
Supplementary Material

Proof for Theorem 1

We first give a proof for Theorem 1 using the two lemmas. Proofs for the lemmas then follow.

We arrive at Theorem 1 by bounding separately the two terms R1 and R2 in the regret decomposition in
(11) of main paper for an arbitrary objective function f ∈ Fα,β . Note that the consistency/efficiency level
p of an algorithm as defined in (8) and (9) (of main paper) is with respect to the worst-case objective
function. This implies that when a p-consistent low-dimensional algorithm is employed for CM, the
convergence rates along different coordinates may vary, depending on the reduction of f to the specific
coordinate. Let pk ≥ p be the convergence rate in the coordinate ik chosen in the k-th iteration given

x
(k−1)
−ik . More specifically, the error with respect to the local minimum x∗

ik,x(k−1) in the ik-th coordinate

decays as follows. (
E[f(xik,T ,x

(k−1)
−ik )]− f(x∗ik,x(k−1))

)
∼ Θ(T−pk), (1)

where xik,T denotes the one-dimensional query point at time T .

We start by bounding R2.

R2 ≤ E

 K∑
k=1

tk∑
t=tk−1+1

[
F (x∗(ik,x(k−1)), ξt)− F (x∗, ξt)

]
≤ E

 K∑
k=1

τ(εk)∑
s=1

[
F (x∗(ik,x(k−1)), ξs)− F (x∗, ξs)

]
≤ E

 K∑
k=1

E

τ(εk)∑
s=1

[
F (x∗(ik,x(k−1)), ξs)− F (x∗, ξs)

] ∣∣∣∣x(k−1)


≤ E

[
K∑
k=1

[f(x∗(ik,x(k−1))− f(x∗)]E[τ(εk)]

]

≤ E

[
K∑
k=1

[f(x(k−1))− f(x∗)]E[τ(εk)]

]

≤ E

[
K∑
k=1

c2γ
kε
−1/pk
k

]

≤ E

 K∑
k=1

c′2

(
1

γ

)k 1−pk
pk

 (2)

where the fourth line follows from Wald’s Identity and c2, c
′
2 > 0 are constants independent of T . To

upper bound the expression obtained in (2), we use that the total number of samples taken would be
upper bounded by the length of the horizon.

K∑
k=1

E [τ(εk)] ≤ T. (3)
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Therefore, for some constant c3 > 0 and independent of T , we have,

K∑
k=1

(
1

γ

) k
pk

≤ c3T. (4)

Now using Jensen’s inequality, we can write,

1

K

K∑
k=1

(
1

γ

)k 1−p
pk

≤

(
1

K

K∑
k=1

(
1

γ

) k
pk

)1−p

,

=⇒
K∑
k=1

(
1

γ

)k 1−p
pk

≤ c′3T 1−pKp. (5)

for some constant c′3 > 0. Note that the expression here is similar to the one obtained in (2) and in fact
can be used to upper bound R2.

R2 ≤ c′2E

 K∑
k=1

(
1

γ

)k 1−pk
pk


≤ c′2E

[
K∑
k=1

(
1

γ

)k 1−p
pk

]
≤ c′′2E

[
T 1−pKp

]
≤ c′′2T 1−pE [K]

p

where c′′2 > 0 is a constant independent of T and the second step is obtained by noting pk ≥ p. Using the
result from Lemma 1 and plugging it in the above equation, we can conclude that R2 is O(T 1−p logp T ).
Note that for p = 1 this boils down to O(log T ) as required.

We now consider R1.

R1 = E

 K∑
k=1

tk∑
t=tk−1+1

[
F (xt, ξt)− F (x∗(ik,x(k−1)), ξt)

]
= E

 K∑
k=1

τ(εk)∑
s=1

[
F (xs+tk−1

, ξs+tk−1
)− F (x∗(ik,x(k−1)), ξs+tk−1

)
]

= E

 K∑
k=1

E

τ(εk)∑
s=1

[
F (xs+tk−1

, ξs+tk−1
)− F (x∗(ik,x(k−1)), ξs+tk−1

)
] ∣∣∣∣τ(εk)


Next we upper bound the above term separately for p-consistent and efficient routines. For p-consistent
(p < 1) routines, we have,

R1 ≤ E

 K∑
k=1

E

τ(εk)∑
s=1

c1
spk

∣∣∣∣τ(εk)


≤ E

[
K∑
k=1

c1E
[
(τ(εk))1−pk

]]

≤ E

[
K∑
k=1

c1E [τ(εk)]
1−pk

]
(6)

≤ E

[
K∑
k=1

c′1ε
pk−1

pk

k

]

≤ E

 K∑
k=1

c′′1

(
1

γ

)k 1−pk
pk

 (7)
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where c1, c
′
1, c
′′
1 > 0 are all constants independent of T and (6) follows from Jensen’s inequality. Note

that the term obtained in (7) is of the same order as the one obtained in (2). Therefore, using the same
analysis as in the case of R2, we can conclude that R1 is also O(T 1−p logp T ) for p-consistent (p < 1)
routines. Now for efficient routines we have pk = 1 for all k. Along with the efficiency in leveraging the
favorable initial conditions, we have

