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Abstract
Logistic models are commonly used for binary
classification tasks. The success of such mod-
els has often been attributed to their connection
to maximum-likelihood estimators. It has been
shown that gradient descent algorithm, when ap-
plied on the logistic loss, converges to the max-
margin classifier (a.k.a. hard-margin SVM). The
performance of the max-margin classifier has
been recently analyzed in (Montanari et al., 2019;
Deng et al., 2019). Inspired by these results, in
this paper, we present and study a more general
setting, where the underlying parameters of the lo-
gistic model possess certain structures (sparse,
block-sparse, low-rank, etc.) and introduce a
more general framework (which is referred to as
“Generalized Margin Maximizer”, GMM). While
classical max-margin classifiers minimize the 2-
norm of the parameter vector subject to linearly
separating the data, GMM minimizes any arbi-
trary convex function of the parameter vector. We
provide a precise analysis of the performance of
GMM via the solution of a system of nonlinear
equations. We also provide a detailed study for
three special cases: (1) `2-GMM that is the max-
margin classifier, (2) `1-GMM which encourages
sparsity, and (3) `∞-GMM which is often used
when the parameter vector has binary entries. Our
theoretical results are validated by extensive sim-
ulation results across a range of parameter values,
problem instances, and model structures.

1. Introduction
Machine learning models have been very successful in many
applications, ranging from spam detection, face and pattern
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recognition, to the analysis of genome sequencing and fi-
nancial markets. However, despite this indisputable success,
our knowledge on why the various machine learning meth-
ods exhibit the performances they do is still at a very early
stage. To make this gap between the theory and the practice
narrower, researchers have recently begun to revisit simple
machine learning models with the hope that understanding
their performance will lead the way to understanding the
performance of more complex machine learning methods.
More specifically, studies on the performance of diffrent
classifiers for binary classification dates back to the seminal
work of Vapnik in the 1980’s (Vapnik, 1982). In an effort
to find the ”optimal” hyperplane that separates the data, he
presented an upper bound on the test error which is inversely
proportional to the margin (minimum distance of the dat-
apoints to the separating hyperplane), and concluded that
the max-margin classifier is indeed the desired classifier. It
has also been observed that to construct such optimal hy-
perplanes one only has to take into acconnt a small amount
of the training data, the so-called support vectors (Cortes &
Vapnik, 1995).
In this paper, we challenge the conventional wisdom by
showing that when the underlying parameter has certain
structure one can come up with classifiers that outperform
the max-margin classifier. We introduce the Generalized
Margin Maximizer (GMM) which takes into account the
structure of the underlying parameter as well as the minimi-
mum distance of the datapoints to the separating hyperplane.
We provide sharp asymptotic results on various performance
measures (such as the generalization error) of GMM and
show that an appropriate choice of the potential function
can in fact improve the resulting estimator.

1.1. Prior work

There have been many recent attempts to understand the
generalization behavior of simple machine learning mod-
els (Bartlett et al., 2019; Mei & Montanari, 2019; Xu &
Hsu, 2019; Belkin et al., 2018; Hastie et al., 2019). Most
of these studies focus on the least-squares/ridge regression,
where the loss function is the squarred `2-norm, and derive
sharp asymptotics on the performance of the estimator. In
particular, in (Hastie et al., 2019; Kini & Thrampoulidis,
2020) the authors have shown that the minimum-norm least
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square solution demonstrates the so-called ”double-descent”
behavior (Belkin et al., 2019).
A more recent line of research studies the generalization per-
formance of gradient descent (GD) for binary classification.
It has been shown (Soudry et al., 2018)) that for a separable
dataset, GD (when applied on the logistic loss) converges in
direction to the max-margin classifier (a.k.a. hard-margin
SVM). The performance of max-margin classifier has been
recently analyzed in two independent works (Montanari
et al., 2019; Deng et al., 2019).

