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Abstract
We study why overparameterization—increasing
model size well beyond the point of zero training
error—can hurt test error on minority groups de-
spite improving average test error when there are
spurious correlations in the data. Through sim-
ulations and experiments on two image datasets,
we identify two key properties of the training data
that drive this behavior: the proportions of major-
ity versus minority groups, and the signal-to-noise
ratio of the spurious correlations. We then analyze
a linear setting and theoretically show how the
inductive bias of models towards “memorizing”
fewer examples can cause overparameterization
to hurt. Our analysis leads to a counterintuitive ap-
proach of subsampling the majority group, which
empirically achieves low minority error in the
overparameterized regime, even though the stan-
dard approach of upweighting the minority fails.
Overall, our results suggest a tension between us-
ing overparameterized models versus using all the
training data for achieving low worst-group error.

1. Introduction
The typical goal in machine learning is to minimize the aver-
age error on a test set that is independent and identically dis-
tributed (i.i.d.) to the training set. A large body of prior work
has shown that overparameterization—increasing model
size beyond the point of zero training error—improves av-
erage test error in a variety of settings, both empirically
(with neural networks, e.g., Nakkiran et al. (2019)) and the-
oretically (with linear and random projection models, e.g.,
Belkin et al. (2019); Mei & Montanari (2019)).

However, recent work has also demonstrated that models
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Figure 1. Top: Overparameterization hurts test error on the worst
group when models are trained with the reweighted objective that
upweights minority groups (Equation 3). Without reweighting,
models have poor worst-group error regardless of model size (Ap-
pendix A.1). Bottom: Consider data points (x, y), where x ∈ R2

comprises a core feature xcore (x-axis) and a spurious feature xspu
(y-axis). The label y is highly correlated with xspu, except on two
minority groups (crosses). Underparameterized models use the
core feature (left), but overparameterized models use the spurious
feature and memorize the minority points (right).

with low average error can still fail on particular groups of
data points (Blodgett et al., 2016; Hashimoto et al., 2018;
Buolamwini & Gebru, 2018). This problem of high worst-
group error arises especially in the presence of spurious
correlations, such as strong associations between label and
background in image classification (McCoy et al., 2019;
Sagawa et al., 2020). To mitigate this problem, common ap-
proaches reduce the worst-group training loss, e.g., through
distributionally robust optimization (DRO) or simply up-
weighting the minority groups. Sagawa et al. (2020) showed
these approaches improve worst-group error on strongly
regularized neural networks but fail to help standard neural
networks that can achieve zero training error, suggesting that
increasing model capacity by reducing regularization—and
perhaps by increasing overparameterization as well—can
exacerbate spurious correlations.
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Figure 2. We consider two image datasets, CelebA and Waterbirds,
where the label y is correlated with a spurious attribute a in a
majority of the training data. The % beside each group shows its
frequency in the training data. To measure how robust a model
is to the spurious attribute, we divide the data into groups based
on (y, a) and record the highest error incurred by a group. Figure
adapted from Sagawa et al. (2020).

In this paper, we investigate why overparameterization ex-
acerbates spurious correlations under the above approach
of upweighting minority groups. We first confirm on two
image datasets (Figure 2) that directly increasing overpa-
rameterization (i.e., increasing model size) indeed hurts
worst-group error, leading to models that are highly inaccu-
rate on the minority groups where the spurious correlation
does not hold (Section 3). In contrast, their underparameter-
ized counterparts obtain much better worst-group error, but
do worse on average. We also confirm that models trained
via empirical risk minimization (i.e., without upweighting
the minority) have poor worst-group test error regardless
of whether they are under- or overparameterized. Through
simulations on a synthetic setting, we further identify two
properties of the training data that modulate the effect of
overparameterization: (i) the relative sizes of the majority
versus minority groups, and (ii) how informative the spuri-
ous features are relative to the core features (Section 4).

Why does overparameterization exacerbate spurious correla-
tions? Underparameterized models do not rely on spurious
features because that would incur high training error on the
(upweighted) minority groups where the spurious correla-
tion does not hold. In contrast, overparameterized models
can always obtain zero training error by memorizing train-
ing examples, and instead rely on their inductive bias to
pick a solution—which features to use and which examples
to memorize—out of all solutions with zero training error.
Our results suggest an intuitive story of why overparame-
terization can hurt: because overparameterized models can
have an inductive bias towards “memorizing” fewer exam-
ples (Figure 1). If (i) the majority groups are sufficiently
large and (ii) the spurious features are more informative than

the core features for these groups, then overparameterized
models could choose to use the spurious features because it
entails less memorization, and therefore suffer high worst-
group test error. We test this intuition through simulations
and formalize it in a theoretical analysis (Section 5).