R1 ≤ E

 K∑
k=1

E

(f(x(k−1) − f(x∗(ik,x(k−1)))
)λ τ(εk)∑

s=1

b2
s

∣∣∣∣τ(εk)


≤ E

[
K∑
k=1

b′2γ
(k−1)λE [log(τ(εk))]

]

≤ E

[
K∑
k=1

b′′2(ε0γ
k)λ log (E[τ(εk)])

]
(8)

≤ E

[
K∑
k=1

b′′2ε
λ
k log

(
b3
εk

)]

≤ E

[
K∑
k=1

b′′2

(
ελk log

(
1

εk

)
+ log(b3)ελk

)]

≤ E

[
K∑
k=1

b′′2

(
1

λe
+ log(b3)ελ0

)]
(9)

≤ b4E[K] (10)

where b2, b
′
2, b
′′
2 , b3, b4 > 0 are constants independent of T and (8) and (9) are respectively obtained by

Jensen’s inequality and the fact that −xλ log(x) is uniformly upper bounded by (λe)−1 for all x > 0 and
for all λ > 0. Using the upper bound on E[K] given from Lemma 1 leads to the O(log T ) order of R1 for
efficient algorithms. Combining the above bounds on R1 and R2, we arrive at the theorem.

Proof of Lemma 1

Note that the first K − 1 iterations are complete by the end of the horizon of length T . We thus have,
for some constants b1, b

′
1 > 0,

T ≥ E

[
K−1∑
k=1

E[τ(εk)]

]

≥ E

[
K−1∑
k=1

b1ε
−1/pk
k

]

≥ E

[
K−1∑
k=1

b1ε
−1
k

]

≥ E

[
K−1∑
k=1

b′1γ
−k

]

≥ E
[
b′1
γ−K − γ−1

γ−1 − 1

]
(11)

(12)

Therefore, we have that E

[(
1

γ

)K]
≤ T (1− γ−1)

b′1
+ γ−1. Taking logarithms on both sides and then

applying Jensen’s inequality, we obtain E[K] ≤ logγ−1

(
T (1− γ−1)

b′1
+ γ−1

)
as required.
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Proof of Lemma 2

The main idea of the proof revolves around the use of proximal operators which is similar to the
convergence analysis in [1]. Specifically, for f = ψ + φ, define

Dφ(x, ρ) := −2ρmin
y∈X

[
〈∇ψ(x),y − x〉+

ρ

2
‖y − x‖2 + φ(y)− φ(x)

]
. (13)

Let us assume that we take a step of length zik along a fixed coordinate ik. Therefore, using smoothness
of ∇ψ and separability of φ, we can write,

f(x(k−1) + zikeik) ≤ f(x) + zik [∇ψ(x)]ik +
β

2
z2
ik

+ φik(xik + zik)− φik(xik). (14)

Let zik be such that

zik = arg min
t

[
t[∇ψ(x)]ik +

β

2
t2 + φik(xik + t)− φik(xik).

]
(15)

Using the precision guaranteed by the termination rule and conditioning on x(k−1), we have

E[F (xk)|x(k−1)] ≤ f(x∗(ik,x(k−1))) + εk

≤ f(x(k−1) + zikeik) + εk (16)

Taking expectation over the coordinate index ik, which is uniformly distributed over the set {1, 2, . . . , d},
we can write,

E[F (xk)|x(k−1)] ≤ Eik [f(x(k−1) + zikeik)] + εk,

≤ Eik
[
f(x(k−1)) + zik [∇ψ(x(k−1))]ik +

β

2
z2
ik

2 + φik(x
(k−1)
ik

+ zik)− φik(x
(k−1)
ik

)

]
+ εk,

≤ f(x(k−1)) +
1

d

d∑
i=1

min
ti

[
ti[∇ψ(x(k−1))]i +

β

2
t2i 2 + φi(x

(k−1)
i + ti)− φi(x(k−1)

i )

]
+ εk,

≤ f(x(k−1)) +
1

d
min

t1,t2,...,td

[
d∑
i=1

ti[∇ψ(x(k−1))]i +
β

2
t2i 2 + φi(x

(k−1)
i + ti)− φi(x(k−1)

i )

]
+ εk,

≤ f(x(k−1)) +
1

d
min
y

[
〈F1(x(k−1)),y − x(k−1)〉+

β

2
‖y − x(k−1)‖+ φ(y)− φ(x(k−1))

]
+ εk,

≤ f(x(k−1))− 1

2dβ
Dg(x(k−1), β) + εk,

≤ f(x(k−1))− α

dβ
(f(x(k−1))− f(x∗)) + εk (17)

where the step uses the proximal PL inequality for strongly convex functions described in [1].

Taking expectation over x(k−1), we obtain,

E[F (xk)]− f(x∗) ≤
(
E[F (x(k−1))]− f(x∗)

)(
1− α

dβ

)
+ ε0γ

k (18)

Let φk = E[F (xk)] − f(x∗). We claim that φk ≤ F0γ
k where F0 = max

{
f(x(0))− f(x∗),

ε0
(1− γ)

}
.

