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Abstract known, the expectation of F (x; ξ) over ξ cannot be analyti-

A framework based on iterative coordinate min-
imization (CM) is developed for stochastic con-
vex optimization. Given that exact coordinate 
minimization is impossible due to the unknown 
stochastic nature of the objective function, the 
crux of the proposed optimization algorithm is an 
optimal control of the minimization precision in 
each iteration. We establish the optimal precision 
control and the resulting order-optimal regret per-
formance for strongly convex and separably nons-
mooth functions. An interesting finding is that the 
optimal progression of precision across iterations 
is independent of the low-dimensional CM routine 
employed, suggesting a general framework for ex-
tending low-dimensional optimization routines to 
high-dimensional problems. The proposed algo-
rithm is amenable to online implementation and 
inherits the scalability and parallelizability proper-
ties of CM for large-scale optimization. Requiring 
only a sublinear order of message exchanges, it 
also lends itself well to distributed computing as 
compared with the alternative approach of coordi-
nate gradient descent. 

1. Introduction 
1.1. Stochastic Convex Optimization 

Stochastic convex optimization aims at minimizing a ran-
dom loss function F (x; ξ) in expectation: 

f(x) = Eξ [F (x; ξ)] , (1) 

where x is the decision variable in a convex and compact 
set X ⊂ Rd and ξ is an endogenous random vector. The 
probabilistic model of ξ is unknown, or even when it is 
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cally characterized. As a result, the objective function f(x) 
is unknown. 

With the objective function unknown, the decision maker 
can only take a trial-and-error learning approach by choos-
ing, sequentially in time, a sequence of query points 
{xt}T with the hope that the decisions improve over time.t=1 
Various error feedback models have been considered. The 
zeroth-order vs. first-order feedback pertains to whether 
the random loss F (xt; ξt) or its gradient G(xt; ξt) at each 
query point xt is used in the learning algorithm. The full-
information vs. bandit feedback relates to whether the entire 
loss function F (x; ξt) over all x or only the random loss/ 
gradient at the queried point xt is revealed at each time. 

The performance measure has traditionally focused on the 
∗convergence of xT to the minimizer x = arg min f(x) 

x∈X 

or f(xT ) to f(x ∗). In an online setting, a more suitable 
performance measure is the cumulative regret defined as the 
expected cumulative loss at the query points in excess to the 
minimum loss: 

" # 
TX 

R(T ) = E (F (xt; ξt) − f(x ∗ )) . (2) 
t=1 

This performance measure gives rise to the exploration-
exploitation tradeoff: the need to explore the entire domain 
X for the sake of future decisions and the desire to exploit 
the currently best decision indicated by past observations to 
reduce present loss. A learning algorithm with a sublinear 
regret order in T implies the convergence of f(xT ) to f(x ∗), 
and the specific order measures the rate of convergence. 

The archetypal statistical learning problem of classification 
based on random instances is a stochastic optimization prob-
lem, where the decision variable x is the classifier and ξ 
the random instance consisting of its feature vector and hid-
den label. The probabilistic dependence between feature 
and label is unknown. Another example is the design of 
large-scale complex physical systems that defy analytical 
modeling. Noisy observations via stochastic simulation is 
all that is available for decision making. 
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1.2. From SGD to SCD 

Stochastic convex optimization was pioneered by Robbins 
and Monro in 1951 (Robbins & Monro, 1951), who stud-
ied the problem of approximating the root of a monotone 
function g(x) based on successive observations of noisy 
function values at chosen query points. The problem was 
originally referred to as stochastic approximation, later also 
known as stochastic root finding (Pasupathy et al., 2011). 
Its equivalence to the first-order stochastic convex optimiza-
tion is immediate when g(x) is viewed as the gradient of 
a convex function f(x) to be minimized. The stochastic 
gradient descent (SGD) approach developed by Robbins and 
Monro (Robbins & Monro, 1951) has long become a classic 
and is widely used. The basic idea of SGD is to choose 
the next query point xt+1 in the opposite direction of the 
observed gradient while ensuring xt+1 ∈ X via a projection 
operation. Numerous variants of SGD with improved per-
formance have since been developed and their performance 
analyzed under various measures (See (Ruder, 2016; Bottou 
et al., 2018) for recent surveys). 

The high cost in computing full gradients in large-scale high-
dimensional problems and the resistance of SGD to parallel 
and distributed implementation have prompted the search 
for alternative approaches that enjoy better scalability and 
parallelizability. 

A natural choice is iterative coordinate minimization (CM) 
that has been widely used and analyzed for optimizing a 
known deterministic function (Wright, 2015). Also known 
as alternating minimization, CM is rooted in the method-
ology of decomposing high-dimensional problems into a 
sequence of simpler low-dimensional ones. Specifically, 
CM-based algorithms approach the global minimizer by 
moving successively to the minimizer in each coordinate1 

while keeping other coordinates fixed to their most recent 
values. For known deterministic objective functions, it is 
often assumed that the minimizer in each coordinate can be 
computed, and hence attained in each iteration. 

When coordinate-wise minimization is difficult to carry out, 
coordinate (gradient) descent (CD) can be employed, which 
takes a single step (or a fixed number of steps) of (gradient) 
descent along one coordinate and then moves to the next 
coordinate2. For quadratic objective functions, CD with 
properly chosen step sizes essentially carries out coordinate 

1We use the term “coordinate” to also refer to a block of coor-
dinates. 

2The term coordinate descent is often used to include coor-
dinate minimization. We make an explicit distinction between 
CD and CM in this paper. The former refers to taking a single 
step (or a pre-fixed number of steps) of (gradient) descent along 
one coordinate and then move to another coordinate. The latter 
moves along each coordinate with the specific goal of arriving at 
the minimizer (or a small neighborhood) in this coordinate before 
switching to another coordinate. 

minimization. For general objective functions, however, it 
is commonly observed that CM outperforms CD (Wright, 
2015; Beck & Tetruashvili, 2013; Tibshirani, 2013). 

