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Abstract

We consider PAC-learning a good item from k-
subsetwise feedback information sampled from a
Plackett-Luce probability model, with instance-
dependent sample complexity performance. In
the setting where subsets of a fixed size can
be tested and top-ranked feedback is made
available to the learner, we give an algorithm
with optimal instance-dependent sample com-
plexity, for PAC best arm identification, of

O(@}:] 21;2 max (1, é) In % (1n Al,)) , A
being the Plackett-Luce parameter gap between
the best and the it best item, and @[k] is the
sum of the Plackett-Luce parameters for the top-
k items. The algorithm is based on a wrap-
per around a PAC winner-finding algorithm with
weaker performance guarantees to adapt to the
hardness of the input instance. The sample com-
plexity is also shown to be multiplicatively better
depending on the length of rank-ordered feedback
available in each subset-wise play. We show op-
timality of our algorithms with matching sample
complexity lower bounds. We next address the
winner-finding problem in Plackett-Luce models
in the fixed-budget setting with instance depen-
dent upper and lower bounds on the misidenti-

fication probability, of {2 (exp(—QAQ)) for a

given budget (), where Aisan explicit instance-
dependent problem complexity parameter. Nu-
merical performance results are also reported.

1. Introduction

We consider the problem of sequentially learning the best
item of a set when subsets of items can be tested but in-
formation about only their relative strengths is observed.
This is a basic search problem motivated by applications in
recommender systems and information retrieval (Hofmann
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et al., 2013; Radlinski et al., 2008), crowdsourced ranking
(Chen et al., 2013), tournament design (Graepel & Herbrich,
2006), etc. It has received recent attention in the online
learning community, primarily under the rubric of dueling
bandits (e.g., (Yue et al., 2012) and online ranking in the
Plackett-Luce (PL) discrete choice model (Chen et al., 2018;
Saha & Gopalan, 2019; Ren et al., 2018).

Our focus in this paper is to study the instance-dependent
complexity of learning the (near) best item in a subset-wise
PL feedback model by which we mean the following. Each
item has an a priori unknown PL weight parameter, and
every time a subset of alternatives is selected, an item or
items sampled from the PL probability distribution over the
subset are observed by the learner. Given a tolerance ¢ and
confidence level J, the learner faces the task of sequentially
playing subsets of items, and stopping and finding an e-
optimal arm, i.e., an arm ¢ whose PL parameter satisfies
0; > max; 0; — ¢, with probability of error at most 4.

Existing work on best arm learning in PL models, e.g., (Saha
& Gopalan, 2019), focuses on attaining the worst-case or
instance-independent sample complexity of learning an ap-
proximately best item. By this, we mean that the typical
goal is to design algorithms that terminate in a number of
rounds bounded by a function of only €, § and the num-
ber of arms n, typically of the form O (% log (5)) rounds.
Such worst-case results, though significantly novel, suffer
from two weaknesses: (1) The termination time guarantees
become vacuous in the setting where an exact best arm is
sought (¢ = 0), and (2) The guarantees do not reflect the
fact that some problem instances, in terms of their items’ PL
parameters, are easier than others to learn, e.g., the instance
with parameters (61, ...,6,) = (1,0.01,...,0.01) ought
to be much easier than (1,0.99,...,0.99) since item 1 is
a distinctly clearer winner than in the latter case. In this
paper, we set ourselves the more challenging objective of
quantifying and attaining sample complexity that depends
on the inherent ‘hardness’ of the PL instance. In this context,
we make the following contributions:

(1) We give the first instance-optimal algorithm for the
problem of (e, )-PAC learning a best item in a PL. model
when subsets of a fixed size can be tested in each round.
This is accomplished by building a novel wrapper algorithm
(Alg. 1) around an (¢, §)-PAC learning algorithm used as
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a subroutine that we designed (Alg. 5). We also provide a
matching instance-dependent lower bound on the sample
complexity of any algorithm, to establish the optimality of
our algorithm (Thm. 3,4,7).

(2) When richer, m length rank-ordered information is ob-
served per subsetwise query, we show the optimal instance-
dependent sample complexity lower bound is much smaller
than just with the winner feedback case (Thm. 8). We also
propose an optimal algorithm for this setting (Alg. 8) with
an %-factor improved sample complexity guarantee which
is shown to be optimal (Thm. 5).

(3) We also study the fixed-budget version of the best-item
learning problem, where a learning horizon of @) rounds is
specified instead of a desired confidence level §, and the
performance measure of interest is the probability of error in
identifying a best arm. We give an algorithm for learning the
best item of a Plackett-Luce instance under a fixed budget
with general m-way ranking feedback (Alg. 8, Thm. 12),
and also prove an instance-dependent lower bound for it
(Thm. 11).

Our theoretical findings are also supported with numerical
experiments on different datasets.