Our analysis also leads to the counterintuitive result that
on overparameterized models, subsampling the majority
groups is much more effective at improving worst-group
error than upweighting the minority groups. Indeed, an
overparameterized model trained on a subset of <5% of
the data performs similarly (on average and on the worst
group) to an underparameterized model trained on all the
data (Section 6). This suggests a possible tension between
using overparameterized models and using all the data; av-
erage error benefits from both, but improving worst-group
error seems to rely on using only one but not both.

2. Setup
Spurious correlation setup. We adopt the setting studied
in Sagawa et al. (2020), where each example comprises
the input features x, a label (core attribute) y ∈ Y , and
a spurious attribute a ∈ A. Each example belongs to a
group g ∈ G = Y × A, where g = (y, a). Importantly,
the spurious attribute a is correlated with the label y in
the training set. We focus on the binary setting in which
Y = {1,−1} and A = {1,−1}.

Applications. We study two image classification tasks (Fig-
ure 2). In the first task, the label is spuriously correlated
with demographics: specifically, we use the CelebA dataset
(Liu et al., 2015) to classify hair color between the labels
Y = {blonde, non-blonde}, which are correlated with the
gender A = {female, male}. In the second task, the label
is spuriously correlated with image background. We use the
Waterbirds dataset (based on datasets from Wah et al. (2011);
Zhou et al. (2017) and modified by Sagawa et al. (2020))
to classify between the labels Y = {waterbird, landbird},
which are spuriously correlated with the image back-
ground A = {water background, land background}. See
Appendix A.5 for more dataset details.

Objectives and metrics. We evaluate a model w by its
worst-group error,

Errwg(w) := max
g∈G

Ex,y|g [`0−1(w; (x, y))] , (1)

where `0−1 is the 0-1 loss. In other words, we measure the
error (% of examples that are incorrectly labeled) in each
group, and then record the highest error across all groups.
The standard approach to training models is empirical risk
minimization (ERM): given a loss function `, find the model
w that minimizes the average training loss

R̂ERM(w) = Ê(x,y,g) [`(w; (x, y))] . (2)



An Investigation of Why Overparameterization Exacerbates Spurious Correlations

However, in line with Sagawa et al. (2020), we find that
models trained via ERM have poor worst-group test error
regardless of whether they are under- or overparameterized
(Appendix A.1). To achieve low worst-group test error,
prior work proposed modified objectives that focus on the
worst-group loss, such as group distributionally robust op-
timization (group DRO) which directly optimizes for the
worst-group training loss (Hu et al., 2018; Sagawa et al.,
2020) or reweighting (Shimodaira, 2000; Byrd & Lipton,
2019). Sagawa et al. (2020) showed that both approaches
can help worst-group loss, though group DRO is typically
more effective. For simplicity, we focus on the well-studied
reweighting approach, which optimizes

R̂reweight(w) = Ê(x,y,g)

[
1

p̂g
`(w; (x, y))

]
, (3)

where p̂g is the fraction of training examples in group g.
The intuition behind reweighting is that it makes each group
contribute the same weight to the training objective: that is,
minority groups are upweighted, while majority groups are
downweighted. Note that this approach requires the groups
g to be specified at training time, though not at test time.

3. Overparameterization Hurts Worst-Group
Error

Sagawa et al. (2020) observed that decreasing L2 regulariza-
tion hurts worst-group error. Though increasing overparam-
eterization and reducing regularization can have different
effects (Zhang et al., 2017; Mei & Montanari, 2019), this
suggests that overparameterization might similarly exac-
erbate spurious correlations. Here, we show that directly
increasing overparameterization (model size) indeed hurts
worst-group error even though it improves average error.

Models. We study the CelebA and Waterbirds datasets de-
scribed above. For CelebA, we train a ResNet10 model (He
et al., 2016), varying model size by increasing the network
width from 1 to 96, as in Nakkiran et al. (2019). For Water-
birds, we use logistic regression over random projections, as
in Mei & Montanari (2019). Specifically, let x ∈ Rd denote
the input features, which we obtain by passing the input im-
age through a pre-trained, fixed ResNet-18 model. We train
an unregularized logistic regression model over the feature
representation ReLU(Wx) ∈ Rm, where W ∈ Rm×d is
a random matrix with each row sampled uniformly from
the unit sphere Sd−1. We vary model size by increasing
the number of projections m from 1 to 10,000. We train
each model by minimizing the reweighted objective (Equa-
tion (3)). For more details, see Appendix A.5.

Results. Overparameterization improves average test error
across both datasets, in line with prior work (Belkin et al.,
2019; Nakkiran et al., 2019) (Figure 3). However, in stark
contrast, overparameterization hurts worst-group error: the

best worst-group test error is achieved by an underparam-
eterized model with non-zero training error. On CelebA,
the smallest model (width 1) has 12.4% training error but
comparatively low worst-group test error of 25.6%. As
width increases, training error goes to zero but worst-group
test error gets worse, reaching >60% for overparameterized
models with zero training error. Similarly, on Waterbirds,
an underparameterized model with 90 random features and
training error of 17.7% obtains the best worst-group test
error of 26.6%, while overparameterized models with zero
training error yield worst-group test error of 42.4% at best.

