3) usually work best when the input data is normal-
ized. To regulate the statistics over the entire optimization
process, we apply a method of double dynamic mappings
for both input and output values.

From the input perspective, our dynamic mapping resembles
Trust-Region methods (Conn et al., 2000; Nocedal & Wright,
2006). Instead of searching for x∗ in the entire Ω domain by
reducing ε and α over time, we fix ε and α and search for x?j
in a sub-region Ωj . After finding the best candidate solution
in this sub-region we shrink Ωj by a factor of γα > 0
and ε by a factor of γε > 0. To keep the input statistics
regulated, we maintain a bijective mapping hj : Ωj → Rn :
that scales the x values to an unconstrained domain x̃ with
approximately constant first and second moments.

In this work, Ω is assumed to be a rectangular box that de-
notes the upper and lower bounds for each entry in x. Thus
we consider element-wise bijective mappings of the form
hj(x) = (h1

j (x
1), ..., hnj (xn)) and each new sub-region,

Ωj+1 ⊂ Ωj , is a smaller rectangular box centered at x?j . In
the unconstrained domain x̃, we can use the initial learning
rate, yet, due to the squeezing factor, the effective learning
rate is decayed by the γα factor. Equivalently, the effective
accuracy parameter ε is reduced by a factor of γα × γε. In

other words, we use the same NN parameters to learn a
zoomed-in problem of the original objective function.

In order to regulate the output statistics, we define a scalar,
monotonically increasing, invertible mapping rk(y) which
maps the yi samples in the dataset Dk to approximately
constant statistics. Since traversing with gε can signifi-
cantly change the statistics even in the same sub-region, rk
must be dynamic and cannot be held fixed for the entire
j sub-problem. Combining both input and output map-
pings, we obtain a modified set of samples {(x̃i, ỹi)}i =
{(hj(xi), rk(yi))}i, so effectively we learn a modified
mean-gradient, denoted as g̃εjk , of a compressed and scaled
function ỹ = f̃jk(x̃) = rk ◦ f ◦ h−1

j (x̃).

If both input and output mappings are linear, then the true
mean-gradient is proportional to the modified mean-gradient

gε(x) =

(
∂rk
∂y

)−1

∇hj(x)� g̃εjk(x̃) (7)

Even when the mappings are approximately linear inside
Vεjk(x̃k), gε(xk) can be estimated according to Eq. (7).
Hence, to maintain a controllably accurate model, we seek
mappings that preserve the linearity as much as possible. On
the other hand, strictly linear mappings may be insufficient
since they are susceptible to outliers. After experimenting
with several functions, we found a sweet spot: a composition
of a linear mapping followed by a squash function that com-
presses only the outliers (see details in Appendix Sec. D).
With such mappings, we make sure both that the model is
controllably accurate and that the learning hyperparameters
are adequate for the entire optimization process.

4.4. Spline Embedding

Many black-box applications, including the experiments in
Sec. 5, have no clear inductive bias which can be exploited,
as e.g., CNNs are suitable for natural images (Cohen &
Shashua, 2016). In such cases, it is common to use feed-
forward NNs. However, we found out that the quality of
fitting objectives and gradients with such NN is unsatisfac-
tory, especially for low dimensional problems. One method
to augment the input layer is through learnable embeddings
(Zhang et al., 2016). However, usually, embeddings are
applied for categorical input and they do not preserve order.
Since our input domain is continuous, we wish to design
Lipschitz continuous learnable embeddings sθ(x) s.t. for
two inputs x1 and x2 the calculated embedding satisfies
‖s(x1)− s(x2)‖ ≤ κs‖x1 − x2‖ for some κs > 0.

We chose to do so by learning a set of one-dimensional
splines (Reinsch, 1967). A spline is a piece-wise polynomial
defined on a set of disjoint intervals with smoothness condi-
tions in the intersection points, denoted as knots. Learnable
splines were also suggested in (Fey et al., 2018) for the prob-
lem of learning over irregular grids. We used piece-wise
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Figure 3. Comparing the success rate of EGL and other BBO algorithms for a budget C = 150 · 103.

linear splines of the form

sθ(x) =
θi
hi

(ti+1 − x) +
θi+1

hi
(x− ti) (8)

where θ has k + 1 elements (k is the number of knots), ti
is the position of the i-th knot and hi = ti+1 − ti. Instead
of fitting θ to the data as usually done in classical spline
applications, we learned these parameters as part of the op-
timization process, similar to categorical embeddings. Each
entry in the input vector was expanded by a paramterization
of several one-dimensional splines. We found this architec-
ture particularly suitable for modeling complex functions
defined over unstructured input domain. Please refer to the
Appendix Sec. C for a full description and an empirical
evaluation of fitting objective functions with spline-net.

5. Empirical Evaluation
In this section we describe the rigorous empirical analysis
of EGL against various BBO methods in the COCO test
suite and in a search task over the latent space of a GAN
model. The code is available at http://github.com/
MorSinay/BBO.