1.2. Summary of contributions

Inspired by the recent results in understanding the perfor-
mance of the max-margin classifier, in this paper we intro-
duce and study a more general framework. We assume the
underlying parameters possess certain structure (e.g. sparse)
and introduce the generalized margin maximizer (GMM)
as the solution of a convex optimization problem whose
objective function encourages the structure.
We analyze the performance of GMM in the high-
dimensional regime where both the number of parameters,
p, and the number of samples n grows, and analyze the
asymptotic performance as a function of the overparame-
terization ratio δ := p

n > 0. First, we provide the phase
transition condition for the separability of data (i.e., derive
the exact value of δ∗ such that the data is separable for all
δ > δ∗1.) Consequently, we analyze the performance in the
interpolating regime (δ > δ∗). To the best of our knowledge,
this is the first theoretical result that provides sharp asymp-
totics on the performance of GMM classifiers on separable
data. For our analysis, we exploit the Convex Gaussian
Min-max Theorem (CGMT) (Stojnic, 2013; Thrampoulidis
et al., 2015) which is a strengthened version of a classical
Gaussian comparison inequality due to Gordon (Gordon,
1985). This framework replaces the original optimization
with another optimization problem that has a similar perfor-
mance, yet is much simpler to analyze as it becomes nearly
separable. Previously, the CGMT has been successfully
applied to derive the precise performance in a number of ap-
plications such as regularized M-estimators (Thrampoulidis
et al., 2018), analysis of the generalized lasso (Miolane &
Montanari, 2018; Thrampoulidis et al., 2015), data detec-
tion in massive MIMO (Abbasi et al., 2019; Atitallah et al.,
2017; Thrampoulidis et al., 2019), and PhaseMax in phase
retrieval (Dhifallah et al., 2018; Salehi et al., 2018a;b).
More recently, this framework has been employed in a series
of works by multiple groups of researchers to characterize
the performance of the logistic loss minimizer in binary
classification (Salehi et al., 2019; Taheri et al., 2019). Fur-
thermore, in an analogous avenue of research, the CGMT
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framework has been utilized to study the generalization be-
havior of the gradient descent algorithm in the interpolating
regime, where there exists a (nonempty) set of parameters
that perfectly fit the training data (Montanari et al., 2019;
Deng et al., 2019).
The organization of the paper is as follows: In Section 2
we mathematically introduce the problem and the notations
used in the paper. Section 3 contains the main results of the
paper where we first provide the asymptotic phase transition
on the separability of the data, and then in our main theo-
rem, we present the precise performance analysis of GMM,
which then be used to compute the generalization error. We
investigate our theoretical findings for three specific cases
of potential functions in Section 4. Numerical simulations
for the genralization error of the GMM classifiers are pre-
sented in Section 5. We should note that most technical
derivations of the results presented in the paper are deferred
to the Appendix.

2. Preliminaries
2.1. Notations

Here, we gather the basic notations that are used throughout
the paper. X ∼ pX denotes that the random variable X has
a density pX . N (µ,Σ) denotes the multivariate Gaussian
distribution with mean µ, and covariance Σ, and RAD(p),
for p ∈ [0, 1], is the symmetric bernouli random variable
which takes the value +1 with ptobability p, and −1 with
probability 1 − p. D→, and P→ represent convergence in
distribution and in probability, respectively. Bold lower
letters are reserved for vectors, and upper letters are for
matrices. 1d, and Id respectively represent the all-one vector
and the identity matrix in dimension d. For a vector v, vi
denotes its i-th entry, and ‖v‖p (for p ≥ 1), is its `p norm,
where we remove the subscript when p = 2. For a scalar
t ∈ R, (t)+ = max(t, 0) denotes its positive part, and
SIGN(t) indicates its sign.
A function f : Rd → R is called (invariantly) separable,
when for all w ∈ Rd, f(w) =

∑d
i=1 f̃(wi), for a real-

valued function f̃ . For a function Φ : Rd → R, the Moreau
envelope associated with Φ(·) is defined as,

MΦ(v, t) = min
x∈Rd

1

2t
||v − x||2 + Φ(x) , (1)

and the proximal operator is the solution to this optimization,
i.e.,

ProxtΦ(·)(v) = arg min
x∈Rd

1

2t
||v − x||2 + Φ(x) . (2)

Finally, the function Φ(·) is said to be locally-Lipschitz if
for any M > 0, there exists a constant LM , such that,

∀u,v ∈ [−M,+M ]d, |Φ(u)− Φ(v)| ≤ LM ‖u− v‖ .
(3)
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2.2. Mathematical setup

We consider the problem of binary classification, having a
set of training data, D = {(xi, yi)}ni=1, where each of the
sample points consists of a p-dimensional feature vector,
xi, and a binary label, yi ∈ {±1}. We assume that the
dataset D is generated from a logistic-type model with the
underlying parameter w? ∈ Rp. This means that

yi ∼ RAD(ρ(xTi w?)) , i = 1, . . . , n , (4)

where ρ : R → [0, 1] is a non-decreasing function and is
often referred to as the link function. A commonly-used
instance of the link function is the standard logistic function
defined as ρ(t) := 1