While CD/CM-based algorithms have been extensively stud-
ied for optimizing deterministic functions, their extensions 
and resulting performance for stochastic optimization are 
much less explored. CD can be applied to stochastic op-
timization with little modification. Since the noisy partial 
gradient along a coordinate can be viewed as an estimate of 
the full gradient, stochastic coordinate descent (SCD) has 
little conceptual difference from SGD. In particular, when 
the coordinate is chosen uniformly at random at each time, 
the noisy partial gradient along the randomly chosen co-
ordinate is an unbiased estimate of the full gradient. All 
analyses of the performance of SGD directly apply. More 
sophisticated extensions of CD-based methods have been 
developed in a couple of recent studies (see Sec. 1.4). 

Since exact minimization along a coordinate is impossible 
due to the unknown and stochastic nature of the objective 
function, the extension of CM to stochastic optimization is 
much less clear. This appears to be a direction that has not 
been taken in the literature and is the focus of this work. 

1.3. Main Results 

While both CD- and CM-based methods enjoy scalabil-
ity and parallelizability, CM often offers better empirical 
performance and has a much lower overhead in message ex-
change in distributed computing (due to its sublinear order 
of switching across coordinates in comparison to the linear 
order in CD). It is thus desirable to extend these advantages 
of CM to stochastic optimization. 

In this paper, we study stochastic coordinate minimization 
(SCM) for stochastic convex optimization. We develop a 
general framework for extending any given low-dimensional 
optimization algorithm to high-dimensional problems while 
preserving its level of consistency and regret order. Given 
that exact minimization along coordinates is impossible, the 
crux of the proposed framework—referred to as Progressive 
Coordinate Minimization (PCM)—is an optimal control of 
the minimization precision in each iteration. Specifically, 
a PCM algorithm is given by a tuple ({�k}, υ, τ ), where 
{�k}k∈N governs the progressive precision of each CM it-
eration indexed by k, υ is an arbitrary low-dimensional 
optimization routine employed for coordinate minimization, 
and τ is the self-termination rule for stopping υ at the given 
precision �k in each iteration k. We establish the optimal 
precision control and the resulting order-optimal regret per-
formance for strongly convex and separably non-smooth 
functions. An interesting finding is that the optimal pro-
gression of precision across iterations is independent of 
the low-dimensional routine υ, suggesting the generality of 
the framework for extending low-dimensional optimization 
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algorithms to high-dimensional problems. 

We also illustrate the construction of order-optimal termi-
nation rules for two specific optimization routines: SGD 
(applied to minimize along a coordinate) and RWT (recently 
proposed in (Vakili & Zhao, 2019; Vakili et al., 2019)). 
While SGD is directly applicable to high-dimensional prob-
lems, its extension within the PCM framework leads to a 
marriage between the efficiency of SGD with the scalability 
and parallelizability of CM. RWT as proposed in (Vakili 
& Zhao, 2019; Vakili et al., 2019) is only applicable to 
one-dimensional problems. With no hyper-parameters to 
tune, however, it has an edge over SGD in terms of robust-
ness and self-adaptivity to unknown function characteristics. 
For both low-dimensional routines, we demonstrate their 
high-dimensional extensions within the PCM framework. 
Empirical experiments using the MNIST dataset show su-
perior performance of PCM over SCD, which echoes the 
comparison between CM and CD in deterministic settings. 

1.4. Related Work 

CD/CM-based methods for optimizing a known determin-
istic function have a long history. While such methods had 
often been eclipsed by more high-performing algorithms, 
they have started to enjoy increasing popularity in recent 
years due to the shifted needs from high accuracy to low cost, 
scalability, and parallelizability in modern machine learn-
ing and data analytics applications (Hsieh et al., 2008a;b; 
Nesterov, 2012; 2014; Richtarik & Tak´ áč, 2016a;b). See 
(Wright, 2015; Fercoq & Richtárik, 2019) for a detailed lit-
erature survey with insights on the development of CD/CM 
methods over the years. 

Early studies on the convergence of CM-based approaches 
include (Luo & Tseng, 1992; Tseng, 2001; Tseng & Yun, 
2008; 2009; Saha & Tewari, 2013). CD-based methods have 
proven to be easier to analyze, especially under the setup of 
randomized selection of coordinates (Nesterov, 2012; Lev-
enthal & Lewis, 2010; Tewari & Shalev-Shwartz, 2011; Tao 
et al., 2012; Deng et al., 2013; Shalev-Shwartz & Zhang, 
2014; Csiba et al., 2015; Karimi et al., 2016; Salehi et al., 
2018). Such CD/CM-based algorithms are often referred to 
as stochastic CD/CM in the literature due to the randomly 
chosen coordinates. Optimizing a known deterministic func-
tion, however, they are fundamentally different from the 
stochastic optimization algorithms considered in this work. 
The term CD/CM with random coordinate selection as used 
in (Richtarik & Tak´ áč, 2014; Lu & Xiao, 2015) gives a more 
accurate description. 

CD-based methods have been extended to mini batch set-
tings or for general stochastic optimization problems (Raza-
viyayn et al., 2013; Wang & Banerjee, 2014; Zhao et al., 
2014; Dang & Lan, 2015; Reddi et al., 2015; Xu & Yin, 
2015; Zhang & Gu, 2016; Konecnˇ ý et al., 2016). In particu-

lar, (Dang & Lan, 2015) extended block mirror descent to 
stochastic optimization. Relying on an averaging of decision 
points over the entire horizon to combat stochasticity, this 
algorithm is not applicable to online settings and does not 
seem to render tractable regret analysis. (Wang & Banerjee, 
2014) gave an online implementation of SCD, which we 
compare with in Sec. 7. 