Related work. For classical multiarmed bandits setting,
there is a well studied literature on PAC-arm identifica-
tion problem (Even-Dar et al., 2006; Audibert & Bubeck,
2010; Kalyanakrishnan et al., 2012; Karnin et al., 2013;
Jamieson et al., 2014), where the learner gets to see a noisy
draw of absolute reward feedback of an arm upon playing
a single arm per round. Some of the existing results on
dueling bandits line of works also focuses on PAC learning
from pairwise preference feedback for best arm identifica-
tion problem (Yue & Joachims, 2011; Urvoy et al., 2013;
Szorényi et al., 2015; Busa-Fekete et al., 2014a), or even
more general problem objectives e.g. PAC top set recovery
(Busa-Fekete et al., 2013; Mohajer et al., 2017; Chen et al.,
2017), or PAC-ranking of items (Busa-Fekete et al., 2014b;
Falahatgar et al., 2017), even in the feedback setup of noisy
comparisons (Braverman & Mossel, 2008; Caragiannis et al.,
2013). There are also very few recent developments that
focuses on learning for subsetwise feedback in an online
setup (Sui et al., 2017; Brost et al., 2016; Saha & Gopalan,
2018a; 2019; Ren et al., 2018; Chen et al., 2018). Some of
the existing work also explicitly consider the Plackett-Luce
parameter estimation problem with subset-wise feedback
but for offline setup only (Jang et al., 2017; Khetan & Oh,
2016). While most of the above work address the (¢, §)-PAC
recovery problem, i.e. finding an ‘e-approximation’ of the
desired (set of) item(s) with probability at least (1 — §), few
of them also focuses of instant dependent PAC recovery
guarantees where the sample complexity explicitly depends
of the parameters of the underlying model, e.g. for classical
multiarmed bandits (Audibert & Bubeck, 2010; Karnin et al.,

2013; Kalyanakrishnan et al., 2012), or even for preference
based bandits (Szorényi et al., 2015; Chen et al., 2018).

2. Problem Setup

Notation. We denote by [n] the set {1,2,...,n}. For any
subset S C [n], let |\S| denote the cardinality of S. When
there is no confusion about the context, we often repre-
sent (an unordered) subset .S as a vector, or ordered subset,
S of size |S| (according to, say, a fixed global ordering
of all the items [n]). In this case, S(¢) denotes the item
(member) at the sth position in subset S. For any ordered
set S, S(i : j) denotes the set of items from position ¢
to j, i < 7, Vi,j € [|S]]. We denote by X5 = {0 | o
is a permutation over items of S}, where for any permu-
tation 0 € Xg, o(i) denotes the element at the i-th po-
sition in 0,7 € [|S]]. We also denote by 3¢ the set of
permutations of any m-subset of S, for any m € [k], i.e.
Y =Yg st 8 C S, |5 = m. 1(yp) is generically
used to denote an indicator variable that takes the value 1
if the predicate ¢ is true, and 0 otherwise. = V y denotes
the maximum of = and y, and Pr(A) is used to denote the
probability of event A, in a probability space.

Definition 1 (Plackett-Luce probability model). A Plackett-

Luce probability model, specified by positive parameters

(01,...,0y), is a collection of probability distributions

{Pr(:|S) : S C [n],S # 0}, where for each non-empty

subset S C [n], Pr(i|lS) = % V1 < i < n. The
j J

indices 1, ... ,n are referred to as ‘items’ or ‘arms’ .

Since the Plackett-Luce probability model is invariant to
positive scaling of its parameters 8 = (6,;)"_,, we make the
standard assumption that max;e[,) 0; = 1.

An online learning algorithm is assumed to interact with a
Plackett-Luce probability model over n items (the ‘environ-
ment’) as follows. Ateachroundt = 1,2, .. ., the algorithm
decides to either (a) terminate and return an item I € [n],
or (b) play (test) a subset S; C [n] of k distinct items, upon
which it receives stochastic feedback whose distribution
is governed by the probability distribution Pr(:|S;). We
specifically consider the following structures for feedback
received upon playing a subset .S

1. Winner feedback: The environment returns a single
item J drawn independently from the probability distribu-

tion Pr(-|S) where Pr(J = j|S) = z:)ﬂs - Vji€S.
cE

2. Top-m Ranking feedback (1 < m < k—1): Here, the
environment returns an ordered list of m items sampled with-
out replacement from the Plackett-Luce probability model
on S. More formally, the environment returns a partial

ranking o € X§, drawn from the probability distribution

2 b-1¢ .
Pr(o =0l5) =11, m, o € X7 This

can also be seen as picking an item o~ 1(1) € S accord-
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ing to Winner feedback from S, then picking o ~1(2) from
S\{o~1(1)}, and so on for m times. When m = 1, Top-m
Ranking feedback is the same as Winner feedback.

Definition 2 ((¢, §)-PAC or fixed-confidence algorithm). An
online learning algorithm is said to be (¢, §)-PAC with termi-
nation time bound Q) if the following holds with probability
at least 1 — § when it is run in a Plackett-Luce model: (a) it
terminates within Q rounds (subset plays), (b) the returned
item I is an e-optimal item: 07 > maX;e |y 0, —e=1—¢e
(Probability is over both the environment and the algorithm.)