1+e−t .
When n/p is sufficiently large, i.e., when we have access
to a sufficiently large number of samples, the maximum-
likelihood estimator( ŵML) is well-defined. In such settings,
the MLE is often the estimator of choice due to its desirable
properties in the classical statistics. Sur and Candès (Sur &
Candès, 2018) have recently studied the performance of the
MLE in logistic regression in the high-dimensional regime,
where the number of observations and parameters are com-
parable, and show, among other things, that the maximum
likelihood estimator is biased. Their results have been ex-
tended to regularized logistic regression (Salehi et al., 2019),
assuming some prior knowledge on the structure of the data.
In particular, it has been observed that, when the regular-
ization parameter is tuned properly, the regularized logistic
regression can outperform the MLE.
Inspired by the recent results on analyzing the generalization
error of machine learning models, in this paper, we study
the generalization error of binary classification, in a regime
of parameters known as the interpolating regime. Here, the
assumption is that there exists a parameter vector that can
perfectly fit (interpolate) the data, i.e.,

∃w0 s.t. SIGN(wT
0 xi) = yi, for i = 1, 2, . . . , n. (5)

LetW denote the set of all the parameters that interpolate
the data.

W = {w ∈ Rp : SIGN(wTxi) = yi , for 1 ≤ i ≤ n.}.
(6)

It has been observed that in many machine learning tasks,
the iterative solvers that minimize the loss function often
converge to one of the points in the setW (the training error
converges to zero). Therefore, one can (qualitatively) pose
the following important (yet still mysterious) question:

Which point(s) inW is (are) ”better” estimator(s)
of the actual parameter, w??

In an attempt to find an answer to this question, we focus on
the simple (yet fundamental) model of binary clasification.
We assume that the underlying parameter, w? possesses cer-
tain structure (sparse, low-rank, block-sparse, etc.), and con-
sider a locally-Lipschitz and convex function ψ : Rp → R

which encourages this structure. We introduce the Gen-
eralized Margin Maximizer (GMM) as the solution to the
following optimization:

min
w∈Rp

ψ(w)

s.t. yi(xTi w) ≥ 1, for 1 ≤ i ≤ n.
(7)

It is worth noting that the condition on the separability of
the dataset is crucial for the optimization program (7) to
have a feasible point.
Remark 1. It can be shown that when ψ(·) is absolutely
scalable2, the GMM can be found by solving the following
equivalent optimization program,

max
w∈Rd

ψ(w)

min
1≤i≤n

yi(xTi w)
= max

w∈Rd
‖w‖

min
1≤i≤n

yi(xTi w)
× ψ(w)

‖w‖
.

(8)
The first multiplicative term on the right indicates the margin
associated with the separator w, and the second term, ψ(w)

‖w‖
takes into account the structure of the model. Hence, we
refer to the objective function in the optimization (8) as the
generalized margin, and the solution to this optimization is
called the generalized margin maximizer (GMM).

In this paper, we study the linear asymptotic regime in which
the problem dimensions p, n grow to infinity at a propor-
tional rate, δ := p

n > 0. Our main result characterizes
the performance of the solution of (7), ŵ, in terms of the
ratio, δ, and the signal strength, κ := ‖w?‖√

p . We assume
that the datapoints, {xi}ni=1, are drawn independently from
the Gaussian distribution. Our main result characterizes the
performance of the resulting estimator through the solution
of a system of five nonlinear equations with five unknowns.
In particular, as an application of our main result, we can
accurately predict the generalization error of the resulting
estimator.

3. Main Results
In this section, we present the main results of the paper, that
is the characterization of the performance of the generalized
margin maximizers. Our results are represented in terms
of a summary functional, ct(·, ·), which incorporates the
informaiton about the underlying model.
Definition 1. For the parameter t > 0, the function ct :
R× R+ → R+ is defined as,

ct(s, r) = E
[
(1− tsZ1Y − rZ2)2

+

]
, (9)

where Z1, Z2
i.i.d.∼ N (0, 1), and Y ∼ RAD(ρ(tZ1)).