The progressive precision control framework developed in 
this work bears similarity with inexact coordinate minimiza-
tion that has been studied in the deterministic setting (see, 
for example, (Deng et al., 2013; Razaviyayn et al., 2013; 
Grippo & Sciandrone, 1999; Tappenden et al., 2016)). The 
motivation for inexact minimization in these studies is to 
reduce the complexity of the one-dimensional optimization 
problem, which is fundamentally different from the root 
cause arising from the unknown and stochastic nature of 
the objective function. The techniques involved hence are 
inherently different with different design criteria. 

2. Problem Formulation 
We consider first-order stochastic convex optimization with 
bandit feedback. The objective function f(x) over a convex 
and compact set X ⊂ Rd is unknown and stochastic as given 
in (1). Let g(x) ≡ rf(x) be the (sub)gradient of f(x). 
Let G(x; ξ) denote unbiased gradient estimates satisfying 
Eξ[G(x; ξ)] = g(x). Let gi(x) (similarly, Gi(x; ξ)) denote 
the partial (random) gradient along the i-th coordinate (i = 
1, . . . , d). Let xi and x−i denote, respectively, the i-th 
element and the (d − 1) elements other than the i-th element 
of x. We point out that while we focus on coordinate-
wise decomposition of the function domain, extension to a 
general block structure is straightforward. 

2.1. The Objective Function 

We consider objective functions that are convex and possibly 
non-smooth with the following composite form: 

f(x) = ψ(x) + φ(x), (3) 

where φ(x) is a coordinate-wise separable convex functionPd(possibly non-smooth) of the form φ(x) = φi(xi) fori=1 
some one-dimensional functions {φi(x), x ∈ Xi}d andi=1 
ψ is α-strongly convex and β-smooth. More specifically, 
for all x, y ∈ X 

ψ(y) ≥ ψ(x) + hrψ(x), y − xi + 
α ky − xk2 

22 
(4) 

krψ(x) − rψ(y)k ≤ βkx − yk2 (5) 

Let Fα,β denote the set of all such functions. 

The above composite form of the objective function has been 
widely adopted in the literature on CM and CD (Wright, 
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2015). The separably non-smooth component φ arises nat-
urally in many machine learning problems that often in-
volve separable regularization such as ` 1 norm and box 
constraints. 

2.2. Regret, Consistency, and Efficiency Measures 

A stochastic optimization algorithm  = { t}T is at=1 
sequence of mappings from past actions and observations 
to the next choice of query point. The performance of   is 
measured by the cumulative regret defined as " # 

TX 
R (T ) = E F (xt, ξt) − F (x ∗ , ξt) (6) 

t=1 

where the expectation is with respect to the random process 
of the query points and gradient observations induced by 
the algorithm   under the i.i.d. endogenous process of 
{ξt}T 

t=1. 

In general, the performance of an algorithm depends on the 
underlying unknown objective function f (a dependency 
omitted in the regret notation for simplicity). Consider, for 
example, an algorithm that simply chooses one function in 
Fα,β and sets its query points xt to the minimizer of this 
function for all t would perform perfectly for the chosen 
function but suffers a linear regret order for all objective 
functions with sufficient deviation from the chosen one. It 
goes without saying that such heavily biased algorithms that 
completely forgo learning are of little interest. 

We are interested in algorithms that offer good performance 
for all functions in Fα,β . An algorithm   is consistent if 
for all f ∈ Fα,β , the end point xT produced by   satisfies 

lim E[f(xT )] = f(x ∗ ). (7)
T →∞ 

A consistent algorithm offers a sublinear regret order. This 
is also known as Hannan consistency or no-regret learning 
(Hannan, 1957). The latter term makes explicit the dimin-
ishing behavior of the average regret per action. 

To measure the convergence rate of an algorithm, we in-
troduce the concept of p-consistency. For a parameter 
p ∈ (0, 1), we say   is p-consistent if 

sup (E[f(xT )] − f(x ∗ )) ∼ Θ(T −p). (8) 
f∈Fα,β 

A p-consistent algorithm offers an O(T 1−p) regret order for 
all f ∈ Fα,β . The parameter p measures the convergence 
rate. 

An efficient algorithm is one that achieves the optimal con-
vergence rate, hence lowest regret order. Specifically,   
is efficient if for all initial query points x(1) ∈ X , the end 

point xT produced by   satisfies, for some λ > 0, 

(1)) − f(xsup (E[f(xT ))] − f(x ∗ )) ∼ (f(x ∗ ))λΘ(T −1). 
f ∈Fα,β 

(9) 

An efficient algorithm offers the optimal log T regret order 
for all f ∈ Fα,β . In addition, it is able to leverage favorable 
initial conditions when they occur. We note here that the 
specific value of λ affects only the leading constant, but 
not the regret order. Hence for simplicity, we often use 
p-consistency with p = 1 to refer to efficient algorithms. 

3. Progressive Coordinate Minimization 
In this section, we present the PCM framework for extending 
low-dimensional optimization routines to high-dimensional 
problems. After specifying the general structure of PCM, we 
lay out the optimality criteria for designing its constituent 
components. 

3.1. The General Structure of PCM 

Within the PCM framework, an algorithm is given by a tu-
ple  ({�k}, υ, τ), where {�k}k∈N governs the progressive 
precision of each CM iteration indexed by k, υ is the low-
dimensional optimization routine employed for coordinate 
minimization, and τ is the self-termination rule (i.e., a stop-
ping time) for stopping υ at the given precision �k in each 
iteration k. Let τ (�) denote the (random) stopping time for 
achieving �-precision under the termination rule τ . 

A PCM algorithm  ({�k}, υ, τ ) operates as follows. At 
t = 1, an initial query point x(1) and coordinate i1 are 
chosen at random. The CM routine υ is then carried out 
along coordinate i1 with all other coordinates fixed at x(1) .−i1 

At time τ (�1), the first CM iteration ends and returns its last 
query point xτ(�1), i1 

. The second iteration starts along a 
coordinate i2 chosen uniformly at random and with the i1 

coordinate updated to its new value xτ(�1), i1 
. The process 

repeats until the end of horizon T (see Algorithm 1 below). 