This can be proved using induction. For the base case, we have φ0 = f(x(0))− f(x∗) ≤ F0 by definition.
Assume it is true for k − 1, then we have,

φk ≤
(

1− α

dβ

)
φk−1 + ε0γ

k

≤ γ2(F0γ
k−1) + ε0γ

k

≤ F0γ
k+1 + ε0γ

k

≤ γk (F0γ + ε0)

≤ F0γ
k. (19)

The last step follows from the choice of F0. This completes the proof.
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Proof of Lemma 3

We first prove the efficiency of SGD followed by the order optimality of the termination rule.

Efficiency of the SGD Routine

Consider a one-dimensional stochastic function F (x) with stochastic gradient given by G(x). Let x∗ be
the minimizer of the function, i.e., x∗ = arg minx∈X f(x) where f(x) = E[F (x)] and X is the domain of
the function. The iterates generated by SGD with initial point x0 satisfy the following relation,

E
[
‖xt+1 − x∗‖2

]
= E

[
‖projX (xt − ηtG(xt)− x∗)‖2

]
≤ E

[
‖xt − ηtG(xt)− x∗‖2

]
≤ E

[
‖xt − x∗‖2 − 2ηt 〈G(xt), xt − x∗〉+ η2

t ‖G(xt)‖2
]

≤ E
[
‖xt − x∗‖2

]
− 2ηtE

[
α‖xt − x∗‖2

]
+ η2

tE
[
‖G(xt)‖2

]
≤ (1− 2ηtα)E

[
‖xt − x∗‖2

]
+ η2

t g
2
max (20)

Next we show that the iterates satisfy E
[
‖xt − x∗‖2

]
≤ µ0

1 + νt
for all t ≥ 0 based on an inductive

argument. The base case is ensured by choosing µ0 satisfying µ0 ≥ E[|x0 − x∗|2]. For the induction step,

note that the stepsizes are chosen as ηt =
µ

1 + νt
with µ =

µ0α

2g2
max

and ν =
µ0α

2

4g2
max

. We continue with (20)

as follows.

E
[
‖xt+1 − x∗‖2

]
≤ (1− 2ηtα)E

[
‖xt − x∗‖2

]
+ η2

t g
2
max

≤
(

1− 2
µα

1 + νt

)
µ0

1 + νt
+

µ2

(1 + νt)2
g2

max

≤ µ0

1 + ν(t+ 1)
+

(
µ0

1 + νt
− µ0

1 + ν(t+ 1)

)
+

µ

(1 + νt)2
(µg2

max − 2µ0α)

≤ µ0

1 + ν(t+ 1)
+

µ2
0

(1 + νt)2
(µ2g2

max − 2µµ0α+ µ0ν) (21)

≤ µ0

1 + ν(t+ 1)
+

µ2
0

(1 + νt)2

(
µ2

0α
2

4g4
max

g2
max −

µ2
0α

2

g2
max

+
µ2

0α
2

4g2
max

)
(22)

≤ µ0

1 + ν(t+ 1)
(23)

Therefore, the iterates generated by SGD satisfy E
[
‖xt − x∗‖2

]
≤ µ0

1 + νt
for all t ≥ 0.

To ensure efficiency with respect to the initial point x0, µ0 should be of the order µ0 ≤ CE[|x0 − x∗|2] as
x0 goes to x∗ for some C > 0 (see below how this can be ensured within the PCM framework). Based on
the strong convexity and smoothness of the function, the condition on the iterates can be translated to a
condition on the function values as given below

E[F (xt)− f(x∗)] ≤ βC

α

E[f(x0)− f(x∗)]

1 + νt
, (24)

which implies that SGD is an efficient policy with λ = 1.

For implementation in PCM, the choice of µ0 can be simplified using the relation on the CM it-
erates outlined in Lemma 2. In iteration k, x(k−1) is the initial point, therefore, we can write,

E
[
‖x(k−1) − x∗

(ik,x(k−1))
‖2
]
≤ 2

α
E
[
f(x(k−1))− f(x∗

(ik,x(k−1))
)
]
≤ E

[
f(x(k−1))− f(x∗)

]
≤ F0γ

k−1. Thus,

for an appropriate choice of µ0 for the first iteration, its value for consequent iterations can be obtained
by the relation µ0(k) = γµ0(k − 1), where µ0(k) is the value of µ0 used in iteration k.

Order Optimality of the Termination Rule

The correctness of the termination rule follows in a straightforward manner from the relation obtained on
the iterates in the previous part. Using smoothness of the function and the relation obtained in (23), we
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have, E[F (xt)− f(x∗)] ≤ µ0β

2(1 + νt)
. Let t0 be such that,

µ0β

2(1 + νt0)
≤ ε. On rearranging this equation,

we obtain t0 ≥
µ0β

2εν
− 1

ν
. Therefore, for all t ≥ t0, we have E[F (xt) − f(x∗)] ≤ ε. Since our choice of

termination rule satisfies the above condition, we can conclude that our termination rule ensures the
required precision. The order optimality of the termination also follows directly from the expression.
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Analysis of PCM-RWT

In this section, we analyze the performance of the Random Walk on a Tree (RWT) under the PCM
setup. We begin with briefly outlining the RWT algorithm for PCM setup followed by the termination
rule and then conclude the section with the performance analysis of PCM-RWT.