By the sample complexity of an (e, §)-PAC online learning
algorithm A for a Plackett-Luce instance 8 = (6;)_; and
playable subset size k, we mean the smallest possible ter-
mination time bound ) for the algorithm when run on 6.
We use the notation N 4(e,0) = N(e, 6,0, n, k) to denote
this sample complexity. We aim to design (¢, d)-PAC al-
gorithms with as small a value of sample complexity as
possible, depending on the number of items n, the playable
subset size k, approximation error €, confidence §, and most
importantly, the Plackett-Luce model parameters (6;)7_,.
We also assume item 1 is optimal: ¢y = max;c[,) 0; = 1,
and A; = 6, — 0, for any i € [n].

3. Instance-dependent regret for
Probably-Correct-Best-Item problem

3.1. Prelude: An algorithm for ¢ =0

For clarity of exposition, we first describe the design of
a (0,0)-PAC or Probably-Correct-Best-Item learning algo-
rithm, i.e., an algorithm that attempts to learn the unique best
item in a Plackett-Luce model when such an item exists':
1 = 61 > max;>2 6;. This is then generalised in the next
section to an online learning algorithm that is (e, ¢)-PAC.

High-level idea behind algorithm design. The algorithm
we propose (PAC-Wrapper) is based on using an (e, d)-
PAC-algorithm known to have (expected) termination time
bounded in terms of € and § (a ‘worst’ case termination guar-
antee not necessarily dependent on instance parameters) as
an underlying black-box subroutine. The wrapper algorithm
uses the black-box repeatedly, with successively more strin-
gent values of € and 4, to eliminate suboptimal arms in a
phased manner. The termination analysis of the algorithm
shows that any suboptimal arm ¢ € [n] \ {1} survives for

about O (ﬁ In %) rounds before being eliminated, which
leads to the desired bound of O >, é In % on algo-

rithm’s run time performance (with high probability (1 —¢))
(Thm. 3).

"When there is more than one best item the problem of finding
a best item with confidence is not well-defined.

Algorithm description. The PAC-Wrapper algorithm we
propose (Alg. 1) runs in phases indexed by s = 1,2, ...,
where each phase s comprises of the following steps.

At any sub-phase s = 1,2,... [assume k = 4]

s [sevsseveesesd)

(E, 1) )-PAC Best-Item

subroutine

Find€coptimal | g o9 g g @ @ @ @ obJ(o oo
Best-Item

Partition into -7 batches
andplayeachlfhiimes [ .x. .] [ .m.] [x. . .] [ .o .]
B[ B B-'l

Prune the items with p; , < % — ¢ and merge the rest *

Resulting A [ooo (A NN oo]

Figure 1. A sample run of Alg. 1 at any sub-phase s with the set
of surviving arms A4,_1: Step 1. The algorithm finds a (es, ds)-

PAC item bs, where e, = 5% and 0, = ;5. Step 2. It
s—1
1

-‘ groups Bi,...Bg, of size

partitions As_1 into Bs = ﬁ‘c .
k, each containing bs, and plays each for ¢t = f—;‘ In % times.
Step 3. Based on the received feedback of ¢, plays, the algorithm
updates the empirical pairwise probability p;; of each item pair
(4, j) within a group B by applying Rank-Breaking , and discards
any item i € B with P, < % — €s. The rest of the surviving items
are then combined to A, and the algorithm recurses to s + 1.

Step 1: Finding a good reference item. It first calls an
(s, 0s)-PAC subroutine (described in Sec. 3.4 for complete-
ness) with e, = 2% and §, = ﬁ to obtain a ‘reasonably
good item’ b,—an item that is likely within an e, margin of
the Best-Item with probability at least (1 — J,)) and thus
a potential Best-Item. For this we design a new sequen-
tial elimination-based algorithm (Alg. 5 in Appendix A.3),
and argue that it finds such a (e, d5)-PAC ‘good item” with
instance-dependent sample complexity (Thm. 6), which
is crucial in the overall analysis. This is an improvement
upon the instance-agnostic Algorithm 6 of (Saha & Gopalan,
2019) whose sample complexity guarantee is not strong
enough to be used along with the wrapper.

Step 2: Benchmarking items against the reference item.
After obtaining a candidate good item, the algorithm di-
vides the rest of the current surviving arms into equal-sized
groups of size k — 1, say the groups Bi,...,Bp,, and
‘stuffs’ the good ‘probe’ item by into each group, creating

As—
B, = [ =y

tine, Algorithm 2, Appendix A.2). It then plays each group
By, b € [Bs] for a total of t; = 225 In 5% rounds, where

item groups of size k (the Partition subrou-

&} s denotes a ‘near-accurate’ relative score estimate of the
Plackett-Luce model for the set 5,—we use the subroutine
Score-Estimate for estimating Og (see Alg. 3, Thm. 13
in Appendix A.2). From the winner data obtained in this
process, it updates the empirical pairwise win count w; of
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each item within any batch B}, by applying a rank-breaking
idea (see Alg. 4, Appendix A.2) .