In Appendix A.2, we also confirm that stronger regular-
ization improves worst-group error but hurts average error
in overparameterized models, while it has little effect on
both worst-group and average error in underparameterized
models. However, we focus on understanding the effect of
overparameterization in the remainder of the paper.

Discussion. Why does overparameterization hurt worst-
group test error? We make two observations. First, in the
overparameterized regime, the smallest groups incur the
highest test error (blonde males in CelebA and waterbirds
on land background in Waterbirds), despite having zero
training error. In other words, overparameterized models
perfectly fit the minority points at training time, but seem to
do so by using patterns that do not generalize. We informally
refer to this behavior as “memorizing” the minority points.

Second, underparameterized models do obtain low worst-
group error by learning patterns that generalize to both ma-
jority and minority groups. Therefore, overparameterized
models should also be able to learn these patterns while at-
taining zero training error (e.g., by memorizing the training
points that the underparameterized model cannot fit). De-
spite this, overparameterized models seem to learn patterns
that generalize well on the majority but do not work on the
minority (such as the spurious attributes a in Figure 2).

What makes overparameterized models memorize the mi-
nority instead of learning patterns that generalize well on
both majority and minority groups? We study this question
in the next two sections: in Section 4, we use simulations to
understand properties of the data distribution that give rise
to this trend, and in Section 5 we analyze a simplified linear
setting and show how the inductive bias of models towards
memorizing fewer points can lead to overparameterized
models choosing to use spurious correlations.

4. Simulation Studies
The discussion in Section 3 suggests two properties of the
training distribution that modulate the effect of overparame-
terization on worst-group error. Intuitively, overparameter-
ized models should be more incentivized to use the spurious
features and memorize the minority groups if (i) the propor-
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Figure 3. Increasing overparameterization (i.e., increasing model
size) hurts the worst-group test error even though it improves the
average test error. Here, we show results for models trained on the
reweighted objective for CelebA (left) and Waterbirds (right).

tion of the majority group, pmaj, is higher, and (ii) the ratio
of how informative the spurious features are relative to the
core features, rs:c, is higher. In this section, we use simu-
lations to confirm these intuitions and probe how pmaj and
rs:c affect worst-group error in overparameterized models.

4.1. Synthetic Experiment Setup

Data distribution. We construct a synthetic dataset that
replicates the empirical trends in Section 3. As in Section 2,
the label y ∈ {1,−1} is spuriously correlated with a spuri-
ous attribute a ∈ {1,−1}. We divide our training data into
four groups accordingly: two majority groups with a = y,
each of size nmaj/2, and two minority groups with a = −y,
each of size nmin/2. We define n = nmaj + nmin as the
total number of training points, and pmaj = nmaj/n as the
fraction of majority examples. The higher pmaj is, the more
strongly a is correlated with y in the training data.

Each (y, a) group has its own distribution over input features
x = [xcore, xspu] ∈ R2d comprising core features xcore ∈
Rd generated from the label/core attribute y, and spurious
features xspu ∈ Rd generated from the spurious attribute a:

xcore | y ∼ N (y1, σ2
coreId)

xspu | a ∼ N (a1, σ2
spuId). (4)

The core and spurious features are both noisy and encode
their respective attributes at different signal-to-noise ratios.
We define the spurious-core information ratio (SCR) as
rs:c = σ2

core/σ
2
spu. The higher the SCR, the more signal

there is about the spurious attribute in the spurious features,
relative to the signal about the label in the core features.

Compared to the image datasets we studied in Section 3,
this synthetic dataset offers two key simplifications. First,
the only differences between groups stem from their dif-
ferences in (y, a), which isolates the effect of flipping the
spurious attribute a. In contrast, in real datasets, groups can
differ in other ways, e.g., more label noise in one group.
Second, the relative difficulty of estimating y versus a is
completely governed by changing σ2

core and σ2
spu. In contrast,

real datasets have additional complications, e.g., estimating
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trends we observe in real data.
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Figure 5. Overparameterized models have poor worst-group perfor-
mance on the synthetic data because they rely on spurious features.
Left: removing the spurious feature (green) eliminates the detri-
mental effect of overparameterization. Right: overparameterized
models do well on the majority groups where the spurious features
match the label, but poorly on the minority groups.

y might involve a more complex function of the input x than
estimating a, and there might be an inductive bias towards
learning a simpler model over a more complex one.

In all of the experiments below, we fix the total number of
training points n to 3000, and set d = 100 (so each input
x has 2d = 200 dimensions). Unless otherwise specified,
we set the majority fraction pmaj = 0.9 and the noise levels
σ2
spu = 1 and σ2

core = 100 to encourage the model to use the
spurious features over the core features.

Model. To avoid the complexities of optimizing neural net-
works, we follow the same random features setup we used
for Waterbirds in Section 3: unregularized logistic regres-
sion using the reweighted objective on the random feature
representation ReLU(Wx) ∈ Rm, where W ∈ Rm×d is a
random matrix (Mei & Montanari, 2019).