Let F (x, ξ) be the one dimensional stochastic function to be minimized and G(x, ξ) denote its stochastic
gradient while f(x) and g(x) respectively denote their expected values. Also we assume that |g(x)| ≤ gmax

for all x ∈ X ′, where X ′ is the domain of the function.

RWT Algorithm for PCM

In the kth iteration of PCM, optimization is carried out in the along the direction ik, chosen in that

iteration. Therefore, the one dimensional domain is the interval given by {x : (x,x
(k−1)
−ik ) ∈ X}, that is,

all the points in the domain whose all but the ithk coordinates are same as that of x(k−1). The length of
this interval depends upon the diameter of the domain along the ithk direction. Without loss of generality,
we assume that the one-dimensional domain is the closed interval [0, 1] (as the extension to any interval
[a, b] is straightforward).

The basic idea of RWT is to construct an infinite-depth binary tree based on successive partitions of
the interval. Each node of the tree represents a sub-interval with nodes at the same level giving an
equal-length partition of [0, 1]. The query point at each time is then generated based on a biased random
walk on the interval tree that initiates at the root and is biased toward the node containing the minimizer
x∗ (equivalently, the node/interval that sees a sign change in the gradient). When the random walk
reaches a node, the two end points along with the middle point of the corresponding interval are queried
in serial to determine, with a required confidence level p̆, the sign of g(x) at those points. The test on the
sign of g(x) at any given x is done through a confidence-bound based local sequential test using random
gradient observations. The outcomes of the sign tests at the three points of the interval determines the
next move of the random walk: to the child that contains a sign change or back to the parent under
inconsistent test outcomes.

A crucial aspect of the above algorithm is the local sequential test. Let the sample mean of s samples of

the stochastic gradient at a point x ∈ X ′ be denoted as Ḡs(x) =
1

s

s∑
t=1

G(x, ξt). The sequential test in

RWT for sub-Gaussian noise is given below. For heavy-tailed noise, the only required change to RWT is
in the confidence bounds used in the sequential test (see [2]).

B If Gs(x) >

√
5σ2

0

s
log

(
6 log s√

p̆

)
, terminate; output 1.

B If Gs(x) < −

√
5σ2

0

s
log

(
6 log s√

p̆

)
, terminate; output −1.

B Otherwise, take another sample of G(x, ξ) and repeat.

Figure 1: The sequential test at a sampling point x under sub-Gaussian noise.

where p̆ is the confidence parameter for the sequential test. To ensure the bias in the random walk, p̆ is
set to a value in (0, 1− 2−1/3).

The RWT algorithm as described in [2, 3] initializes the random walk at the root of the tree as there is
no prior information about the location of the minimizer. However, if we have some prior information
about the location of the minimizer, we can initialize the random walk at a lower level in the tree. This
enables us to give higher preference to the region where the minimizer is likely to be located, thereby
reducing the expected time to convergence. Consequently, such an initialization allows RWT to leverage
favorable initial conditions. Therefore, for PCM, we initialize RWT at the node which contains the
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initial point and is at a level where the interval length is lesser than

√√√√log2

(
β
√

2√
αε

)
2µ0

α
, where µ0 is a

carefully chosen hyperparameter and ε is the required precision. If the threshold exceeds 1, then we begin
at the root. The significance of this choice of initialization and the allowed values of µ0 are discussed in
a later section which outlines an upper bound on E[τ(ε)].

Termination Rule

We begin with a lemma that states the correctness of the termination rule and also relate the expected
second moment of the gradient of the final point to the required precision ε. Recall that the termination
rule specified that if at a certain point the number of samples taken in a sequential test exceeds

N0(ε) =
40σ2

0

αε log
(

2
p̆ log

(
80σ2

0

αp̆ε

))
the algorithm must terminate, returning the current point being probed.

Lemma 1. Let xτ(ε) denote the final point obtained under the termination rule. Then we have the
following relations E[f(xτ(ε))− f(x∗)] ≤ ε and E[g2(xτ(ε))] ≤ 2αε.

Proof. The first part of the lemma directly follows from the second part using the strong convexity of

the function. Since f is strongly convex, we have E[f(xτ(ε))− f(x∗)] ≤ 1

2α
E[g2(xτ(ε))] ≤ ε as required.

Hence, we just focus on the proving the bound on the gradient.

To obtain the bound on the gradient, we leverage the primary idea underlying the design of the threshold
in the termination rule. The threshold is designed to ensure that the gradient at the point at which the
algorithm terminates is sufficiently small with high probability. We use this high probability bound to
obtain the required bound on the second moment of the gradient.

Define ρ :=
αε

2
. We claim that under the given termination rule, |g(xτ(ε)| ≤ ρ holds with high probability.