Step 3: Discarding items weaker than the reference
item. Finally, from each group B, the algorithm elimi-
nates all arms whose empirical pairwise win frequency over
the probe item by is less than % — ¢4 (i.e. Vi € By, for which
Dib, < % — €5, Pi; being the empirical pairwise preference
of item ¢ over j obtained via Rank-Breaking). The next
phase then begins, unless there is only one surviving item
left, which is output as the candidate Best-Item. Pointers to
the 4 subroutines used in the overall algorithm are as below.

(1). (¢,0)-PAC Best-Item subroutine: Given ¢, € (0, 1),

this finds an (e, d)-Best-Item in O(@e[z’“] In %) samples,

Y ics bi (See Alg. 5, Thm. 6 in

where O :scﬁﬁ?m

Appendix A.3).

(2). Rank-Breaking subroutine: This is a procedure of
deriving pairwise comparisons from multiwise (subsetwise)
preference information (Soufiani et al., 2014; Khetan & Oh,
2016). (See Alg. 4, Appendix A.2).

(3). Score-Estimate subroutine: Given a set S and a refer-
ence item b € [n], this estimates the relative Plackett-Luce
scores of the set w.r.t. b (see Alg. 3, Appendix A.2).

(4). Partition: This partitions a given set of items into
equally sized batches (See Alg. 2, Appendix A.2).

Fig. 1 graphically depicts a sample run of a sub-phase s (for
k = 4). Note that as the playable subset size is k, we need
to specially treat the final few sub-phases when the number
of surviving arms (i.e. |A|) falls below k (Lines 22-31 in
Alg. 1). The complete algorithm is given in Appendix A.1.
Theorem 3 (PAC-Wrapper(0,9)-PAC sample complex-
ity bound with  Winner feedback). With probabil-
ity at least (1 — 6), A as PAC-Wrapper (Algo-
rithm 1) returns the Best-Item with sample complexity
N4(0,0) = O <®,[j] >, max <17 ﬁ) In % (ln Ali))’
where ®[k] = maxsgn”|5|:k ZiES 91'.

Remark 1. As Op; < k, PAC-Wrapper takes O(é) 1n%
rounds to eliminate all suboptimal items with confidence
0. However, the dependence of the upper bound on Oy
implies a 1/k factor gain in sample complexity when the
underlying instance is ‘easy’. Indeed, when ©p,; = O(1),
e.g., in an instance where #; ~ 1 and 0; =~ 0 Vi # 1, then
the algorithm just takes O( ki? )In } time to terminate. On
the other hand, if 1 = 6; > 6; ~ 1, then Oy = (k)
which gives the worst case orderwise complexity.

Proof sketch The proof of Thm. 3 is based on the following
claims:

Claim-1: At any sub-phase s = 1, 2, .. ., the Best-Item a*
is likely to beat the (e, d5)-PAC item by by sufficiently high

margin with probability at least (1 — %), and hence is never
discarded (Lem. 19).

Claim-2: Let [n], :={i € [n] : 5= < A; < 71}, and we
denote the set of surviving arms in [n], at s** sub-phase by

A, s ie. Ay s = [n],NAg, forany s = 1,2,. ... Then with
probability at least (1 — 1290‘5 ), any such set A, ; reduces at
a constant rate once s > r, 7 = 1,...,logs(Apin) (Lem.

20)—this ensures that all suboptimal elements get eventually
discarded after they are played sufficiently often.

Claim-3: The number of occurrences of any sub-optimal
item i € [n] \ {1} before it gets discarded away is propor-

tional to O (ﬁ In %) Combining this over all arms yields

the desired sarﬁple complexity. Details of the proof is given
in Appendix A.4. .

3.2. An algorithm for general ¢ > 0

It is straightforward to extend the (0, §)-PAC guarantee for
PAC-Wrapper to get a more general (¢, §)-PAC algorithm
for any given e € [0, 1]. The idea is to simply execute the
algorithm as originally specified until (and if) it reaches
a phase s such that ¢, falls below the given tolerance €
(i.e. €5 < ¢€), at which point the algorithm can stop right
after calling the subroutine (¢, 0)-PAC Best-Item and output
the item b, returned by it. The full algorithm is given in
Appendix A.5 for the sake of brevity.