5.1. The COCO test suite

We tested EGL on the COCO test suite, a platform for
systematic comparison of real-parameter global optimizers.
COCO provides Black-Box functions in several dimensions
(2,3,5,10,20,40), where each dimension comprises 360 dis-
tinct problems. To test higher dimensions, we created an
extra set of 784D problems by composing a pre-trained en-
coder (Kingma & Welling, 2013) of FashionMnist images,
each with 784 pixels (Xiao et al., 2017), with a 10D COCO
problem as follows: f784D(x) : f10D(Encoder(x)).

We compared EGL with seven baselines, implemented on
Scipy and Cma Python packages: Nedler Mead, SLSQP,
POWELL, CG, COBYLA, BFGS, CMA-ES and with our
IGL implementation based on the DDPG approach. For the
784D problems we evaluated only CG, CMA-ES and IGL
which yielded results in a reasonable amount of time. We
examined two network models. To compare against other

baselines (Figues 3, 4 and 5(a)), we used our spline embed-
ding model (details in Appendix Sec. C). Since spline-net is
more time consuming, for the ablation tests in Fig. 5(b-d),
we used a lighter Fully Connected (FC) net. For additional
information, including a hyperparameters list, refer to Ap-
pendix Sec. F.

Fig. 3 presents the success rate of each algorithm with
respect to the dimension number and for a budget of C =
150 · 103. A single test-run is considered successful if: (1)
ybest − y∗ ≤ 1; and (2) ybest−y∗

y0−y∗ ≤ 10−2. Here, y0 is the
initial score f(x0), ybest = min yk is the best-observed
value for that run, and y∗ is the minimal value obtained
from all the baselines’ test-runs. This definition guarantees
that a run is successful only if its best-observed value is
near y∗, both in terms of absolute distance and in terms of
relative improvement with respect to the initial score. The
results show that EGL outperforms all other baselines for
any dimension. Most importantly, as the dimension number
increases, the performance gap between EGL and all other
baselines grows larger.

In Fig. 4 we present two performance profiles (Dolan &
Moré, 2002) for the 40D and 10D problem sets: (1) Time-To-
Solution (TTS); and (2) Best Observed (BO). TTS measures
the percentage of solved problems with respect to the time
step. We find that both EGL and IGL have a cold start
behavior. This is a result of our design choice to start the
training with a warm-up phase where we evaluate 384 points
around x0 and train the networks before executing the first
gradient descent step. However, as the training process
progresses, EGL outperforms all other methods and peaks
at C = 150 · 103 with the success rate of Fig. 3. The
BO profile measures the percentage of problems whose
best-observed value after 150 · 103 time steps is better than
∆y ∈ [y0, y

∗]. We find that for all of the possible thresholds
∆y, EGL solves more problems than any other method.

Fig. 5 visualizes the learning process of each method.
To do that, we first calculate a scaled distance between
the best value at time t and the optimal value ∆ytbest =
mink≤t yk−y∗

y0−y∗ . We then average this number for each t, over
all runs in the same dimension problem set. This distance

http://github.com/MorSinay/BBO
http://github.com/MorSinay/BBO
https://docs.scipy.org/doc/
http://cma.gforge.inria.fr/apidocs-pycma/cma.evolution_strategy.html
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Figure 4. Performance Profile for 10D and 40D: Time-To-Solution (TTS) and Best-Observed (BO) after 150 · 103 steps. In BO the x-axis
linearly maps [y0, y

∗] to [0, 1].

Figure 5. The scaled distance ∆ytbest as a function of t ∈ [1, .., C] for: (a) EGL and baselines on 40D, (b) trust-region and output mapping
ablation test, (c) EGL with different m samples and baselines on 784D, (d) the perturbed mean-gradient and long replay buffer on 40D.

is scaled to [0, 1] and the results are presented on a log-log
scale. Fig. 5(a) presents ∆y

t

best on the 40D set. The elbow
pattern in step 384 marks the switch from x0 to x1. Unlike
the baselines that settle on a local minimum, EGL monoton-
ically decreases during the entire optimization process. It
overtakes the best baseline (CMA-ES) after ∼ 104 steps.

Fig. 5(b) demonstrates the advantage of output-mapping
(OM) and trust-region (TR). Here, we compared an FC net,
trained with OM and TR (FC TR OM) against the variations
FC, FC TR and FC OM. The results show a clear advantage
to using both OM and TR, yet, while OM is crucial for the
entire optimization process, the TR advantage materializes
only near the minimal value. In addition, Fig. 5(b) manifests
the gain of the spline-net (SPLINE) on top of FC TR OM.