To prove the claim, we consider the probability that the random number of samples taken in a sequential
test, denoted by T̂ , exceed any number n. For any point with g(x) > 0, we have,

P[T̂ > n] ≤ P

[
∀s ≤ n : Gs(x) +

√
5σ2

0

s
log

(
6 log s√

p̆

)
> 0, and Gs −

√
5σ2

0

s
log

(
6 log s√

p̆

)
< 0

]
,

≤ P

[
∀s ≤ n : Gs −

√
5σ2

0

s
log

(
6 log s√

p̆

)
< 0

]
,

≤ P

[
Gn −

√
5σ2

0

n
log

(
6 log n√

p̆

)
< 0

]
,

≤ P

[
Gn − Eξ[G(x, ξ)] <

√
5σ2

0

n
log

(
6 log n√

p̆

)
− g(x)]

]
,

≤ exp

− n

2σ2
0

(√
5σ2

0

n
log

(
6 log n√

p̆

)
− g(x)

)2
 . (25)

The threshold N0(ε) can be equivalently written in terms of ρ as s0(ρ) =
20σ2

0

ρ2
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
. For

all n > s0(ρ), we have,

P[T̂ > n] ≤ exp

(
− n

2σ2
0

(ρ
2
− g(x)

)2
)

(26)

This can be obtained by plugging n = s0(ρ) in the upper bound in (25). A more detailed analysis of
this step can be found in Appendix B in [3]. A similar analysis can be carried out for any point with
g(x) < 0. Using (26), we can conclude that if the number of samples in a local test at a point x exceed

s0(ρ), then |g(x)| ≤ ρ with probability at least 1− δ0 where δ0 = exp

(
−s0(ρ)ρ2

8σ2
0

)
.
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We can now bound the second moment of the gradient as follows by noting that δ0 ≤ 1/2

E[g2(xτ(ε))] ≤ ρ2P[g(xτ(ε)) ≤ ρ] + E[g2(xτ(ε))1{g(xτ(ε))>ρ}],

≤ ρ2 +

∞∑
r=1

(r + 1)2ρ2P(rρ < g(xτ(ε)) ≤ (r + 1)ρ),

≤ ρ2 +

∞∑
r=1

(r + 1)2ρ2P(g(xτ(ε)) > rρ),

≤ ρ2 +

∞∑
r=1

(r + 1)2ρ2 exp

(
−s0(ρ)

2σ2
0

(ρ
2
− rρ

)2
)
,

≤ ρ2 +

∞∑
r=1

(r + 1)2ρ2 exp

(
−s0(ρ)ρ2

8σ2
0

(2r − 1)2

)
,

≤ ρ2 +

∞∑
r=1

(r + 1)2ρ2δ
(2r−1)2

0 ,

≤ ρ2 + 2.01ρ2,

≤ 4ρ2. (27)

By plugging in ρ =

√
αε

2
, we arrive at the required result.

As it is easier to analyze expressions in terms of the gradient and not the function values, we will use
the expressions in terms of ρ for the rest of the section keeping in mind its relation with the required
precision of ε.

Upper Bound on E[τ(ε)]
To bound the expected number of samples taken in one iteration of the PCM-RWT algorithm with
precision ε, E[(τ(ε)], we need to obtain a bound on the number of steps taken by the random walk before
termination. The bound on E[τ(ε)] follows by noting that the number of samples taken in each sequential
test before termination is bounded by the threshold specified in the termination rule. For the bound on
the number of steps in the random walk, we note that as the random walk gets to a deeper level in the
tree, the magnitude of the gradient reduces. Consequently, the probability that the number of samples
taken in the sequential test will cross the threshold increases as the walk goes to a deeper level in the
tree. These decreasing tail probabilities can then be used to obtain a bound on the expected number of
steps in the random walk.

Assume the minima to be x∗ = 0. Such an assumption leads to no loss of generality as the analysis can
easily be modified for any point in the interval and for any interval of any length. We begin the analysis
for the case when the random walk is initialized at the root node. This analysis can be easily modified
to accommodate the initialization at a deeper level.

We divide the tree into a sequence of subtrees given by T1, T2, . . . where for all i = 1, 2, . . . , the subtree Ti
contains the node corresponding to the interval [0, 2−(i−1)] and its right child along with all its children.
Thus, Ti’s are half trees rooted at level i−1, along with their root. This construction is similar to the one
outlined in [4]. Since the random walk is biased towards the minimizer, therefore given the construction of
Ti, the probability that random walk is still in one of such subtrees would decrease with time. To formal-
ize this idea, we consider the last passage times of any subtree Ti. Let τ1 denote the last passage time to T1.

The analysis of the last passage time of T1 can be mapped to the problem of a random walk on the
set S = {−1, 0, 1, 2, . . . }. The underlying idea is that each non-negative integer can be mapped to
the corresponding level in subtree. Our random walk on the tree can between different levels is then
equivalent to a random walk on these integers. The equivalence follows by noting that the specific
intervals on any level are all identical as they do not contain the minimizer and thus can be abstracted
into a single entity. Hence, we map the root node to 0, and set of nodes at level j in subtree T1 to integer
j for j > 0. Lastly, we map the left subtree containing all nodes in the interval [0, 0.5] to −1, which
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corresponds to an exit from the subtree T1.

The random walk can be modelled as a Markov chain on the set S, where P(j → j + 1) = 1− p for all
j ∈ S, P(j → j − 1) = p for all j ≥ 0 and P(−1→ −1) = p. The probability p = p̆3 > 0.5 is the probabil-
ity of moving in correct direction where p̆ is the confidence level in the sequential test. The initial state is 0.