Theorem 4 (PAC-Wrapper (e,6)-PAC sample complex-
ity bound with  Winner feedback). For any e €
[0,1], with probability at least (1 — §), A as PAC-
Wrapper (Algorithm 1) returns the e-Best-Item (see
Defn. 2) with sample complexity Ny(e,§) =

o (61[:] Z?:Q max (1’ max(lAi,e)2> In % ( In max(lAi,e)>>'

Discussion. To the best of our knowledge, this is the
first (e, )-PAC learning algorithm for the Plackett-Luce
model with general multi-wise comparisons with an item-
wise instance-dependent sample complexity bound. For
€ > 0, this is order-wise stronger than the best known worst-
case (instance-independent) upper bound of O (e% log (%))
(Saha & Gopalan, 2019), since max(A;,€)? > €2. Thus
PAC-Wrapper is provably able to adapt to the hardness
of the Plackett-Luce instance 6 to stop early in case the
instance is ‘well-separated’. Note that for dueling ban-
dits (k = 2), our result strictly improves order-wise upon
the O (n - IAX;>2 m) sample complexity? of the
best known (e, §)-PAC algorithm (PLPAC) (Szorényi et al.,
2015)—which can be worse by a factor of n for many in-
stances. For example, consider an instance having one
‘strong’ suboptimal item, say j € [n] \ {1} with A; ~ 0,
but Q(n) many extremely ‘weak’ items with A; ~ 1; our

?Notation O(-) hides polylogarithmic factors in €, 8, A;, n, k.
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sample complexity bound is just O(zéz Ini+ 2In %),

whereas that of PLPAC is O (AL? In Aijé) .

3.3. PAC learning in the Plackett-Luce model with
Top-m Ranking feedback

Main Idea. Algorithmically, the key modification to make
is in the Rank-Breaking subroutine of PAC-Wrapper, which
now uses a rank-ordered list of m feedback items to output
all possible rank-broken comparison pairs. The essence of
the % factor improvement in the sample complexity over
Winner feedback lies in the fact that this naturally gives rise
to O(m) times additional number of pairwise preferences in
comparison to Winner feedback. Hence, it turns out to be
sufficient to sample any batch By, Vb € [B,] for only O (1)
times compared to the earlier case, which finally leads to the
improved sample complexity of PAC-Wrapper for Top-m
Ranking feedback. The full description of Alg. 7 is given in
Appendix A.7 for the sake of brevity.

Theorem 5 (PAC-Wrapper: Sample Complexity for
(0, 8)-PAC Guarantee for Top-m Ranking feedback). With
probability at least (1 — &), PAC-Wrapper (Algorithm 1)
returns the Best-Item with sample complexity N 4(0,0) =

O(@g"] Z?:Q max (1, —mlAg) In %(ln Ai))

Remark 2. Following the similar procedure as argued in
Sec. 3.4, one can easily derive an (¢, §)-PAC version of
PAC-Wrapper (for Top-m Ranking feedback) as well, and
a similar guarantee as that of Thm. 4 with a reduction factor
1/m. We omit the details in the interest of space.

3.4. (¢, §)-PAC subroutine (used in the main algorithm,
PAC-Wrapper, i.e. in Alg. 1,5 or 7)

We briefly describe here the core (e, §)-PAC subroutine
used in algorithms 1 and 7 to find an e Best-Item with high
probability (1—4) in an instance-dependent way (full details
are available in Appendix A.3): The algorithm (e, §)-PAC
Best-Item first divides the set of n items into batches of size
k, then plays each group sufficiently long enough until a
single item of that group stands out as the empirical winner
in terms of its empirical pairwise advantage over the rest
(again estimated though Rank-Breaking). It then just retains
this empirical winner for every group and recurses on the set
of surviving winners until only a single item is left, which
is declared as the (e, d)-PAC item.

Theorem 6 ((¢,0)-PAC Best-Item: Correctness and Sam-
ple Complexity with Top-m Ranking feedback). For any
e € (0,4] and & € (0,1), with probability at least
(1 —6), (¢,0)-PAC Best-Item (Algorithm 5) returns an

item by € [n] satisfying pp,1 > % — € with sample
complexity O (ni[k] max (1, m162) log %) where O =

MaXsCn],|S|=k D_ics Oi-

Remark 3. The best item-finding subroutine we develop,
along with the corresponding analysis, is an improvement
over Alg. 6 of (Saha & Gopalan, 2019) which had & in-
stead of O (k] < k here. The improvement is especially
pronounced for instances where O;) = O(1) (e.g. where
0.+ — 1l and for all ¢ € [n]\ {a*}, 6; — 0 etc.). Note
that this is an artefact of the adaptive nature of our pro-
posed algorithm (Alg. 5) which samples each batch adap-
tively for just sufficiently enough times before discarding
out the weakest (k — 1) items (see Line 11), whereas (Saha
& Gopalan, 2019) sample each batch for a fixed O (6% In %)

times irrespective of the empirical outcomes, leading to a
worse, instance independent sample complexity.

4. Instance-dependent lower bounds on
sample complexity

We here derive information-theoretic lower bounds on sam-
ple complexity for Probably-Correct-Best-Item problem.

We first show a lower bound of Q(ZLQ 63621 In (% +

zln %)) with Winner feedback implying that the sam-

ple complexity of PAC-Wrapper (Thm. 3) is tight upto
logarithmic factors. We then analyze the lower bound for
Top-m Ranking feedback and show an %-factor improve-
ment in the sample complexity lower bound, establishing the
optimality (up to logarithmic factors) of our PAC-Wrapper
algorithm for Top-m Ranking feedback (see Alg. 7 and
Thm. 5).