3.2. Optimal Design of Constituent Components 

PCM presents a framework for extending low-dimensional 
optimization algorithms to high-dimensional problems. The 
CM routine υ in a PCM algorithm is thus given, and we 
allow it to be an arbitrary p-consistent algorithm for any 
p ∈ (0, 1] (note that the definitions of p-consistency and 
efficiency in Sec. 2 apply to arbitrary dimension.) Allowing 
arbitrary low-dimensional routines make PCM generally 
applicable, and the inclusion of consistent but not efficient 
(i.e., p < 1) routines responds to the shifted needs for low-
cost solutions of only modest accuracy, as seen in modern 
machine learning and data analytics applications. 

It is readily seen that for every f(x) ∈ Fα,β , its low-
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Algorithm 1 PCM  ({�k}, υ, τ ) 

Input: initial point x(1). 
Set k ← 1, t ← 1 
repeat 

Choose coordinate ik uniformly at random. 
Carry out υ along the direction ik as follows: 

(k) (k)Set the initial point to x with fixed x .ik −ik 

Continue until τ (�k). 
Return the final point xτ(�k ),ik 

.� � 
(k+1) ← (k)

x xτ(�k ),ik 
, x−ik 

k ← k + 1 
t ← t + τ(�k) 

until t = T 

dimensional restriction f(·, x−i) for arbitrarily fixed x−i 

belongs in Fα,β . Consequently, for a given low-dimensional 
routine υ with a certain consistency/efficiency level p ∈ 
(0, 1] (which needs to hold for all low-dimensional restric-
tions in Fα,β ; see (8), (9)), its high-dimensional extension 
cannot have a better consistency level (or equivalently, lower 
regret order). The best possible outcome is that the high-
dimensional extension preserves the p-consistency and the 
regret order of the low-dimensional algorithm for high-
dimensional problems. 

The design objective of PCM is thus to choose {�k} and τ 
for a given low-dimensional p-consistent algorithm υ such 
that the resulting high-dimensional algorithm preserves the 
regret order of υ. 

The above optimization can be decoupled into two steps. 
First, the termination rule τ is designed to meet an order-
optimal criterion as specified below. The optimal design 
of τ is specific to the routine υ, as one would expect. In 
the second step, the progression of precision {�k} is opti-
mized for the given υ augmented with the order-optimal τ 
to preserve the p-consistency. Quite surprisingly, as shown 
in Sec. 4, there exists a universal optimal {�k} that is in-
dependent of not only the specific routine υ but also the 
specific consistency value p ∈ (0, 1]. 

Definition 1. For a given p-consistent (p ∈ (0, 1]) low-
dimensional algorithm υ and a given � > 0, let τ (�) denote 
a stopping time over the random process of {xt}t≥1 induced 
by υ that satisfies E[f(xτ(�))] − f(x ∗) ≤ �. A termination 
rule τ is order optimal in � if 

sup E[τ (�)] ∼ Θ(�−1/p). (10) 
f ∈Fα,β 

Note that the above definition is for the dimensionality as de-
termined by the given algorithm υ with f and Fα,β defined 
accordingly. 

An order-optimal termination rule is one that realizes the 
exponent p of the consistency of the underlying algorithm υ. 
The design of such termination rules is specific to υ, which 
we illustrate in Sec. 5 for two representative efficient (i.e., 
p = 1) low-dimensional routines. 

4. The Optimal Precision Control 
The theorem below establishes the optimal design of {�k}
for arbitrary p-consistent low-dimensional routines. 

Theorem 1. Let υ be an arbitrary p-consistent (p ∈ (0, 1]) 
low-dimensional routine and τ an order-optimal termina-
tion rule. For all γ ∈ [(1 − α/(dβ))1/2 , 1) and �0 > 0,� � 
the PCM algorithm   {�0γk}, υ, τ achieves a regret of 
O(T 1−p logp T ) for all f ∈ Fα,β . 

Theorem 1 shows that setting �k = �0γk preserves the regret 
order3 of υ. It is thus optimal. Such a choice of {�k} is 
independent of υ as well as the consistency level p of υ. 

The proof of Theorem 1 is based on a decomposition of the 
regret as given below. Let K denote the (random) number of 

(k−1)∗iterations until time T . Let x = arg min f((x , x))ik x −ik 

be the minimizer in the ith coordinate with other coordinates k 
(k−1)fixed to x−ik 

(i.e., values from the previous iteration). Let 
(k−1)∗ ∗ x (k−1) ) = (x , x ). Let tk = tk−1 + τυ(�k) with

(ik ,x −ik ik 

t0 = 0 denote the (random) time instants that mark the end 
of each iteration. We then have " # 

TX 
R (T ) = E F (xt, ξt) − F (x ∗ , ξt) ⎡t=1 ⎤ 

K tkX X 
= E ⎣ F (xt, ξt) − F (x ∗ , ξt)⎦ . 

k=1 t=tk−1+1 

This can be split into two terms using the local minimizer as ⎡ ⎤ 
K tk h iX X 

∗ R (T ) = E ⎣ F (xt, ξt) − F (x (k−1) )) ⎦ 
(ik ,x 

k=1 t=tk−1+1 | {z } 
R1⎡ ⎤ 

K tkX X h i 
∗ + E ⎣ F (x (k−1))) − F (x ∗ ) ⎦ .(ik ,x 

k=1 t=tk−1+1 | {z } 
R2 

(11) 

The first term R1 corresponds to the regret incurred by the 
low-dimensional routine υ carried out along one dimension. 

3The preservation of the regret order is exact for efficient rou-
tines. For consistent but not efficient (i.e., p < 1) routines, the 
preservation is up to a poly-log term which is dominated by the 
term of T 1−p. 
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Note that this regret is computed with respect to the one-
∗dimensional local minima x . The second term
(ik ,x(k−1)) 

R2 corresponds to the loss incurred at the one-dimensional 
∗local minima in excess to the global minimum x . 