4.2. Observations on Synthetic Dataset

The synthetic dataset replicates the trends we observe
on real datasets. Figure 4 shows how average and worst-
group error change with the number of parameters/random
projections m. This matches the trends we obtained on
CelebA and Waterbirds in Section 3. The best worst-group
test error of 28.5% is achieved by an underparameterized
model, whereas highly overparameterized models achieve
high worst-group test error that plateaus at around 55%. In
contrast, the average test error is better for overparameter-
ized models than for underparameterized models.
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Overparameterized models use spurious features. Fig-
ure 5-Right shows that overparameterized models have high
test error on minority groups (a = −y) despite zero training
error, but perform very well on the majority groups (a = y).
Since the only difference between the minority and majority
groups in the synthetic dataset is the relative signs of the
core and spurious attributes, this suggests overparameterized
models are using spurious features and simply memorizing
the minority groups to get zero training error, consistent
with our discussion in Section 3. In contrast, the underpa-
rameterized model has low training and test errors across all
groups, suggesting that it relies mainly on core features.

These results imply that the degradation in the worst-group
test error is due to the spurious features. We confirm that
overparameterization no longer hurts when we “remove”
the spurious features by replacing them with noise centered
around zero (i.e., we replace the mean of xspu by 0). In this
case, the best worst-group test error is now obtained by an
overparameterized model, as shown in Figure 5-Left.

4.3. Distributional Properties

What properties of the training data make overparameter-
ization hurt worst-group error? We study (i) pmaj, which
controls the relative size of majority to minority groups, and
(ii) rs:c, the relative informativeness of spurious to core fea-
tures. In the synthetic dataset, overparameterization hurts
worst-group test error only when both are sufficiently high.
In contrast, overparameterization helps average test error
regardless; see Appendix A.3.

Effect of the majority fraction pmaj. We observe that in-
creasing pmaj = nmaj/n, which controls the relative size of
the majority versus minority groups, makes overparameter-
ization hurt worst-group error more (Figure 6). When the
groups are perfectly balanced with pmaj = 0.5, overparam-
eterization no longer hurts the worst-group test error, with
overparameterized models achieving better worst-group test
error than all underparameterized models. This suggests
that group imbalance can be a key factor inducing the detri-
mental effect of overparameterization.

Effect of the spurious-core information ratio rs:c. Next,
we characterize the effect of rs:c = σ2

core/σ
2
spu, which mea-

sures the relative informativeness of the spurious versus core
features. A high rs:c means that the spurious features are
more informative. We vary rs:c by changing σ2

spu while keep-
ing σ2

core = 100 fixed, since this does not change the best
possible worst-group test error (with a model that uses only
the core features xcore). Figure 6 shows that the higher rs:c is,
the more overparameterization hurts. As rs:c increases, the
spurious features become more informative, and overparam-
eterized models rely more on them than the core features;
underparameterized models outperform overparameterized
models only for sufficiently large rs:c ≥ 1. Note that in-
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Figure 6. The higher the majority fraction pmaj and the spurious-
core information ratio rs:c, the more overparameterization hurts
the worst-group test error. With sufficiently low pmaj and rs:c,
overparameterization switches to helping worst-group test error.

creasing rs:c does not significantly affect the worst-group
test error in the underparameterized regime, since the core
features xcore are unaffected. In contrast, increasing the ma-
jority fraction pmaj hurts the worst-group test error in both
underparameterized and overparameterized models.

4.4. An Intuitive Story

We return to the question of what makes overparameterized
models memorize the minority instead of learning patterns
that generalize on both majority and minority groups. The
simulation results above show that of all overparameterized
models that achieve zero training error, the inductive bias of
the model class and training algorithm favors models that
use spurious features which generalize only for the majority
groups, instead of learning to use core features that also
generalize well on the minority groups.

What is the nature of this inductive bias? Consider a model
that predicts the label y by returning its estimate of the
spurious attribute a from xspu, taking advantage of the fact
that y and a are correlated in the training data. To get
achieve zero training error, it will need to memorize the
points in the minority group, e.g., by exploiting variations
due to noise in the features x. On the other hand, consider
a model that predicts y by returning a direct estimate of
y based on the core features xcore. Because xcore provides
a noisier estimate of y than xspu does for a, this model
will need to memorize all points for which xcore gives an
inaccurate prediction of y due to noise. Since the estimators
of the core and spurious attributes are equally easy to learn,
the main difference between these two models is the number
of examples to be memorized.

We therefore hypothesize that the inductive bias favors mem-
orizing as few points as possible. This is consistent with
the results above: the model uses xspu and memorizes the
minority points only when the fraction of minority points
is small (high majority fraction pmaj). Similarly, the model
uses xspu over xcore to fit the majority points only when
the spurious features are less noisy (high rs:c) and therefore
require less memorization to obtain zero training error than
the core features. In the next section, we make this intuition
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formal by analyzing a related but simpler linear setting.