4.1. Lower bound for Winner feedback

Theorem 7 (Sample complexity lower bound: (0, ¢)-PAC
or Probably-Correct-Best-Item with Winner feedback).
Given § € [0, 1], suppose A is an online learning algorithm
for Winner feedback which, when run on any Plackett-
Luce instance, terminates in finite time almost surely, re-
turning an item I satisfying Pr(0; = max;0;) > 1 — 0.
Then, on any Plackett-Luce instance 61 > max;>20;,
the expected number of rounds it takes to terminate is

Q(max (232;2 9&%1 ln%,%ln (1;))

Proof sketch. We employ the measure-change technique
of Kaufmann et al (Kaufmann et al., 2016) (see Lem. 26,
Appendix) for lower bounds on the PAC sample complexity
for standard multiarmed bandits (MAB). The novelty of our
proof lies in mapping their result to our setting: For our
case each MAB instance corresponds to an instance of the
BB-PL problem with the arm set containing all subsets of
[n] of size k: A ={S = (5(1),...5(k)) C [n]}.

We now consider any general true PL(n,8) problem in-
stance PL(n,0") : 6} > 0} > ... > 6}, and corresponding
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to each suboptimal item a € [n] \ {1}, we define an alter-
native problem instance PL(n,0%) : ¢ = 0} + ¢; 02 =
0}, Vi € [n]\ {a}, for some € > 0. Then, applying Lemma
26 on every pairs of problem instances (6*,6%), and suit-
ably upper bounding the KL-divergence terms we arrive at
n — 1 constraints of the form:

> Eg[Ns(7a)|KL(p§, p%)
SeAlacs

< ) Eg[Ns(ra)]

SeAlaes

m <
Nods =

A/Q

——2 — Vae[n\{l
0L(0] +¢) A {1}
Since the total sample complexity of A being N'(0,6) =
> sca Ns (here Ny is the number of plays of subset S by
A), the problem of finding the sample complexity lower
bound actually reduces to solving the (primal) linear pro-
gramming (LP) problem:

P i . i 1
rimal LP (P): min Z Eqg: [Ns]

SeA

A2 1
_Ta > p—
0LOl + o) = 2.48

Va € [n] \ {1}

such that Z Eg:[Ng]
SeAlaeS

However above has O (Z) many optimization variables (pre-
cisely Eg1[Ng]s), so we instead solve the dual LP to reach

the desired bound. Lastly the 2 (% In %) term in the lower

bound arises as any learning algorithm must at least test
each item a constant number of times via k-wise subset
plays before judging it optimality which is the bare mini-
mum sample complexity the learner has to incur (Chen et al.,
2018). The complete proof is given in Appendix B.1. [

4.2. Lower bound for Top-m Ranking feedback

Theorem 8 (Sample complexity Lower Bound:
(0, 0)-Probably-Correct-Best-Item with Top-m Ranking
feedback). Suppose A is an online learning algo-
rithm for  Top-m Ranking feedback which, given
d € [0,1] and run on any Plackett-Luce instance,
terminates in finite time almost surely, returning an
item I satisfying Pr(0; = max;0;) > 1 — 6. Then,
on any Plackett-Luce instance 01 > max;>20;, the
expected number of rounds it takes to terminate is

Q(max <% S, 9&? In($), %In é))

Proof sketch. The crucial fact used here is owning to the
chain rule for KL-divergence, the KL divergence for Top-m
Ranking feedback is m times larger than that of just with
Winner feedback: K L(pk,p%) = KL(ps(01),p%(o1)) +
+ 3 KL(pg(oi | o(L i — 1)), pg(oi | o(1:i— 1)),
where we abbreviate o (i) as 0; and KL(P(Y | X),Q(Y |
X)) =Y. Pr (X - as) [KL(P(Y | X = 2),Q(Y |
X = x))| denotes the conditional KL-divergence. Using

this and the upper bound on the KL divergences for Win-
ner feedback setup as derived for Thm. 7, we get that in

this case K L(pg, p%) < %TTA}%;’ Va € [n] \ {1}, where
lies the crux of the %-factor improvement in the sample
complexity lower bound compared to Winner feedback.
The lower bound now can be derived following a similar

procedure that of Thm. 7. Details are given in B.1. 0.

5. The Fixed-Sample-Complexity L.earning
Problem

This section studies the problem of finding the Best-Item
within a maximum allowed number of queries Q, with min-
imum possible probability of misidentification. Note the
algorithms for Probably-Correct-Best-Item setting cannot
be used here as they do not take the total sample complexity
@ as input; also, simply terminating such algorithms with a
suitable § after () runs may not necessarily be optimal. We
present results for the general Top-m Ranking feedback.