The above regret decomposition also provides insight into 
the optimal design of {�k}. To achieve a low regret order, it 
is desirable to equalize the orders of R1 and R2. If a more 
aggressive choice of �k is used, then the rate of decay of the 
CM iterates is unable to compensate for the time required 
for higher accuracy, resulting in R2 dominating R1. On the 
other hand, a more conservative choice will lead to a slower 
decay in objective function with an increased number of CM 
iterations. This would result in increasing both the terms to 
an extent where   will no longer be able to maintain the 
consistency level of υ. 

Proof. We give here a sketch of the proof. The analysis 
of R1 and R2 builds on analytical characterizations of the 
following two key quantities: the expected number E[K] 
of CM iterations and the convergence rate of CM outputs 
(k)}K{x k=1. They are given in the following two lemmas. 

Lemma 1. Let υ be a p-consistent policy for some p ∈ 
(0, 1] and τ its order-optimal termination rule. Under� � 
  {�0γk}, υ, τ , we have E[K] ∼ O(log T ) for all f ∈ 
Fα,β . 

Lemma 2. Let {x(k)} be the sequence of CM outputs gener-� � 
ated under   {�0γk}, υ, τ for a function f ∈ Fα,β . Then 
the sequence of points {x(k)} satisfy E[f(x(k)) − f(x ∗)] ≤ 
F0γ

k for all k ≥ 0 and for all γ ∈ [(1 − α/(dβ))1/2 , 1) 
where F0 = max {f(x0) − f(x ∗ ), �0/(1 − γ)} . 

R1 is bounded using the consistency level of the routine υ 
augmented with the termination rule τ . R2 is bounded using 
Lemma 2 and the expected time taken in each CM iteration. 
On plugging in the value of �k, both terms end up being of 
the same order and we arrive at the theorem. The detailed 
proofs of the lemmas and the theorem can be found in the 
supplementary material. 

5. Termination Rules 
In this section, we illustrate the construction of order-
optimal termination rules for two representative and funda-
mentally different low-dimensional routines, one classical, 
one recent. For simplicity, we focus on smooth objective 
functions. All notations are for a specific coordinate with 
coordinate index omitted. 

5.1. SGD 

For a given initial point x1, SGD proceeds by generating 
the following sequence of query points 

xt+1 = projX (xt − ηtG(xt, ξt)), (12) 

where G(xt, ξt) is the random gradient observed at xt, 
{ηt}t≥1 is the sequence of step sizes, and projX denotes 
the projection operator onto the convex set X (restricted to 
the chosen coordinate with other coordinates fixed). The 
following lemma establishes the efficiency of the SGD rou-
tine with properly chosen hyperparameters and the order 
optimality of the termination rule for noise models with 
bounded variance. Based on Theorem 1, we can then con-
clude that the resulting PCM algorithm with {�k} = �0γk 

is an efficient algorithm with a regret of O(log T ). 

Lemma 3. Consider the low-dimensional routine of SGD 
µ0αwith step sizes given by ηt = µ/(1 + νt) with µ = 
2g2 
max 

µ0α
2 

and ν = , where gmax is an upper bound on the 
4g2 
max 

second moment of the random gradient, G(x, ξ), for all x ∈ 
X and µ0 a properly chosen hyperparameter. Then SGD 
with the above chosen parameters is an efficient algorithm 
as defined in (9). The termination rule given by τ (�) =� � 
2βg2 

max is order optimal as defined in Definition 1. 
α2� 

Proof. We give here a sketch of the proof. Details can be 
found in the supplementary material. The order-optimality 
of the termination rule follows immediately from defini-
tion 1. For implementation in PCM, the constant µ0 is 
set to µ0 ∼ Θ(γk) in iteration k to ensure the adaptiv-
ity to the initial point. Using smoothness of f , we obtain 
E[f(xt) − f(x ∗ )] ≤ βE[|xt − x ∗ |2] ≤ µ0/(1 + νt), im-
plying that SGD is a consistent algorithm with p = 1. The 
choice of µ0 makes it an efficient algorithm with λ = 1. 

5.2. RWT 

RWT (Random Walk on a Tree) proposed in (Vakili & Zhao, 
2019) is restricted to one-dimensional problems. There do 
not appear to be any simple extensions of RWT to high-
dimensional problems. We show here that PCM offers a 
possibility and preserves its efficiency. 

Without loss of generality, assume that the one-dimensional 
domain is the closed interval [0, 1]. The basic idea of RWT 
is to construct an infinite-depth binary tree based on suc-
cessive partitions of the interval. Each node of the tree 
represents a sub-interval, and nodes on the same level give 
an equal-length partition of [0, 1]. The query point at each 
time is then generated based on a biased random walk on the 
interval tree that initiates at the root and is biased toward the 

∗infinitesimally small interval containing the minimizer x . 
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When the random walk reaches a node, the two end points 
along with the middle point of the corresponding interval are 
queried in serial to determine, with a required confidence 
level p̆, the sign of g(x) at those points. The test on the sign 
of g(x) at any given x is done through a confidence-bound 
based local sequential test using random gradient observa-
tions. The outcomes of the sign tests at the three points of 
the interval determines the next move of the random walk: 
to the child that contains a sign change or back to the parent 
under inconsistent test outcomes.The confidence level p̆  of 
the sign test ensures the bias of the walk, i.e., the probabil-

∗ity of moving toward x is greater than 1/2 at each step. 
For one-dimensional problems, the biased walk on the tree 
continues until T . 

To extend RWT to high-dimensional problems within the 
PCM framework, we propose the following termination 
rule. Specifically, we leverage the structure of the local 
confidence-bound based sequential test in RWT. Note that 
the precision condition required at termination can be trans-
lated to an upper bound on the magnitude of the gradient. 
Since the local test is designed to estimate the sign of the 
gradient, it naturally requires more samples as the gradient 
gets closer to zero (i.e., the signal strength reduces while 
the noise persists). Assume that the noise is sub-Gaussian, 
that is, the moment generating function of Gi(x; ξ) − gi(x) 
is upper bounded by that of a Gaussian with variance σ2 

i 
for i = 1, 2, . . . , d. We propose the following termination 
rule: the current CM iteration terminates once a sequential� � �� 

40σ0
2 2 80σ0

2 

test draws more than N0(�) = log log
α� p̆  αp�̆ 

samples, where σ0
2 ≥ maxi σi 

2 . 