5. Theoretical Analysis
In this section, we show how the inductive bias against
memorization leads to overparameterization exacerbating
spurious correlations. Our analysis explicates the effect of
the inductive bias and the importance of the data parameters
pmaj and rs:c discussed in Section 4.

The synthetic setting discussed in Section 4 is difficult to
analyze because of the non-linear random projections, so we
introduce a linear explicit-memorization setting that allows
us to precisely define the concept of memorization. For clar-
ity, we refer to the previous synthetic setting in Section 4
as the implicit-memorization setting. In Appendix A.4, we
show empirically that models in these two settings behave
similarly in the overparameterized regime, though they dif-
fer in the underparameterized regime.

In the previous implicit-memorization setting, we varied
model size and memorization capacity by varying the num-
ber of random projections of the input. In the new explicit-
memorization setting, we instead use linear models that act
directly on the input and introduce explicit “noise features”
that can be used to memorize. We vary the memorization
capacity by varying the number of explicit noise features.

5.1. Explicit-Memorization Setup

Training data. We consider input features x =
[xcore, xspu, xnoise], where the core feature xcore ∈ R and
the spurious feature xspu ∈ R are scalars. As in the implicit-
memorization setup, they are generated based on the label
and the spurious attribute, respectively:

xcore | y ∼ N (y, σ2
core), xspu | a ∼ N (a, σ2

spu).

The “noise” features xnoise ∈ RN are generated as

xnoise ∼ N
(

0,
σ2
noise

N
IN

)
,

where σ2
noise is a constant. The scaling by 1/N ensures that

for largeN , the norm of the noise vectors ‖xnoise‖22 ≈ σ2
noise

is approximately constant with high probability. Intuitively,
when N is large, overparameterized models can use xnoise
to fit a training point x without affecting its predictions
on other points, thereby memorizing x. We formalize this
notion of memorization later in Section 5.2.

As before, the training data is composed of four groups, each
corresponding to a combination of the label y ∈ {−1, 1}
and the spurious attribute a ∈ {−1, 1}: two majority groups
with a = y, each of size nmaj/2, and two minority groups
with a = −y, each of size nmin/2. Combined, there are n
training examples {(x(i), y(i))}ni=1.

Model. We study unregularized logistic regression on the
input features x ∈ RN+2. As before, we consider the
reweighted estimator ŵrw. When the training data is linearly
separable, the minimizer of the unregularized logistic loss
on the training data is not well-defined. We therefore define
ŵrw in terms of the sequence of L2-regularized models ŵrw

λ :

ŵrw
λ

def
= arg min

w∈RN+2

Ê(x,y,g)

[
1

p̂g
`(w; (x, y))

]
+
λ

2
‖w‖22,

where ` is the logistic loss and p̂g is the fraction of training
examples in group g. Since scaling a model does not affect
its 0-1 error, we define ŵrw as the limit of this sequence,
scaled to unit norm, as the regularization strength λ→ 0+:

ŵrw def
= lim

λ→0+

ŵrw
λ

‖ŵrw
λ ‖2

. (5)

In the underparameterized regime, the training data is not
linearly separable and we simply have ŵrw = ŵrw

0 /‖ŵrw
0 ‖2.

In the overparameterized regime whereN � n, the training
data is linearly separable, and Rosset et al. (2004) showed
that ŵrw = ŵmm, where ŵmm is the max-margin classifier

ŵmm def
= arg max
‖w‖2=1

min
i
y(i)(w · x(i)). (6)

The equivalence ŵrw = ŵmm holds regardless of the
reweighting by 1/p̂g: if we define the ERM estimator ŵerm

analogously to (5) without the reweighting, it is also equal
to ŵmm. We will therefore analyze ŵmm in the overparame-
terized regime since it subsumes both ŵrw and ŵerm.

We also note that if we use gradient descent to directly opti-
mize the unregularized logistic regression objective (either
reweighted or not), the resulting solution after scaling to
unit norm also converges to ŵmm as the number of gradient
steps goes to infinity (Soudry et al., 2018).

5.2. Analysis of Worst-Group Error

We now state our main analytical result: in the explicit-
memorization setting, the worst-group test error of a suffi-
ciently overparameterized model is greater than 1/2 (worse
than random) under certain settings of σ2

spu, σ
2
core, nmaj, nmin.

In contrast, underparameterized models attain reasonable
worst-group error even under such a setting.

Theorem 1. For any pmaj ≥
(
1− 1

2001

)
, σ2

core ≥ 1, σ2
spu ≤

1
16 log 100nmaj

, σ2
noise ≤

nmaj

6002 and nmin ≥ 100, there exists
N0 such that for all N > N0 (overparameterized regime),
with high probability over draws of the data,

Errwg(ŵmm) ≥ 2/3, (7)

where ŵmm is the max-margin classifier.