5.1. Lower Bound: Fixed-Sample-Complexity setting

We derive an instance-dependent lower bound on error prob-
ability in which the problem complexity depends on the

complexity term (2212 %) , unlike the case for our
first objective (Probably-Cor;ect-Best-Item), which depends
on the gap parameter Aig, V€ [n] \ {1}. We first define a
natural consistency or ‘non-trivial learning’ property for any

best-arm algorithm given a fixed budget of Q:

Definition 9 (Budget-Consistent Best-Item Identification
Algorithm). An online algorithm A, taking as input a sam-
ple complexity budget Q, terminating within Q rounds and
outputting an item I € [n), is said to be Budget-Consistent
if, for every Plackett-Luce instance 0 = (0,)"_, with
a unique best item a*(0) = argmax;c[,) 0;, it satisfies
Pro(I = a*(0)) > 1 — exp(—f(0) - Q) when run on 0,
where f : [0,1]™ — R is an instance-dependent function
mapping every Plackett-Luce instance to a real number.

Informally, a Budget-Consistent algorithm picks out the
best arm in a Plackett-Luce instance with arbitrarily low
error probability given enough rounds Q. We next define the
notion of a Order-Oblivious or label-invariant algorithm
before stating our main lower bound result.

Definition 10 (Order obliviousness or label invari-
ance). A Budget-Consistent algorithm A is said to
be Order-Oblivious if its output is insensitive to the
specific labelling of items, i.e., if for any PL model
(01,...,0y), bijection ¢ : [n] — |[n] and any item
I € [n], it holds that Pr(Aoutputs I|(01,...,6,)) =
Pr(Aoutputs | (0y1y,---,0sn))) where
Pr(-|(aa,...,an)) denotes the probability distribu-
tion on the trajectory of A induced by the PL model
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(a1,...,ap).

Theorem 11 (Confidence lower bound in fixed sample com-
plexity @ for Top-m Ranking feedback). Let A be a Budget-
Consistent and Order-Oblivious algorithm for identifying
the Best-Item under Top-m Ranking feedback. For any
Plackett-Luce instance 0 and sample size (budget) Q, its
probability of error in identifying the best arm in 0 satis-

fies Prg (I # arg maX;ec|p) Oi) =Q (exp (—QmQA)) ,

. 21
where the complexity parameter A\ := ( S, (GA‘*Q) 2) .

Remark 4. As expected, the error probability reduces with
increasing feedback size m and budget ). However a more
interesting tradeoff lies in the instant dependent complexity
term A: for ‘easy’ instances where most of the suboptimal
itemhave 0, — 0 (i.e. A, — 1), A shoots up, in fact attains
A — oo in the limiting case where 6, — 0Vi € [n\ {1}.
On the other hand, for ‘hard’ instances, where there exists
even one suboptimal item a € [n] \ {1} with §, =~ 1 (i.e.
A, = 0),A =0 raising the minimum error probability
significantly, which indicates the hardness of the learning
problem.

5.2. Proposed Algorithm for Fixed-Sample-Complexity
setup: Uniform-Allocation

Main Idea. Our proposed algorithm Uniform-Allocation
solves the problem with a uniform budget allocation rule:
Since we are allowed to play sets of size k£ only, we divide
the items into k-sized batches and eliminate the bottom half
of the winning items once each batch is played sufficiently.
The important parameter to tune is how long to play the
batches. Given a fixed budget (), since one does not have
an idea about which batch the Best-Item lies in, a good
strategy is to allocate the budget uniformly across all sets
formed during the entire run of the algorithm, which can
shown to be precisely O(W) sets, so we allocate a

budget of Q' = O( kQ

Wogk’) samples per batch.
2

Algorithm description. The algorithm proceeds in rounds,
where in each round it divides the set of surviving items
into batches of size k and plays each Q' = % times.
Upon this it retains only the top half of the winning arms,
eliminating the rest forever. The hope here is that with
‘enough’ observed samples, the Best-Item always stays in
the top half and never gets eliminated. The next round
recurses on the remaining items, and the algorithm finally
returns the only single element is left as the potential Best-
Item. The pseudocode is moved to Appendix C.2.

Theorem 12 (Uniform-Allocation: Confidence bound for
Best-Item identification with fixed sample complexity
Q). Given a budget of Q rounds, Uniform-Allocation re-
turns the Best-Item of PL(n, @) with probability at least

1- O(log2 nexp ( o QAL )), where A, =

16(2n+k log, k)

L
min} 5 A,.

Remark 5. Thm. 12 equivalently shows that with sam-

mA2

ple complexity at most O 16(2n+k1_°g2 ) In (log;"> ,
Uniform-Allocation returns the Best-Item with probabil-
ity at least (1 — §). The bound is clearly optimal in terms
of m and ) (comparing with Thm. 11), however it still
remains an open problem to close the gap between the com-

_ -1
plexity term A = ( ZZ:z (9&)2) in the lower bound, vs.

—1
the (ﬁ) term that we obtained.

min

6. Experiments

This section reports numerical results of our proposed al-
gorithm PAC-Wrapper (PW) on different Plackett-Luce
environments. All reported performances are averaged
across 50 runs. The default values of the parameters are
settobe k = 5, ¢ = 0.01, § = 0.01, m = 1 unless ex-
plicitly mentioned/tuned in the specific experimental setup.
We compared our algorithm with the only existing bench-
mark algorithm Divide-and-Battle (DnB) (Saha & Gopalan,
2019) (even though, as described earlier, it does not apply
to instance-optimal analysis, specifically for e = 0; this
is reflected in our experimental results as well). We use 8
different PL environments (with different @ parameters) for
the purpose, their descriptions are moved to Appendix D.