This threshold is so designed that when the number of sam-
ples in the sequential test exceeds that value, the gradient at 
that point is sufficiently small with high probability, leading 
to the required precision. It is interesting to note that the 
termination rule for SGD given in Lemma 3 is an open-loop 
design with pre-fixed termination time, while the termina-
tion rule proposed for RWT is closed-loop and adapts to 
random observations. 

The following lemma gives the regret order of the high-
dimensional extension of RWT within the PCM framework. 
The detailed proof of the lemma is given in the supplemen-
tary material. 

Lemma 4. The PCM-RWT algorithm with the chosen ter-
mination rule has a regret order of O(log T (log log T )2). 

6. Discussions and Extensions 
Parallel and Distributed Computing: One of the major 
advantages of CD/CM based methods is their amenability 
to parallel and distributed computing, which PCM naturally 
inherits. Advantages of CD/CM methods in parallel and 

distributed computing have been well studied in the liter-
ature (Richtarik´ & Takáč, 2016a;b; Bradley et al., 2011; 
Peng et al., 2013; Liu et al., 2015; Mareček et al., 2015; 
Richtarik & Tak´ áč, 2016). It has been shown that the con-
vergence of coordinate-based methods with parallel updates 
is guaranteed only when the parallel updates are aggregated 
in such a way that the combined update leads to a decrease 
in the function value as compared to the previous iterate. 
Such a condition is possible to verify and enforce when the 
objective function is deterministic and known, but presents 
a challenge in stochastic optimization. 

To achieve parallelization of PCM that maintains the p-
consistency as in the serial implementation, we draw inspira-
tion from the technique proposed in (Ferris & Mangasarian, 
1994) that leverages the convexity of the objective function. 

Assume there are m < d independent cores, connected in 
parallel to a main server. The current iterate is passed to all 
the cores, with each receiving a different coordinate index, 
chosen at random. After the one dimensional optimization 
completes at each core, the next query point is set to the 
average of points returned by all the cores. A decrease in 
the function value at the averaged point compared to the 
initial point is guaranteed by the convexity of the function. 
It can be shown that with a parallel implementation of PCM, 
the “effective” dimension of the problem is reduced from d 
to d/m (see details in supplementary material). 

Heavy-Tailed Noise: The noise in the partial gradient 
estimates affects only the consistency level p of the low-
dimensional routine υ, subsequently, the design of the order-
optimal termination rule. The optimal precision control, 
however, is independent of the noise characteristics. More 
specifically, the same optimal precision control as specified 
in Theorem 1 preserves the p-consistency and regret order 
of the low-dimensional routine υ even under heavy-tailed 
noise. In particular, for heavy-tailed noise with a finite bth 

moment (b ∈ (1, 2)), both SGD and RWT are (2 − 2/b)-
consistent and offer an optimal regret order of O(T 2/b−1) 
(up to poly-log T factors) (Zhang et al., 2019; Vakili et al., 
2019). It is not difficult to show that under heavy-tailed 

2(1−b)noise, an open-loop termination rule with τ(�) = C� 
b 

for SGD and a similar sample-threshold based termination 
rule with N0(�) = C 0� 2(1 

b 
−b) polylog(1/�) for RWT are or-

der optimal, where C and C 0 are constants. In conclusion, 
PCM offers an optimal high-dimensional extension for any 
p-consistent algorithm regardless of the noise characteris-
tics. 

Zeroth-order feedback model: The two example low-
dimensional stochastic optimization routines used in Sec. 5 
are first-order algorithms that use gradient to update the 
query points. However, the PCM framework is equally ap-
plicable to zeroth-order algorithms which directly learn from 
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random losses F (xt; ξ). As it can be seen from Theorem 
1, the PCM framework is agnostic to the low-dimensional 
routine υ and the associated termination rule (provided it is 
order optimal). 

7. Empirical Results 
In this section, we compare the regret performance of PCM 
employing SGD with that of SCD (based on its online ver-
sion developed in (Wang & Banerjee, 2014)). We con-
sider the problem of binary classification on the MNIST 
dataset (Lecun et al., 1998) as a one-vs-rest classification 
problem in an online setting. We use regularized hinge 
loss as the loss function. At each time t, ξt = (Yt, Zt) is 
drawn uniformly at random from the dataset. Then using 
the current classifier xt, we incur a random loss 

α 
F (xt, ξt) = max{0, 1 − Zt hxt, Yti} + kxtk2 (13)

2 

and observe the partial gradient given as 

Git (xt, ξt) = −Zt(Yt)it 1{1 − Zt hxt, Yti > 0} + α(xt)it 

(14) 

where it denotes the index of the coordinate chosen at time 
t. Both algorithms are randomly initialised with a point 
in [−0.5, 0.5]d and run for T = 1000d, where d = 785 
is the dimensionality of the problem. The regularization 
parameter is set to α = 1.2 × 10−2 . The regret plotted is 
averaged over 10 Monte Carlo runs. The SCD algorithm is 
run with stepsize ηt = 5/dt/10000e. The PCM algorithm 
is implemented using a SGD as the local optimization rou-
tine with γ = 0.99999, �0 = 0.1 and step size of η = 0.2. 
The step size in each iteration was reduced by a factor of 
γ. The termination rule was set to d1/2�ke. The param-
eters in both algorithms were optimized based on a grid 
search. The results obtained for various digits are shown 
in Figure 1. It is evident from the plots in Figure 1 that 
PCM has a significantly better performance. It suggests that 
the advantages of CM over CD type methods also hold in 
stochastic optimization. 