Since −1 denotes the state corresponding to exiting the subtree T1, therefore our random walk still
being in T1 after n steps is the same as the Markov Chain being in a state j for j ≥ 0 after n steps.
Furthermore, since the Markov Chain was initialized at 0, therefore being in state j ≥ 0 implies that
the number of steps taken in the positive direction are at least as many as those taken in the negative
direction. Combining all these ideas along with noting the specific structure of the transition matrix, we
can conclude that

P(τ1 > n) = P(Z ≤ n/2), (28)

where Z ∼ Bin(n, p). Writing expectation as the sum of tail probabilities,

E[τ1] =

∞∑
n=0

P(τ1 > n),

=

∞∑
n=0

P(Z ≤ n/2),

=

∞∑
n=0

exp(−2(p− 1/2)2n),

=
1

1− exp(−2(p− 1/2)2)
. (29)

The third step is obtained using Hoeffding’s inequality. We can leverage the symmetry of the random
walk and the binary tree to obtain the expected last passage time for any other subtree Ti.

Let for all i ≥ 1, NTi denote the random number of steps taken in subtree Ti before exiting that subtree
and Ei denote the event that the random walk does not terminate in tree Ti. If NRW denotes the random
number of steps taken by the random walk before termination then

E[NRW ] = E[NT1 ] +

∞∑
i=2

P

i−1⋂
j=1

Ej

E

NTi ∣∣∣∣ i−1⋂
j=1

Ej

 . (30)

By definition we have E[NT1 ] = E[τ1]. Furthermore, one can note that due to symmetry in the structure of

the binary tree, E

NTi∣∣∣∣ i−1⋂
j=1

Ej

 = E[τ1]. Hence, to evaluate (30) we need to find a bound on P

i−1⋂
j=1

Ej

,

the probability that the random walk does not terminate in Tj for j = 1, 2, . . . , i − 1 and i ≥ 2. To
bound this probability, consider the event that local sequential test takes less than s0(ρ) samples before
termination when the magnitude of the gradient of the point being sampled is less than ρ. Let the event
be denoted by Ef (ρ) and let P(Ef (ρ)) ≤ ηρ for some ηρ < 1.

Note that for any level i > log2(β/ρ),the length of the interval at this level would be lesser than ρ/β.
Using the smoothness of the function, it follows that the magnitude of gradient of any point probed in
Ti for i > log2(β/ρ) would be lesser than ρ. Therefore, for every i > log2(β/ρ), if Ei occurs then Ef (ρ)
would definitely have occurred. Consequently, for all i > i0,

P

i−1⋂
j=1

Ej

 ≤ ηi−i0ρ , (31)

where i0 = dlog2(β/ρ)e. For i ≤ i0, we can crudely upper bound this probability with 1. Plugging these
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relations into (30), we obtain,

E[NRW ] = E[NT1 ] +

∞∑
i=2

P

i−1⋂
j=1

Ej

E

NTi∣∣∣∣ i−1⋂
j=1

Ej

 ,
≤ E[τ1]

(
i0 + 1 +

∞∑
i=i0+1

ηi−i0ρ

)
,

≤ 1

1− exp(−2(p− 1/2)2)

(
dlog2(β/ρ)e+ 1 +

∞∑
i=1

ηiρ

)
,

≤ 1

1− exp(−2(p− 1/2)2)

(
log2(β/ρ) + 2 +

ηρ
1− ηρ

)
. (32)

The above analysis provides an upper bound for the number of steps taken by the random walk when
it it initialized at the root node. However, as mentioned previously, we would want the RWT to be
initialized at a deeper level in the tree to leverage the favorable initial conditions. We can perform a
similar analysis for number of steps taken by random walk in the case when RWT is initialized at a
deeper level to leverage the favorable initial conditions.

As given in the description of PCM-RWT, we initialize the algorithm the node which contains the initial

point and at a level where the interval length is lesser than

√
log2

(
β

ρ

)
2µ0

α
, where µ0 is a carefully chosen

hyperparameter. If the threshold exceeds 1, then we begin at the root. To analyze the number of steps

taken by the random walk, we consider the event that |x0 − x∗|2 ≤ log2

(
β

ρ

)
2µ0

α
, where x0 is randomly

chosen. We denote the event by Ex0
. Under this event, we can carry out a similar analysis as before, with

a minor change that instead of i0, the maximum depth would be i1 ≤ log2

(√
log2

(
β

ρ

)
2µ0

α

β

ρ

)
+ 1.

Under the case the above event does not occur, the random walk would have to take no more than

an additional i2 ≤ log2

(√
log2

(
β

ρ

)
2µ0

α

)
+ 1 steps before the previous analysis is again applicable.