Throughout this section, by the term sample-complexity, we
mean the average (mean) termination time of the algorithms
across multiple reruns (i.e. number of subsetwise queries
performed by the algorithm before termination).

6.1. Results: Probably-Correct-Best-Item setting

Sample-Complexity vs Error-Margin (¢). Our first set of
experiments analyses the sample complexity (A (e, A)) of
PAC-Wrapper with varying e (keeping ¢ fixed at 0.1). As
expected, Fig. 2 shows that the sample complexity increases
with decreasing e for both the algorithms. However, the
interesting part is, for PW the sample complexity becomes
almost constant beyond a certain threshold of e (precisely
when e falls below Ap;,) in every case, whereas for DnB
it keeps on scaling in O(e%) irrespective of the ‘hardness’
of the underlying PL environment due to its non-adaptive
nature—this is the region where we excel out. Also, note
that the harder the dataset (i.e. the smaller its A ,;,), the
smaller this threshold is, as follows from Thm. 4, which
verifies the instance-adaptive nature of our PW algorithm as
it terminates as soon as € falls below Ap;,.

Itemwise sample complexity. This experiment reveals the
survival time of the items (i.e. total number plays of an
item before elimination) in PAC-Wrapper algorithm. The
results in Fig. 3 clearly shows the inverse dependency of
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Iogw(sample complexity)
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Iagw(sample complexity)

5 -4 -3 2
error-margin (Iogwn)

arith

Iogm(sample complexity)
Iogm(sample complexity)

5 -4 3 -2 5 -4 -3 -2
error-margin (log, ;¢) error-margin (log, ;¢)

Figure 2. Sample-Complexity vs Error-Margin (¢) (both in log
scale) of PW and DnB across 4 different problem instances.

the survival time of items w.r.t. their f parameter, e.g. for
g4 dataset, the survival times of the items are categorized
into 4 groups, highest for item 1, with items 2-6, 7-11, and
12-16 following it—justifying the O (é) survival times for
each item ¢ (in Thm. 3 or 5). '

g1 g4

10 15 5 10 15
Items Items

arith b1

10 15 5 10 15

Items Items
Figure 3. Survival time of different items (Itemwise sample com-
plexity) in PW on 4 different problem instances.
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Tradeoff: Sample-Complexity vs size of Top-ranking
Feedback m. In this case we verified the flexibility of PAC-
Wrapper for Top-m Ranking feedback (Alg. 7). We run
it on different datasets with increasing size of top-ranking
feedback (m). Again, justifying the claims of Thm. 5, Fig.
4 shows the sample complexity varies at a rate of % (note
that as m is doubled, sample complexity gets about halved),
while rest of the parameters (i.e. k, §, €) are kept unchanged.
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Figure 4. Sample-Complexity vs length of rank ordered feedback

16
too-rankina size (m)

16
too-rankina size (m)

(m) of PW for 4 different problem instances.

6.2. Results: Fixed-Sample-Complexity setting

Success probability (1 — J) vs Sample-Complexity (Q)).
Finally we analysed the success probability (1 — ¢) of al-
gorithm Uniform-Allocation (UA) for varying sample com-
plexities (@), keeping ¢ fixed at (Apin)/2. Fig. 5 shows
that the algorithm identifies the Best-Item with higher con-
fidence with increasing Q—ijustifying its O(exp(—@Q)) error
confidence rate as proved in Thm. 12. Note that g4 being
the easiest instance, it reaches the maximum success rate 1
at a much smaller @), compared to the rest. By construction,
DnB is not designed to operate in Fixed-Sample-Complexity
setup, but due to lack of any other existing baseline, we still
use it for comparison force terminating it if the specified
sample complexity is exceeded, and as expected, here again

it performs poorly in the lower sample complexity region.
b1 gdb

1

feua
DnB
0

success-rate (1-5)
success-rate (1-3)

arithb

geob

success-rate (1-5)
success-rate (1-3)

sample complexity sample complexity

Figure 5. Comparative performances of PW and DnB in terms of
Success probability (1 — §) vs Sample-Complexity (Q) across 4
different problem instances.

7. Conclusion and Future Work

Moving forward, it would be interesting to explore similar
algorithmic and statistical questions in the context of other
common subset choice models such as the Mallows model,
Multinomial Probit, etc. It would also be of great practical
interest to develop efficient algorithms for large item sets,
especially when there is structure among the parameters to
be exploited. One can also aim to develop instant dependent
guarantees for other ‘learning from relative feedback’ ob-
jectives, e.g. PAC-ranking (Szorényi et al., 2015), top-set
identification (Busa-Fekete et al., 2013) etc., both in fixed
confidence as well as fixed budget setting.
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