8. Conclusion 
We considered the problem of stochastic convex optimiza-
tion where an unknown stochastic loss function is mini-
mized based on noisy estimates of partial (sub-)gradients. 
We developed a stochastic coordinate minimization frame-
work that extends any given low-dimensional stochastic 
optimization routine to high-dimensional problems and pre-
serves its regret order. The crux of our approach is an 
optimal control of the progressive precision of the CM it-
erations. For strongly-convex functions, we established a 
universally optimal precision sequence that is agnostic to 
the low-dimensional routine and its consistency level, as 

Figure 1. From top left, in clockwise order, the digits are 1, 2, 4, 3. 
We obtain similar results for all the other digits as well. 

well as the noise characteristics and feedback model of the 
underlying high-dimensional problem. 

We have focused in this work on strongly convex and sep-
arably non-smooth functions. While the PCM framework 
applies to general objective functions, the optimal design of 
the precision sequence and the resulting regret performance 
remain open. Investigation in this direction is currently 
underway. 
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Fercoq, O. and Richtárik, P. Smooth Minimization of Nons-
mooth Functions with Parallel Coordinate Descent Meth-
ods. In Springer Proceedings in Mathematics and Statis-
tics, volume 279, pp. 57–96, 2019. ISBN 9783030121181. 
doi: 10.1007/978-3-030-12119-8 4. 

Ferris, M. C. and Mangasarian, O. L. Parallel Variable 
Distribution. SIAM Journal on Optimization, 4(4):815– 
832, 1994. ISSN 1052-6234. doi: 10.1137/0804047. 

Grippo, L. and Sciandrone, M. Globally convergent 
block-coordinate techniques for unconstrained optimiza-
tion. Optimization Methods and Software, 10(4): 
587–637, 1999. ISSN 10556788. doi: 10.1080/ 
10556789908805730. 

Hannan, J. Approximation to rayes risk in repeated play. 
Contributions to the Theory of Games, 3:97–139, 1957. 

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and 
Sundararajan, S. Coordinate Descent Method for Large-
scale L2-loss Linear Support Vector Machines. Journal 
of Machine Learning Research, 9:1369–1398, 2008a. 

Hsieh, C. J., Chang, K. W., Lin, C. J., Keerthi, S. S., and 
Sundararajan, S. A dual coordinate descent method for 
large-scale linear SVM. In Proceedings of the 25th Inter-
national Conference on Machine Learning, pp. 408–415, 
2008b. ISBN 9781605582054. 

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under 
the Polyak-Łojasiewicz condition. In Lecture Notes in 
Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), volume 9851 LNAI, pp. 795–811, 2016. ISBN 
9783319461274. doi: 10.1007/978-3-319-46128-1 50. 

Konecnˇ ´ arik, P., and Tak´c, M. Mini-batch y, J., Liu, J., Richt´ aˇ 
semi-stochastic gradient descent in the proximal setting. 
IEEE Journal of Selected Topics in Signal Processing, 10 
(2):242–255, March 2016. ISSN 1941-0484. doi: 10. 
1109/JSTSP.2015.2505682. 

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 
1558-2256. doi: 10.1109/5.726791. 

Leventhal, D. and Lewis, A. S. Randomized methods for 
linear constraints: Convergence rates and conditioning. 
Mathematics of Operations Research, 35(3):641–654, 
2010. ISSN 0364765X. doi: 10.1287/moor.1100.0456. 

Liu, J., Wright, S. J., Re,´ C., and Sridhar, S. An Asyn-
chronous Parallel Stochastic Coordinate Descent Algo-
rithm. Journal of Machine Learning Research, 16:285– 
322, 2015. 

Lu, Z. and Xiao, L. On the complexity analysis of random-
ized block-coordinate descent methods. Mathematical 
Programming, 152(1-2):615–642, 2015. ISSN 14364646. 
doi: 10.1007/s10107-014-0800-2. 

Luo, Z. Q. and Tseng, P. On the Convergence of the Coor-
dinate Descent Method for Convex Differentiable Mini-
mization. Journal of Optimization Theory and Applica-
tions, 72(1):7–35, 1992. 

Marecek,ˇ J., Richtarik,´ P., and Takác,ˇ M. Distributed 
block coordinate descent for minimizing partially separa-
ble functions. In Springer Proceedings in Mathematics 
and Statistics, volume 134, pp. 261–288, 2015. ISBN 
9783319176888. doi: 10.1007/978-3-319-17689-5 11. 

Nesterov, Y. Efficiency of coordinate descent methods on 
huge-scale optimization problems. SIAM Journal on 
Optimization, 22(2):341–362, 2012. ISSN 10526234. 
doi: 10.1137/100802001. 

Nesterov, Y. Subgradient methods for huge-scale opti-
mization problems. Mathematical Programming, 146 
(1-2):275–297, 2014. ISSN 14364646. doi: 10.1007/ 
s10107-013-0686-4. 

Pasupathy, R., Tech, V., and Kim, S. The Stochastic Root 
Finding Problem: Overview, Solutions, and Open Ques-
tions. ACM Transactions on Modeling and Computa-
tional Simulations, 21(3):19, 2011. 

Peng, Z., Yan, M., and Yin, W. Parallel and distributed 
sparse optimization. In Asilomar Conference on Sig-
nals, Systems and Computers, pp. 659–664, 2013. ISBN 
9781479923908. doi: 10.1109/ACSSC.2013.6810364. 

Razaviyayn, M., Hong, M., and Luo, Z. Q. A unified con-
vergence analysis of block successive minimization meth-
ods for nonsmooth optimization. SIAM Journal on Opti-
mization, 23(2):1126–1153, 2013. ISSN 10526234. doi: 
10.1137/120891009. 



Progressive Coordinate Minimisation 

Reddi, S. J., Hefny, A., Downey, C., Dubey, A., and Sra, S. 
Large-scale randomized-coordinate descent methods with 
non-separable linear constraints. In Uncertainty in Arti-
ficial Intelligence - Proceedings of the 31st Conference, 
UAI 2015, pp. 762–771, 2015. 