If NRW−new denotes the random number of steps taken by the random walk under this initialization
scheme, then on combining the above results, we can write,

E[NRW−new] ≤ P(Ex0
)

(
ζp

(
log2

(√
log2

(
β

ρ

)
2µ0

α

β

ρ

)
+ η̂ρ

))
,

+ P(Ecx0
)

(
ζp

(
log2

(√
log2

(
β

ρ

)
2µ0

α

)
+ log2

(
β

ρ

)
+ 1 + η̂ρ

))
, (33)

where Ec denotes the complement of an event E, ζp =
1

1− exp(−2(p− 1/2)2)
and η̂ρ = 2 +

ηρ
1− ηρ

. We

can bound P(Ecx0
) using Markov’s inequality as follows,

Pr

(
|x0 − x∗|2 > log2

(
β

ρ

)
2µ0

α

)
≤ Pr

(
f(x0)− f(x∗) > log2

(
β

ρ

)
µ0

)
,

≤ E [f(x0)− f(x∗)]

(
log2

(
β

ρ

)
µ0

)−1

. (34)
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Setting µ0 = E [f(x0)− f(x∗)] and plugging (34) in (33), we obtain,

E[NRW−new] ≤
(
ζp

(
1

2
log2

(
log2

(
β

ρ

)
2E [f(x0)− f(x∗)]

α

β2

ρ2

)
+ η̂ρ

))
+

(
log2

(
β

ρ

))−1(
ζp

(
1

2
log2

(
log2

(
β

ρ

)
2E [f(x0)− f(x∗)]

α

)
+ log2

(
β

ρ

)
+ 1 + η̂ρ

))
,

≤
(
ζp

(
1

2
log2

(
log2

(
β

ρ

)
2E [f(x0)− f(x∗)]

α

β2

ρ2

)
+ η̂ρ

))
+ ζp

(
log2(β/gmax) + 0.5 log2(2gmax/α) + η̂ρ + 1.5

log2(β/gmax)

)
. (35)

As in the case of SGD, a similar analysis can be carried out for any µ0 ∼ Θ(E [f(x0)− f(x∗)]). Further-
more, for PCM-RWT, µ0 can be tuned for each iteration in the same manner as described for PCM-SGD,
that is, by decreasing it by a factor of γ after every iteration. This proof can be readily extended to
interval of any length l, by changing the value of i0 to log2(βl/ρ) and also appropriately changing the
bound on E [f(x0)− f(x∗)] in (35). For a different minimizer, the sequence of subtrees Ti’s can be
appropriately modified as described in [4] to obtain the same result.

Finally, using (35), we can obtain the bound on E[τ(ε)]. If MRW denotes the random number of local
tests carried out before termination then E[MRW ] ≤ E[3NRW−new + 3]. Moreover, since the number of
samples in each test can be at most s0(ρ), therefore, the expected number of samples can be no more
than E[MRW ]s0(ρ). Substituting the different bounds and the relation between ρ and ε, we obtain that
for some constant τ0 > 0, independent of ε

E[τ(ε)] ≤ τ0
ε

log

(
E [f(x0)− f(x∗)]

ε

)
log2

(
log

(
1

ε

))
. (36)

Regret in One CM Iteration

In this section, we perform a brief analysis of the regret incurred in one CM iteration. This corresponds
to the inner sum in the term R1 in the regret decomposition of PCM, capturing the regret incurred by
the routine υ in the local one dimensional minimization. Let x(m) denote the sampling point at the mth

time the local test is called by the random walk module and T̂m denote the random number of samples
taken at this point. Therefore, if RRWT (ε) denotes the regret incurred by RWT in one CM iteration to
get to precision of ε, then we have,

RRWT (ε) = E

MRW∑
m=1

T̂m∑
t=1

F (x(m); ξt)− F (x∗, ξt)

 ,
≤ E

MRW∑
m=1

T̂m∑
t=1

1

2α
[g(x(m))]

2

 ,
≤ E

[
MRW∑
m=1

E[T̂m]
1

2α
[g(x(m))]

2

]
. (37)

Note that T̂m is the random number of samples taken at sampling point x(m) with the termination rule. If

T̃ denotes the random number of samples taken without the termination rule then, T̂m = T̃1{T̃ ≤ s0(ρ)}
where ρ =

√
αε/2. To bound E[T̂m], we use different methods depending on the gradient of the sampling

point. If |g(x(m)| ≤ ρ, then we use the trivial bound E[T̂m] = E[T̃1{T̃ ≤ s0(ρ)}] ≤ s0(ρ). For the

other case of |g(x(m)| > ρ, we note that E[T̂m] ≤ E[T̃ ] ≤ 40σ2
0

g(x(m))2
log

(
2

p̆
log

(
40σ2

0

p̆g(x(m))2

))
+ 2 ≤
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40σ2
0

g(x(m))2
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
+ 2. Plugging these bounds in (37), we obtain,

RRWT (ε) ≤ E

[
MRW∑
m=1

g(x(m))
2

2α

(
E[T̂m]1{|g(x(m))| > ρ}+ E[T̂m]1{|g(x(m))| ≤ ρ}

)]
,

≤ E
[MRW∑
m=1

{
40σ2

0

[g(x(m))]2
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
+ 2

}
1

2α
[g(x(m))]

21{|Eξ[G(x(m); ξ)]| > ρ}

+
20σ2

0

ρ2
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
ρ2

2α
1{|Eξ[G(x(m); ξ)]| ≤ ρ}

]
,

≤ E
[MRW∑
m=1

{
20σ2

0

α
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
+
g2

max

α

}
1{|Eξ[G(x(m); ξ)]| > ρ}

+
20σ2

0

α
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
1{|Eξ[G(x(m); ξ)]| ≤ ρ}

]
,

≤
(

20σ2
0

α
log

(
2

p̆
log

(
40σ2

0

p̆ρ2

))
+
g2

max

α

)
E[MRW ],

≤
(

20σ2
0

α
log

(
2

p̆
log

(
80σ2

0

p̆αε

))
+
g2

max

α

)
E[3NRW−new + 3]. (38)

Substituting the bound from (35) in the above equation, we can show that for some constant R̄ > 0,
independent of ε,

RRWT (ε) ≤ R̄ log

(
E [f(x0)− f(x∗)]

ε

)
log2

(
log

(
1

ε

))
. (39)

Regret Analysis of PCM-RWT

We can now combine all the results obtained about performance of RWT to analyze the performance of
PCM-RWT. Using the decomposition of regret in R1 and R2, we bound each of these terms individually
to obtain the bound on the overall regret.