2A function f : Rd → R is absolutely scalable when,

∀v ∈ Rd, ∀α ∈ R, f(αv) = |α|f(v).

All `p norms, for example, are absolutely scalable.
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Figure 1: The phase transition, δ∗, for the separability of
the dataset, where the feature vector, xi is drawn from
the Gaussian distribution, N (0, 1

pIp), and the labels are

yi ∼ RAD
(
ρ(xTi w?)

)
, for ρ(z) = et

et+e−t . The empirical
result is the average over 20 trials with p = 150, and the
theoretical results are from Theorem 1.

3.1. Asymptotic phase transition

Here, we provide the necessary and sufficient condition for
the separability of the data.

Theorem 1 (Phase transition). Consider the generalized
max margin optimization defined in Section 2.2. As n, p→
∞ at a fixed overparameterization ratio δ := p

n ∈ (0,∞),
this optimization program (almost surely) has a solution (or
equivalenty, the setW is nonempty) if and only if,

δ > δ∗ = δ∗(κ) := inf
s,r≥0

cκ(s, r)

r2
. (10)

Remark 2. Theorem 1 indicates the necessary and suffi-
cient condition for the existense of GMM. It is worth men-
tioning that this condition, which is simply the condition on
separability of the dataset D, does not depend on the choice
of the potential function ψ(·).

Remark 3. The phase transition (10), is valid for any link
function ρ(·). This generalizes the former results in (Candès
& Sur, 2018). Note that the summary functional, cκ(·, ·),
contains the choice of the link function and can be computed
numerically.

The following lemma explains the behavior of δ∗ as κ varies.

Lemma 1. δ∗ is a decreasing function of κ, with δ∗(0) = 1
2

and limκ→+∞ δ∗(κ) = 0.

The result of Lemma 1 can be intuitively verified. Recall
that κ = ‖w?‖√

p and yi ∼ RAD(ρ(xTi w?)). Therefore, κ→
∞ translates to having yi = SIGN(xTi w?). In this case
our training data is always separable for any number of
observations n. Besides, the case of κ = 0 corresponds to
having random labels assigned to feature vectors xi. (Cover,
1965) showed that in this case, as p → ∞, δ > 0.5 is the
necessary and sufficient condition for the separability of the
dataset.
Figure 1 provides a comparison between the theoretical
result in Theorem 1, and the empirical results derived from
numerical simulations for p = 150 and 20 trials. As seen
in this plot, the theory matches well with the empirical
simulations.

3.2. A nonlinear system of equations

Our main result in Section 3.3 precisely characterizes the
performance of GMM in terms of a system of 5 nonlin-
ear equations with 5 unknowns, (α, σ, β, γ, τ), defined as
follows, 

1
p E
[
w?TP

]
= ακ2,

1
p E
[
hTP

]
=
√

cκ(α,σ)
δ ,

1
p E ‖P‖

2
= α2κ2 + σ2,

∂cκ(α,σ)
∂α = 2κ2γ

β

√
cκ(α, σ),

∂cκ(α,σ)
∂σ =

2
√
cκ(α,σ)

βτ ,

(11)

where P is defined as,

P = Proxστψ(·)
(
(α− στγ)w? + βστ

√
δh
)

(12)

Remark 4. The first three equations in the nonlinear sys-
tem (11) capture the role of the potential function, via its
proximal operator. When ψ(·) is separable, these func-
tions can further be reduced to the proximal operator of a
real-valued function. For instance, when ψ(·) = ‖·‖1, the
proximal operator is simply equivalent to applying the well
known shrinkage (defined as η(x, t) = x

|x| (|x| − t)+) on
each entry. For more information on the proximal operators,
please refer to (Parikh et al., 2014).

3.3. Asymptotic performance of GMM

We are now ready to present the main result of the paper.
Theorem 2 chracaterizes the asymptotic behavior of GMM,
that is the solution to the optimization program (7). It con-
nects the performance of GMM to the solution of the non-
linear system of equations (11), and informally states that,

ŵ
D→ Γ(w?,h), as p→∞, (13)

where h ∈ Rp has standard normal entries, and Γ : Rp ×
Rp → Rp is defined as,

Γ(v1,v2) = Proxσ̄τ̄ψ(·)
(
(ᾱ−σ̄τ̄ γ̄)v1+β̄σ̄τ̄

√
δv2

)
, (14)
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where (ᾱ, σ̄, β̄, γ̄, τ̄) is the solution to the nonlinear sys-
tem (11).