Richtarik,´ P. and Takác,ˇ M. Iteration complexity of ran-
domized block-coordinate descent methods for mini-
mizing a composite function. Mathematical Program-
ming, 144(1-2):1–38, 2014. ISSN 14364646. doi: 
10.1007/s10107-012-0614-z. 

Richt´ aˇ Parallel coordinate descentarik, P. and Tak´c, M. 
methods for big data optimization. Mathematical Pro-
gramming, 156(1-2):433–484, 2016a. ISSN 14364646. 
doi: 10.1007/s10107-015-0901-6. 

Richtarik, P.´ and Takáč, M. Distributed coordinate descent 
method for learning with big data. Journal of Machine 
Learning Research, 17:1–25, 2016b. ISSN 15337928. 

Richt´ aˇ On optimal probabilities in arik, P. and Tak´c, M. 
stochastic coordinate descent methods. Optimization Let-
ters, 10(6):1233–1243, Aug 2016. ISSN 1862-4480. doi: 
10.1007/s11590-015-0916-1. 

Robbins, H. and Monro, S. A stochastic approximation 
method. The Annals of Statistics, 22(3):400–407, 1951. 

Ruder, S. An overview of gradient descent optimization 
algorithms. ArXiv, abs/1609.04747, 2016. 

Saha, A. and Tewari, A. On the finite time convergence 
of cyclic coordinate descent methods. SIAM Journal on 
Optimization, 23(1):576–601, 2013. ISSN 10526234. doi: 
10.1137/110840054. 

Salehi, F., Thiran, P., and Elisa Celis, L. Coordinate descent 
with bandit sampling. In Advances in Neural Information 
Processing Systems, pp. 9247–9257. Curran Associates, 
Inc., 2018. 

Shalev-Shwartz, S. and Zhang, T. Accelerated proximal 
stochastic dual coordinate ascent for regularized loss min-
imization. In Xing, E. P. and Jebara, T. (eds.), Proceed-
ings of the 31st International Conference on Machine 
Learning, volume 32 of Proceedings of Machine Learn-
ing Research, pp. 64–72, Beijing, China, 22–24 Jun 2014. 
PMLR. 

Tao, Q., Kong, K., Chu, D., and Wu, G. Stochastic co-
ordinate descent methods for regularized smooth and 
nonsmooth losses. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), volume 
7523, pp. 537–552, 2012. ISBN 9783642334597. doi: 
10.1007/978-3-642-33460-3 40. 

Tappenden, R., Richt´ Inexact arik, P., and Gondzio, J. 
Coordinate Descent: Complexity and Preconditioning. 
Journal of Optimization Theory and Applications, 170 
(1):144–176, 2016. ISSN 15732878. doi: 10.1007/ 
s10957-016-0867-4. 

Tewari, A. and Shalev-Shwartz, S. Stochastic Methods for 
l1-regularized Loss Minimization. Journal of Machine 
Learning Research, 12:1865–1892, 2011. 

Tibshirani, R. Coordinate descent. pp. 1–28, 2013. URL 
https://www.stat.cmu.edu/˜ryantibs/ 
convexopt/lectures/coord-desc.pdf. 

Tseng, P. Convergence of a block coordinate descent method 
for nondifferentiable minimization. Journal of Optimiza-
tion Theory and Applications, 109(3):475–494, 2001. 
ISSN 00223239. doi: 10.1023/A:1017501703105. 

Tseng, P. and Yun, S. Block-coordinate gradient descent 
method for linearly constrained nonsmooth separable op-
timization. Journal of Optimization Theory and Appli-
cations, 140(3):513, Sep 2008. ISSN 1573-2878. doi: 
10.1007/s10957-008-9458-3. 

Tseng, P. and Yun, S. A coordinate gradient descent method 
for nonsmooth separable minimization. Mathematical 
Programming, 117(1-2):387–423, 2009. ISSN 00255610. 
doi: 10.1007/s10107-007-0170-0. 

Vakili, S. and Zhao, Q. A random walk approach to first-
order stochastic convex optimization. In 2019 IEEE In-
ternational Symposium on Information Theory (ISIT), pp. 
395–399, July 2019. doi: 10.1109/ISIT.2019.8849396. 

Vakili, S., Salgia, S., and Zhao, Q. Stochastic Gradi-
ent Descent on a Tree: An Adaptive and Robust Ap-
proach to Stochastic Convex Optimization. In 2019 57th 
Annual Allerton Conference on Communication, Con-
trol, and Computing, Allerton 2019, pp. 432–438, 2019. 
ISBN 9781728131511. doi: 10.1109/ALLERTON.2019. 
8919740. 

Wang, H. and Banerjee, A. Randomized Block Coordinate 
Descent for Online and Stochastic Optimization. 2014. 

Wright, S. J. Coordinate descent algorithms. Mathematical 
Programming, 151(1):3–34, 2015. ISSN 14364646. doi: 
10.1007/s10107-015-0892-3. 

Xu, Y. and Yin, W. Block stochastic gradient iteration for 
convex and nonconvex optimization. SIAM Journal on 
Optimization, 25(3):1686–1716, 2015. ISSN 10526234. 
doi: 10.1137/140983938. 

Zhang, A. and Gu, Q. Accelerated stochastic block co-
ordinate descent with optimal sampling. In Proceed-
ings of the ACM SIGKDD International Conference on 

https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/coord-desc.pdf
https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/coord-desc.pdf


Progressive Coordinate Minimisation 

Knowledge Discovery and Data Mining, volume 13-17-
Augu, pp. 2035–2044, 2016. ISBN 9781450342322. doi: 
10.1145/2939672.2939819. 

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, 
S. J., Kumar, S., and Sra, S. Why ADAM Beats SGD for 
Attention Models. 2019. 

Zhao, T., Yu, M., Wang, Y., Arora, R., and Liu, H. Accel-
erated mini-batch randomized block coordinate descent 
method. In Advances in Neural Information Processing 
Systems, volume 4, pp. 3329–3337, 2014. 