However, for N = 0 (underparameterized regime), with
pmaj =

(
1 − 1

2001

)
, σ2

core = 1, and σ2
spu = 0, and in the
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asymptotic regime with nmaj, nmin →∞, we have

Errwg(ŵrw) < 1/4, (8)

where ŵrw minimizes the reweighted logistic loss.

The result in the overparameterized regime applies to the
max-margin classifier ŵmm, which as discussed above sub-
sumes both ŵrw and ŵerm when the data is linearly separable.
The proof of Theorem 1 appears in Appendix B.

The conditions on σ2
spu and σ2

core in Theorem 1 above im-
ply high spurious-core information ratio rs:c. Theorem 1
therefore provides a setting where high pmaj and high rs:c
provably make overparameterized models obtain high worst-
group error, matching the trends we observed upon varying
pmaj and rs:c in the implicit-memorization setting (Figure 6).
Furthermore, underparameterized models obtain reasonable
worst-group error despite these conditions, mirroring the
observations in earlier sections.

5.3. Overparameterization and Memorization

We now sketch the key ideas in the proof of Theorem 1
(full proof in Appendix B), focusing first on the overpa-
rameterized regime. We start by establishing an inductive
bias towards learning the minimum-norm model that fits
the training data. We then define memorization and show
how the minimum-norm inductive bias translates into a bias
against memorization. Finally, we illustrate how the bias
against memorization leads to learning the spurious feature
and suffering high worst-group error.

Minimum-norm inductive bias. Define a separator as
any model that correctly classifies all of the training points
(x, y) with margin yw · x ≥ 1. Then from standard duality
arguments, ŵmm can be rewritten as ŵminnorm/‖ŵminnorm‖,
the scaled version of the minimum-norm separator ŵminnorm

ŵminnorm def
= arg min

w∈RN+2

‖w‖22 s.t. y(i)(w · x(i)) ≥ 1 ∀i. (9)

Since scaling does not affect the 0-1 test error, it suffices
to analyze ŵminnorm. Equation (9) shows that out of the set
of all separators (which all perfectly fit the training data),
the inductive bias favors the separator with the minimum
norm. We now discuss how this minimum-norm inductive
bias favors less memorization.

Memorization. For convenience, we denote the three com-
ponents of a model w as

w = [wcore, wspu, wnoise] , (10)

where wcore ∈ R, wspu ∈ R, and wnoise ∈ RN . By the
representer theorem, we can decompose wnoise as follows:

wnoise =
∑
i

α(i)x
(i)
noise. (11)

In the overparameterized regime when N � n, a model
can “memorize” a training point x(i) via wnoise, in partic-
ular by putting a large weight α(i) in the direction of x(i)

(Equation (11)):
Definition 1 (γ-memorization). A model w memorizes a
point x(i) if |α(i)| ≥ γ2/σ2

noise for some constant γ ∈ R.

Because the noise vectors of the training points (high-
dimensional Gaussians) are nearly orthogonal for large N ,
the component α(i)x

(i)
noise affects the prediction on x(i), but

not on any other training or test points.

This ability to memorize plays a crucial role in making
overparameterized models obtain high worst-group error.
Intuitively, the minimum-norm inductive bias favors less
memorization in overparameterized models. Roughly speak-
ing, models that memorize more have larger weights |α(i)|
on the noise vectors x(i)noise. Since these noise vectors are
nearly orthogonal and have similar norm, this translates into
a larger norm ‖wnoise‖22.

Comparing using xcore versus using xspu. To illustrate
how the inductive bias against memorization leads to high
worst-group error, we consider two extreme sets of sepa-
rators: (i) ones that use the spurious feature but not the
core feature, denoted byWuse−spu (ii) ones that use the core
feature but not the spurious feature, denoted byWuse−core.

Wuse−spu def
= {w ∈ RN+2 : w is a separator, wcore = 0}

Wuse−core def
= {w ∈ RN+2 : w is a separator, wspu = 0}.

(12)

In scenario (i), using the spurious feature xspu alone al-
lows models to fit the majority groups very well. Thus,
models that use xspu only need to memorize the minor-
ity points. In Proposition 1, we construct a separator
wuse−spu ∈ Wuse−spu and show that its norm only scales
with the number of minority points nmin.

Conversely, in scenario (ii), using the core feature xcore
alone allows models to fit all groups equally well. However,
when rs:c is high, xcore is noisier than xspu, so models that
use xcore still need to memorize a constant fraction of all
the training points. In Proposition 2, we show that norms of
all separators wuse−core ∈ Wuse−core are lower bounded by
a quantity linear in the total number of training points n.