Theorem 2. Let ŵ be the solution of the GMM op-
timization (7), where for i = 1, 2, . . . , n, xi has the
multivariate Gaussian distribution N (0, 1

pIp), and yi ∼
RAD(ρ(xTi w?)), and w? is drawn from a distribution Π

with κ = ‖w?‖√
p . As n, p → ∞ at a fixed overparameter-

ization ratio δ = p
n > δ∗(κ), the nonlinear system (11)

has a unique solution (ᾱ, σ̄, β̄, γ̄, τ̄). Furthermore, for any
locally-Lipschitz function F : Rp × Rp → R, we have,

F (ŵ,w?)
P→ E[F (Γ(w,h),w)], (15)

where h ∈ Rp has standard normal entries, w ∼ Π is
independent of h, and the function Γ(·, ·) is defined in (14).

The detailed proof of this result is deferred to Appendix A.
In short, we introduce dual variables and write down the
Lagrangian which contains a bilinear form with respect
to a matrix with i.i.d. Gaussian entries. Exploiting the
CGMT framework, we then analyze the nearly-separable
auxiliary optimization to find its optimal value, and show
that the nonlinear system (11) corresponds to its optimality
condition.

Remark 5. The result in Theorem 2 is stated for a gen-
eral locally-Lipschitz function F (·, ·). To evaluate a spe-
cific performance measure, one can appeal to this theorem
with an appropriate choice of F . As an example, the func-
tion F (u,v) = 1

p ‖u− v‖2 gives the mean-squarred error
(MSE).

3.4. Generalization error
Theorem 2 can be utilized to derive useful information on
the performance of the classifier. In fact, using this theorem
one can show that the parameters ᾱ, and σ̄ respectively
correspond to the correlation (to the underlying parameter)
and the mean-squared error of the resulting estimator.
An important measure of performance is the generalization
error, which indicates the success of the trained model on
unseen data. Here, we compute the generalization error of
the GMM classifier. We do so, by appealing to the result of
Theorem 2.

Definition 2. The generalization error for a binary classi-
fier with parameter ŵ is defined as,

GEŵ = Px{SIGN(xT ŵ) 6= SIGN(xTw?)}, (16)

where the probability is computed with respect to the distri-
bution of the test data.

It can be shown that when the distribution of the test data is
rotationally invariant (e.g., Gaussian, uniform dist. on the
unit-sphere), GE only depends on the angle between ŵ and
w?. The following lemma provides sharp asymptotics on
the generalization error of the GMM classifier.

Lemma 2 (Generalization Error). Let ŵ be the GMM clas-
sifier defined in Section 2.2. Assume δ > δ∗, and the (test)
data is distributed according to the multivariate Gaussian
distribution N (0, 1

pIp). Then, as p→∞, we have,

GEŵ
P→ 1

π
acos(

κᾱ√
κ2ᾱ2 + σ̄2

), (17)

where ᾱ and σ̄ are derived by solving the nonlinear sys-
tem (11).

Proof. We first note that when the data is normally dis-
tributed, the generalization error for ŵ is defined as,

GEŵ =
1

π
acos(

ŵTw?

‖w?‖ ‖ŵ‖
). (18)

We appeal to the result of Theorem 2 with two different
functions. Using F1(u,v) = 1

pvTu in (15) will give,

1

p
ŵTw? P→ 1

p
E
[
w?TProxσ̄τ̄ψ(·)

(
(ᾱ−σ̄τ̄ γ̄)w?+β̄σ̄τ̄

√
δh
)]
.

(19)
Since (ᾱ, σ̄, β̄, γ̄, τ̄) is the solution to the nonlinear sys-
tem, we can replace the expectation from the first equation
in (11),which gives the following,

1

p
ŵTw? P→ κ2ᾱ. (20)

Similarly, using the result of Theorem 2 for the measure
function F2(u,v) = 1

p ‖u‖
2, along with the third equation

in (11) gives,

1
√
p
‖ŵ‖ P→

√
κ2ᾱ2 + σ̄2 . (21)

The proof is the consequence of (18), (20), and (21), along
with the continuity of the function acos(·).

4. GMM for Various Structures
As explained earlier, the potential function ψ(·) is chosen
to encourage the structure of the underlying parameter. In
this section, we investigate the performance of the GMM
classifier for some common structures and the corresponding
choices of the potential function.