We begin with bounding R1. Note that we can now rewrite R1 as,

R1 ≤ E

[
K∑
k=1

RRWT (εk)

]
,

≤ E

[
K∑
k=1

R̄ log

(
E[f(x(k−1))− f(x∗)]

εk

)
log2

(
log

(
1

εk

))]
,

≤ E

[
K∑
k=1

R̄ log

(
F0γ

k

ε0γk

)
log2

(
log

(
1

ε0

)
+ k log

(
1

γ

))]
,

≤ E

[
K∑
k=1

R̄′ log2

(
log

(
1

ε0

)
+ k log

(
1

γ

))]
. (40)

Using the result from Lemma 1 along with Jensen’s inequality, we conclude that R1 is of the order
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O(log T log2(log T )). Similarly, we now consider R2.

R2 ≤ E

 K∑
k=1

tk∑
t=tk−1+1

[
F (x∗(ik,x(k−1)), ξt)− F (x∗, ξt)

] ,
≤ E

[
K∑
k=1

[f(x(k−1) − f(x∗)]E[τ(εk)]

]
,

≤ E

[
K∑
k=1

(F0γ
k−1)

τ0
εk

log

(
E[f(xk−1)− f(x∗)]

εk

)
log2

(
log

(
1

εk

))]
,

≤ E

[
K∑
k=1

τ ′0 log2

(
log

(
1

ε0

)
+ k log

(
1

γ

))]
. (41)

This is similar to the term we obtained in R1 implying that R2 is also of the order O(log T log2(log T )).
Combining the two, we arrive at our required result.
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Effect of Parallelization

In this section, we briefly describe the advantages obtained using parallelization. Consider the setup of
m cores, connected in parallel to the main server. To make it similar to our original setup, we assume
that each processor has the access to the oracle independently of others. It is assumed that m ≤ d. The
algorithm for implementing PCM using parallel updates is described as follows

1. Read the current iterate x and pass it to all cores.

2. Select m different indices from {1, 2, . . . , d} uniformly at random and allocate them to the cores.

3. On each core, run the one dimensional optimization routine along the dimension whose was index
assigned to that core. The initial point for all the cores will be the same point x. Let the points
returned by the cores to the server be denoted as y1,y2, . . .ym.

4. Generate the next iterate x1 =
1

m

m∑
k=1

yk.

The last step is the update or the synchronization step which ensures that the function value at the new
iterate is lesser than that at the one previous one. Note that in the second step m different indices are
chosen uniformly at random, that is, one of the

(
d
m

)
sets is chosen.

The analysis of the above mentioned parallel implementation scheme is very similar to that of the
sequential case. Let 1(i,j) denote the indicator variable for the ith direction and jth core. It is 1 if the

ith direction was chosen for optimization on the jth core where i = 1, 2, . . . d and j = 1, 2, . . .m. Thus,

from equation (17), we have that for each j = 1, 2, . . .m, E[f(yk)|x] ≤ f(x)− 1

2β

d∑
i=1

1(i,j)[gi(x)]2 + ε,

where ε is the required accuracy. Using the update scheme in the synchronization step, we have,

mE[f(x1)|x] = mE

f
 1

m

m∑
j=1

yj

∣∣∣∣x


≤ m

 1

m

m∑
j=1

E[f(yj)|x]


≤

m∑
j=1

(
f(x)− 1

2β

d∑
i=1

1(i,j)[gi(x)]2 + ε

)

=⇒ E[f(x1)|x] ≤ 1

m

 m∑
j=1

(
f(x)− 1

2β

d∑
i=1

1(i,j)[gi(x)]2 + ε

)
≤ f(x)− 1

2mβ

m∑
j=1

d∑
i=1

1(i,j)[gi(x)]2 + ε

where the second step follows from the convexity of the function. Now taking expectation over the
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random choice of coordinates, we get,

E[f(x1)|x] ≤ f(x)− E

 1

2mβ

m∑
j=1

d∑
i=1

1(i,j)[gi(x)]2

+ ε

≤ f(x)− 1

2mβ

m∑
j=1

d∑
i=1

m

d
[gi(x)]2 + ε

≤ f(x)− m

2dβ

d∑
i=1

[gi(x)]2 + ε

≤ f(x)− m

2dβ
‖g(x)‖2 + ε

≤ f(x)− mα

dβ
(f(x)− f(x∗)) + ε

Note that this expression is similar to one obtained in equation (17). Using an analysis similar to the
one in Appendix A, we can obtain convergence rates for the case of parallel updates. The reduction in
dimensionality dependence is evident through the factor d being replaced by d/m.
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