When the majority fraction pmaj is sufficiently large such
that nmin � n, the separator wuse−spu that uses xspu will
have a lower norm than any separatorwuse−core ∈ Wuse−core

that uses xcore. Since the inductive bias favors the minimum-
norm separator, it prefers a separator wuse−spu that memo-
rizes the minority points and suffers high worst-group error
over any wuse−core ∈ Wuse−core.
Proposition 1 (Norm of models using the spurious feature).
When σ2

core, σ
2
spu satisfy the conditions in Theorem 1, there
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exists N0 such that for all N > N0, with high probability,
there exists a separator wuse−spu ∈ Wuse−spu such that

‖wuse−spu‖22 ≤ γ21 +

(
γ2nmin

σ2
noise

)
,

for some constants γ1, γ2 > 0.

Proof sketch. To simplify exposition in this sketch, suppose
that the noise vectors x(i)noise are orthogonal and have con-
stant norm ‖x(i)noise‖22 = σ2

noise. We construct a separator
wuse−spu ∈ Wuse−spu that does not use the core feature
xcore as follows. Set wuse−spu

spu = γ1 for some large enough
constant γ1 > 0. This is sufficient to satisfy the margin
condition on the majority points: since σ2

spu is very small,

w.h.p. all majority training points satisfy y(i)(x(i)spuγ1) ≥ 1.

However, for the minority training points, the spurious at-
tribute a does not match the label y, and in order to satisfy
the margin condition with a positive wuse−spu

spu , these nmin

minority points have to be memorized. Since σ2
spu is very

small, the decrease in the margin due to wuse−spu
spu = γ1 is

at most −ργ1 w.h.p. for some constant ρ that depends on
σ2
spu. To satisfy the margin condition, it thus suffices to set

α
(i)
use−spu = y(i)(1+ργ1)/σ2

noise, and the bound on the norm
follows. The full proof appears in Section B.2.6.

Proposition 2 (Norm of models using the core feature).
When σ2

core, σ
2
spu satisfy the conditions in Theorem 1 and

nmin ≥ 100, there exists N0 such that for all N > N0,
with high probability, all separators wuse−core ∈ Wuse−core

satisfy

‖wuse−core‖22 ≥
γ3n

σ2
noise

,

for some constant γ3 > 0.

Proof sketch. Any model wuse−core ∈ Wuse−core has
wuse−core

spu = 0 by definition. We show that a constant frac-
tion of training points have to be γ-memorized in order to
satisfy the margin condition. We do so by first showing that
the probability that a training point x satisfies the margin
condition without being γ-memorized cannot be too large.
For simplicity, suppose again that the noise vectors x(i)noise

are orthogonal and have constant norm ‖x(i)noise‖22 = σ2
noise.

Then this probability is P
(
xcorew

use−core
core ≤ 1 − γ2

)
≥

Φ(−1/σcore) for small γ, where Φ is the Gaussian CDF.
Hence, in expectation, at least a constant fraction of points
from the training distribution need to be memorized in order
for wuse−core to satisfy the margin condition. With high
probability, this is also true on the training set consisting
of n points (via the DKW inequality) and the bound on the
norm follows. The full proof appears in Section B.2.7.

In the full proof of Theorem 1 in Appendix B, we generalize
the above ideas to consider all separators in RN+2 instead
of just the separators in Wuse−spu⋃Wuse−core. Note the
importance of both rs:c and pmaj: when rs:c is high, models
that use xspu only need to memorize the minority groups
(Proposition 1), and when pmaj is also high, these models
end up memorizing fewer points than models that use xcore
and have to memorize a constant fraction of the entire train-
ing set (Proposition 2).

6. Subsampling
Our results above highlight the role of the majority frac-
tion pmaj in determining if overparameterization hurts worst-
group test error. When pmaj is large, the inductive bias favors
using spurious features because it entails memorizing only
a relatively small number of minority points, while the al-
ternative of using core features requires memorizing a large
number of majority points. This suggests that reducing the
memorization cost of using core features by directly remov-
ing some majority points could induce overparameterized
models to obtain low worst-group error.

Here, we show that this approach of subsampling the ma-
jority group achieves good worst-group test error on the
datasets studied above. Subsampling creates a new group-
balanced dataset by randomly removing training points in
all other groups to match the number of points from the
smallest group (Japkowicz & Stephen, 2002; Haixiang et al.,
2017; Buda et al., 2018). We then train a model to minimize
the average loss on this subsampled dataset. For a precise
description, see Appendix A.6.

Figure 7 shows that overparameterized models trained
via subsampling (Equation 15) obtain low worst-group
error on the CelebA, Waterbirds, and synthetic (implicit-
memorization) datasets. Across all three datasets, train-
ing via subsampling makes increasing overparameterization
help both average and worst-group test error. Moreover,
overparameterized models trained on subsampled data are
comparable to or better than the best models trained on the
full dataset (i.e., underparameterized models trained with
reweighting).