4.1. Max-margin classifier (`2-GMM)

The `2-norm regularization is commonly used in machine
learning applications to stabilize the model. Here, we study
the performance of the GMM classifier when ψ(·) = 1

2 ‖·‖
2
2,

i.e., the solution to the following optimization program,

min
w∈Rp

1

2
‖w‖22

s.t. yi(xTi w) ≥ 1, for 1 ≤ i ≤ n.
(22)
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The optimization program (22) is called the hard-margin
SVM and the corresponding solution is the max-margin
classifier, as it maximizes the minimum distance (margin)
of the datapoints from the separating hyperplane. As men-
tioned earlier in Section 1, the conventional justification
for using such a classifier is that the risk of a classifier is
inversely proportional to its margin. The performance of
`2-GMM (22), has been earlier analyzed in (Deng et al.,
2019) and (Montanari et al., 2019). The form we present
below in (24), differes in appearance to the results of (Deng
et al., 2019), but can be shown to be equivalent.
When ψ(·) = 1

2 ‖·‖
2
2, the proximal operator has the follow-

ing closed-form,

Prox t
2‖·‖

2(u) =
1

1 + t
u. (23)

By replacing the proximal operator in the nonlinear sys-
tem (11), we can explicitly find two of the variables (β, and
γ) and reduce it to the following system of three nonlinear
equations in three unknowns,

√
cκ(α, σ) = σ

√
δ,

∂cκ(α, σ)

∂α
=
−2κ2ατσδ

1 + στ
,

∂cκ(α, σ)

∂σ
=

2σδ

1 + στ
.

(24)

4.2. Sparse classifier (`1-GMM)
In today’s machine learning applications, typically the num-
ber of available features, p, is overwhelmingly large. To
reduce the risk of overfitting in such settings, feature se-
lection methods are often performed to exclude irrelevent
variables from the model (James et al., 2013). Adding an `1
penalty is the most popular approach for feature selection.
As a natural consequence of our main result in Theorem 2,
here we analyze the asymptotic performance of GMM when
the potential function is the `1 norm, and evaluate its success
on the unseen data (i.e., the test error) when the underlying
parameter, w?, is sparse.

min
w∈Rp

‖w‖1

s.t. yi(xTi w) ≥ 1, for 1 ≤ i ≤ n.
(25)

In this case, the proximal operator of the potential func-
tion (‖·‖1) is basically equivalent to applying the soft-
thresholding operator, on each entry, i.e.,

Proxt‖·‖1(u) = η(u, t), (26)

where η(x, t) := x
|x| (|x| − t)+ is the soft-thresholding op-

erator. Here, for a sparsity factor s ∈ (0, 1], we assume
the entries of w? are sampled i.i.d. from the following
distribution,

Πs(w) = (1− s) · δ0(w) + s ·
(φ( w

κ√
s

)

κ√
s

)
, (27)

where δ0(·) is the Dirac delta function, and φ(t) := e−
t2

2√
2π

is
the density of the standard normal random variable. This
means that each of the entries of w? are zero with probabil-
ity 1−s, and the nonzero entries have independent Gaussian
distribution with variance κ2

s . Having this assumption we
can further simplify the first three equations in the nonlinear
system (11), and present them in terms of q-functions. To
streamline our representation, we introduce the following
proxies,

t1 =
στ√

κ2

s (α− στγ)2 + β2σ2τ2δ
, t2 =

1

β
√
δ
. (28)

We also define the function χ : R→ R+ as,

χ(t) = E
[
(Z − t)2

+

]
, Z ∼ N (0, 1)

= Q(t)(1 + t2)− tφ(t),
(29)

Where Q(t) :=
∫∞
t
φ(x)dx denotes the tail distribution of

standard normal random variable. We are now able to sim-
plify the first three equations in (11) and derive the following
nonlinear system,

Q(t1) = α
2(α−στγ) ,

s ·Q(t1) + (1− s) ·Q(t2) =

√
cκ(α,σ)

2βστδ ,
s
t21
· χ(t1) + (1−s)

t22
· χ(t2) = κ2α2

2σ2τ2 + 1
2τ2 ,

∂cκ(α,σ)
∂α = 2κ2γ

β

√
cκ(α, σ),

∂cκ(α,σ)
∂σ =

2
√
cκ(α,σ)

βτ .