The next experiment is executed on the high dimensional
784D problem set. In Fig. 5(c) we compare the performance
of different numbers of exploration points m = {64, 800}
against CMA-ES, CG and the IGL baselines. While Theo-
rem 1 guarantees a controllably accurate model when sam-
pling m ≥ n+ 1 points, remarkably, EGL generalized to an
outstanding performance and outperformed all other base-
lines even for m = 64 � n. Nevertheless, as expected,
more exploration points converged to a better final value. In
practice, the choice of m should correspond to the allocated

budget size. More exploration around each candidate comes
with the cost of fewer gradient descent steps; thus, for low
budgets, one should typically choose a small m.

Next, we tested the gain of two possible modifications to
EGL: (1) perturbations with gpε ; and (2) training gθ with
a larger replay buffer (RB) with exploration points from
the last L candidates. These tests were all executed with
the same random seed. Fig. 5(d) presents the performance
gain (1−∆y

t

best/∆y
t

RB1 P0) as a function of t for several
different runs. Small perturbations p = 0.01ε improved the
performance (14%), possibly since they also regulate the
NN training, yet, too large perturbations of p = 0.1ε yielded
inconsistent results. We also observed that a too long RB of
L = 16 largely hurt the performance, probably since it adds
high values to the RB which leads to a more compressed
output mapping. However, moderate RB of L = 4 had
a positive impact (10%), probably since more exploration
points near the current candidate reduce the controllable
accuracy factor κg and thus the accuracy of gε improves.

5.2. Searching the latent space of generative models

To examine EGL in a high-dimensional, complex, non-
convex and noisy domain, we experimented with the task
of searching the latent space of an image generative model
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Figure 6. Searching latent space of generative models with EGL and IGL. Note that the target image is not revealed to the optimizer, only
the face attributes and landmark points. The left-hand number is the average minimal value for each algorithm over 64 different problems.

(Volz et al., 2018). Generative models learn to map between
a latent predefined distribution z to a complex real-world
distribution x (e.g. images or audio). Given a trained Black-
Box generator, while it is easy to sample from the distribu-
tion of x by sampling from z, it is not straightforward to
generate an image with some desired characteristics. For
that purpose, one may apply a BBO to search the latent
space for a hidden representation z∗ that generates an image
with the desired traits x∗. Here, we used a face genera-
tive model and optimized z∗ to generate an image with a
required set of face attributes, landmark points and quality.

We trained a generator & discriminator for the CelebA
dataset (Liu et al., 2015) based on the BigGAN (Brock
et al., 2018) architecture and a classifier for the CelebA at-
tributes. For the face landmark points, we used a pre-trained
model (Kazemi & Sullivan, 2014). The BBO was trained to
minimize the following objective:

fal(z) = λaLa(G(z))+λlLl(G(z))+λg tanh(D(G(z)))

Where: (1) La is the Cross-Entropy loss between the gen-
erated face attributes as measured by the classifier and the
desired set of attributes a; (2) Ll is the MSE between the
generated landmark points and the desired set of landmarks
l ; and (3) D(G(z)) is the discriminator output, positive for
low-quality images and negative for high-equality images.

Since each evaluation of z is costly, we limited the budget
C to only 104 evaluations and the number of exploration
points in each step was only m = 32 � 512. Such m
violates the requirement in Theorem 1. However, we found
that in practice, for finite budget and high dimensions, it
is better to take more gradient steps with a less accurate
gradient. To increase the sample efficiency we found that
instead of sampling points in an n-ball around the candidate
xk, it is better to sample points in a cone with an apex at

xk and a vector equal to the mean-gradient estimation at xk,
i.e. g(xk). We term this exploration strategy as gradient-
guided-exploration. For further details, please refer to the
Appendix, Sec. H.

Due to the high-dimensional problem, classic methods such
as CG and even CMA-ES fail to generate satisfying faces
(see Appendix Sec. G for sample images). In Fig. 6 we
compare the images generated by EGL and IGL. Generally,
the quality of the results depends on the image target style.
Some face traits which are more frequent in the CelebA
dataset lead to a better face quality. Some faces, specifically
with attributes such as a beard or a hat, are much harder
to find, probably due to the suboptimality of the generator,
which usually reduces the variety of images found in the
dataset (Bau et al., 2019). Nevertheless, the results show that
EGL produces better images, both visually and according to
the final cost value. We observed that for hard targets, IGL
frequently fails to find any plausible solutions while EGL
yields non-perfect yet much more satisfactory candidates.

6. Conclusions
We presented EGL, a derivative-based BBO algorithm that
achieves state-of-the-art results on a wide range of optimiza-
tion problems. The essence of its success is a learnable
function that estimates the mean gradient with a control-
lable smoothness factor. Starting with a high smoothness
factor, let EGL find global areas in the function with low
valleys. Gradually decreasing it lets EGL converge to a local
minimum. The concept of EGL can be generalized to other
related fields, such as sequential decision-making problems
(i.e. Reinforcement Learning), by directly learning the gra-
dient of the Q-function. We also demonstrated the use of
EGL in an applicative high-dimensional Black-Box prob-
lem, searching the latent space of generative models.
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