100 101 102

ResNet Width
0.0

0.1

0.2

0.3

Er
ro

r

CelebA

100 101 102 103 104

Parameter Count
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Waterbirds

100 101 102 103 104

Parameter Count
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Synthetic

worst-group test
worst-group train

average test
average train

Figure 7. Overparameterization helps worst-group test error when
training via subsampling, which involves creating a group-
balanced dataset by reducing the number of majority points and
minimizing average training loss on the new dataset.
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Subsampling seems wasteful since it throws away a large
fraction of the training data: we only use 3.4% of the full
training data for CelebA, 4.6% for Waterbirds, and 10% for
the synthetic dataset. However, the results above show
that subsampling in overparameterized models matches
or outperforms reweighting with underparameterized mod-
els. For example, on CelebA, an overparameterized model
trained via subsampling obtains 11.1% average test and
15.1% worst-group test error, whereas an underparameter-
ized model trained with reweighting obtains 11.3% average
and 25.6% worst-group test error.

Subsampling vs. reweighting. Both subsampling and
reweighting artificially balance the groups in the training
data, and previous work on imbalanced datasets has con-
cluded that reweighting is typically at least as effective
as subsampling (Buda et al., 2018). However, we find a
clear difference between subsampling and reweighting in
the overparameterized regime: increasing overparameteri-
zation with reweighting increases worst-group error, while
doing so with subsampling decreases worst-group error. The
intuition developed in Sections 4 and 5 shed some light on
this difference. Consider an overparameterized model: as in
Section 5.1, reweighting does not change the learned model
which is the max-margin classifier. However, subsampling
reduces pmaj. Recall that the inductive bias favors spurious
features when the alternative of using core features requires
memorizing a large number of training points. By reducing
pmaj, we reduce this memorization cost associated with core
features, thereby inducing the model to use core features
and achieve low worst-group test error.

7. Related Work
The effect of overparameterization. The effect of overpa-
rameterization on average test error has been widely studied.
In what is commonly referred to as “double descent”, in-
creasing model size beyond zero training error decreases test
error, despite conventional wisdom that overfitting should
increase test error. This behavior has been observed empir-
ically (Belkin et al., 2019; Opper, 1995; Advani & Saxe,
2017; Nakkiran et al., 2019) and shown analytically in high-
dimensional regression (Hastie et al., 2019; Bartlett et al.,
2019; Mei & Montanari, 2019). These works focus on av-
erage test error and are consistent with our findings there.
However, our focus is on worst-group test error, particularly
when the groups are defined based on spurious attributes,
and in this paper we establish that worst-group test error can
behave quite differently from average test error.

Increasing overparameterization can actually improve model
robustness to some types of distributional shifts (Hendrycks
et al., 2019; Hendrycks & Dietterich, 2019; Yang et al.,
2020). In this light, our results show that the effect of over-
parameterization on model robustness can depend heavily

on the dataset (e.g., properties like pmaj and rs:c), type of
distributional shift, and training procedure.

Worst-group error. Prior work on improving worst-group
error focused on the underparameterized regime, with meth-
ods based on weighting/sampling (Shimodaira, 2000; Jap-
kowicz & Stephen, 2002; Buda et al., 2018; Cui et al., 2019),
distributionally robust optimization (DRO) (Ben-Tal et al.,
2013; Namkoong & Duchi, 2017; Oren et al., 2019), and fair
algorithms (Dwork et al., 2012; Hardt et al., 2016; Klein-
berg et al., 2017). Our focus is on the overparameterized,
zero-training-error regime; here, previous methods based
on reweighting and DRO are ineffective (Wen et al., 2014;
Byrd & Lipton, 2019; Sagawa et al., 2020). As mentioned in
Section 1, Sagawa et al. (2020) demonstrated that stronger
L2-regularization can improve worst-group error on neural
networks (when coupled with reweighting or group DRO).
Similarly Cao et al. (2019) show that data-dependent regu-
larization can improve error on rare labels. While their work
focuses on developing methods to improve worst-group er-
ror, our focus is on understanding the mechanisms by which
overparameterization hurts worst-group error.

8. Discussion
Our work shows that overparameterization hurts worst-
group error on real datasets that contain spurious corre-
lations. We studied the implicit- and explicit-memorization
settings to provide a potential story for why this might oc-
cur: there can be an inductive bias towards solutions that do
not need to memorize as many training points, and this can
favor models that exploit the spurious correlations.

However, our synthetic settings make several simplifying
assumptions, e.g., they suppose that the model prefers the
spurious feature because it is less noisy than the core fea-
ture. This assumption need not always apply, and different
assumptions might also lead to overparameterization exacer-
bating spurious correlations. For example, there might exist
a true classifier based on the core features which has high
accuracy but which is relatively more complex (e.g., high
parameter norm) and therefore not favored by the training
procedure. Studying the effect of overparameterization in
settings such as those is important future work.

We also observed that subsampling allows overparameter-
ized models to achieve low average and worst-group test
error, despite eliminating a large fraction of training exam-
ples. In contrast, when using the full training data, only
underparameterized models attain low worst-group test er-
ror under our current training methods. These observations
call for future work to develop methods that can exploit both
the statistical information in the full training data as well
as the expressivity of overparameterized models, so as to
attain good worst-group and average test error.
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