(30)

The nonlinear system (30) can be solved via numerical meth-
ods. For our numerical simulations in Section 5 we exploit
accelerated fixed-point methods to solve the nonlinear sys-
tem. Using the the result of Lemma 2, we can compute the
generalization error.
Another important measure in this setting (when w? is
sparse) is the probability of error in support recovery. Let
Ω ⊆ [p] denote the support of w? (i.e. Ω = {j : w?

j 6= 0}.)
For a pre-defined threshold ε, we form the following esti-
mate of the support,

Ω̂ε = {j : 1 ≤ j ≤ p, |ŵj | > ε}. (31)

The following lemma establishes the success in the support
recovery:
Lemma 3 (Support Recovery). For a sparsity factor s ∈
(0, 1], let the entries of w? have distribution Πs defined
in (27), and ŵ be the solution to the optimization (25).
Then, as p→∞, we have,

lim
ε↓0

P1(ε) := P
{
j /∈ Ω̂ε|j ∈ Ω

}
P→ 1− 2Q(t̄1)

lim
ε↓0

P2(ε) := P
{
j ∈ Ω̂ε|j /∈ Ω

}
P→ 2Q(t̄2) ,

(32)

where t̄1 and t̄2 are defined as in (28), with variables derived
from solving the nonlinear system (30).
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4.3. Binary classifier (`∞-GMM)

As the last example of structured classifiers, here we study
the case where w? ∈ {±}p. To encourage this structure,
the potential function is chosen to be the `∞ norm. In linear
regression, ‖·‖∞ is used to recover the binary signals, i.e.,
when w? ∈ {±1}p (Chandrasekaran et al., 2012). This
problem arises in integer programming and has some con-
nections to the Knapsack problem (Mangasarian & Recht,
2011). Here, we consider analyzing the performance of the
solution of the following optimization program,

min
w∈Rp

‖w‖∞

s.t. yi(xTi w) ≥ 1, for 1 ≤ i ≤ n.
(33)

It can be shown that the proximal operator of the `∞-norm
can be derived by projecting the points onto the `1-ball. We
use this connection to present the proximal operator in this
case in terms of the soft-thresholding operator η(·, ·).
For a vector w whose entries are drawn independently from
a distribution Π, we can present the following formula for
the proximal operator:

Proxtp‖·‖∞(w) = w − Proxλ‖·‖1(w), (34)

where λ := λ(t) is the smallest nonnegative number that
satisfies,

E
[
|η(W,λ)|

]
= E

[
(|W | − λ)+

]
≤ t. (35)

Here, the expectation is with respect to W ∼ Π. Note that
λ is a non-increasing function of t, and λ = 0 whenever
t ≥ E |W |.
Similar to the case of `1-GMM, here we can use the closed-
form of the proximal operator to simplify the first three
equations in the nonlinear system (11). For our numerical
simulations in the next section, we have done the computa-
tions for three different distributions: (1) The i.i.d. Gaussian
distribution, (2) the sparse distribution defined in (27), and
(3) the uniform binary distribution, Π = Unif

(
{±1}p

)
. We

postpone the details of the theoretical derivations for this
part to Appendix D.3.

5. Numerical Simulations
In this section, we investigate the validity of our theoreti-
cal results with multiple numerical simulations applied to
the three different cases of GMM classifiers elaborated in
Section 5. For each of the three potentials discussed in the
paper (i.e., `1, `2, and `∞ norms) we perform numerical
simulations for three different models on the distribution of
w?. In other words, we change the distribution of the entries
of w? and evaluate the performance of the aforementioned
classifiers on each model. As will observed in our numerical
simulations, the appropriate choice of the potential function
in the GMM optimization (7) has an impact on the generl-
ization error of the resulting classifier. The three different
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Figure 2: Generalization error of the general max margin
classifier under three penalty functions, `1 norm with the
red line (`1-GMM), `2 norm with the blue line (`2-GMM),
and `∞ norm with the black line (`∞-GMM). In this fig-
ure, the entries of w? are drawn independently from
N (0, κ2) Gaussian distribution. Solid lines correspond
to the theoretical results derived from Theorem 2, while
the circles are the result of empirical simulations. For the
numerical simulations, the result is the average over 100
independent trials with p = 200 and κ = 2.

distribution that we choose for the underlying parameter are
as follows:

Gaussian: in the first model, we assume that the entries
of w? are drawn from a zero-mean Gaussian distribution,
N (0, κ2). In this model, the direction of w? (which indi-
cates the separating hyperplane) is distributed uniformly
on the unit sphere. Figure 2 gives the generalization error
when w? has Gaussian distribution. The solid lines show the
theoretical results derived from Theorem 2 and Lemma 2.
The circles depict empirical results that are computed by
taking the average over 100 trials with p = 200 and κ = 2.
Although our theory provides the generalization error in
the asymptotic regime, it appropriately matches the result
of empirical simulations in our simulations in finite dimen-
sions. It can be observed in this figure that the max-margin
classifier (`2-GMM) outperforms the other two classifiers.
We should also note that as the overparameterization ratio,
δ, grows the generalization error increases which indicates
that the estimator is not reliable for large values of δ.
Sparse: here, we assume that the entries of w? are drawn
from the sparse distribution represented in (27), i.e., each
entry is nonzero with probability s, and the nonzero entries
have i.i.d. Gaussian distribution with appropriately-defined
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Figure 3: Generalization error of the general max margin
classifier under three penalty functions, `1 norm with the red
line (`1-GMM), `2 norm with the blue line (`2-GMM), and
`∞ norm with the black line (`∞-GMM). In this figure,
the underlying vector w? is s-sparse, where the non-
zero entries are drawn independently from N (0, κ2/s)
Gaussian distribution. Solid lines correspond to the theo-
retical results derived from Theorem 2, and the circles are
the result of empirical simulations. For the numerical sim-
ulations, the result is computed by taking the average over
100 independent trials with p = 200, s = .1 and κ = 2.

variance. Figure 3 demonstrates the result of the numerical
simulations for this model for the three different classifiers
of interest. The empirical result is the average over 100
trials with p = 200, s = 0.1, and κ = 2. Similar to the
previous case, the empirical results match the theory. Also,
it can be observed that the `1-GMM outperforms the two
other classifiers in the regime of δ that the classifiers per-
forms well (i.e. δ w 6.) Similarly, we can observe that for
large values of δ all the classifiers perform poorly.

Binary: in this model the entries of w? are independently
drawn from {+κ,−κ}, i.e., w? is uniformly chosen on the
discrete set {±κ}p. Figure 4 shows the result of numerical
simulations under this model. Similar to previous cases the
empirical results (κ = 2, p = 200) match the theory. Also,
the `∞-GMM classifier outperforms the other two classifiers
for δ < 1 (which corresponds to the underparameterized
setting). However, the max-margin classifier performs better
for larger values of δ.

6. Conclusion and Future Directions
In this paper, we introduced the generalized margin max-
imizers (GMM) as a way to extend the max-margin clas-
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Figure 4: Generalization error of the general max margin
classifier under three penalty functions, `1 norm with the
red line (`1-GMM), `2 norm with the blue line (`2-GMM),
and `∞ norm with the black line (`∞-GMM). In this fig-
ure, the entries of w? are drawn independently from
κ ∗ RAD(0.5) Rademacher distribution. Solid lines cor-
respond to the theoretical results derived from Theorem 2,
and the circles are the result of empirical simulations. For
the numerical simulations, the result is the average over 100
independend trials with p = 200 and κ = 2.

sifiers to structured models. To this end, we proposed an
optimization program whose objective function is a con-
vex potential function ψ(·) that encourages the underlying
structure, and the constraints are similar to the max-margin
classifier (hard-margin SVM). Our main result in Theorem 2
provides the asymptotic behavior of GMM classifier for any
locally-Lipschitz performance measure via solving a system
of nonlinear equations. We utilize this result to characterize
the generalization error in the asymptotic regime.
We examined our theoretical findings on three specific
choices of the potential function, `1, `2, and `∞ norms. We
simplified the nonlinear systems for each of these functions
and validated our theoretical results in numerical simula-
tions by doing simulations on three different structures on
the underlying parameter, w∗. The numerical simulations
indicates that for sparse signals, `1-GMM outperforms the
max-margin classifier (`2-GMM). We also observed that for
binary signals, when δ < 1, the `∞-GMM outperforms the
two other classifiers.
In future works, we would like to extend our theory to pre-
dict some common phenomena (e.g. the double descent) for
GMM. Also, another avenue of pursuit is to design iterative
optimizaiton algorithms that would converge to the GMM
classifier.
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