
An Investigation of Why Overparameterization Exacerbates Spurious Correlations

A. Supplemental experiments
A.1. ERM models have poor worst-group error regardless of the degree of overparameterization

In the main text, we focused on reweighted models, trained with the reweighted objective on the full data (Sections 3-5), as
well as subsampled models, trained on subsampled data with the ERM objective (Section 6). Here, we study the effect of
overparameterization on ERM models, trained with the ERM objective on the full data. Consistent with prior work, we
observe that ERM models obtain poor worst-group error (near or worse than random), regardless of whether the model is
underparameterized or overparameterized (Sagawa et al., 2020). We also confirm that overparameterization helps average
test error (see, e.g., Nakkiran et al. (2019); Belkin et al. (2019); Mei & Montanari (2019)).

Empirical results. We first consider the CelebA and Waterbirds dataset, following the experimental set-up of Section 3
but now training with the standard ERM objective (Equation (2)) instead of the reweighted objective (Equation (3)).

On these datasets, overparameterization helps the average test error (Figure 8). As model size increases past the point of
zero training error, the average test error decreases. The best average test error is obtained by highly overparameterized
models with zero training error—4.6% for CelebA at width 96, and 4.2% for Waterbirds at 6,000 random features.

In contrast, the worst-group error is consistently high across model sizes: it is consistently worse than random (>50%) for
CelebA and nearly random (44%) for Waterbirds (Figure 8). These worst-group errors are much worse than those obtained
by reweighted, underparameterized models (25.6% for CelebA and 26.6% for Waterbirds; see Section 3). Thus, while
overparameterization helps ERM models achieve better test error, these models all fail to yield good worst-group error
regardless of the degree of overparameterization.
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Figure 8. The effect of overparameterization on the average and worst-group error of an ERM model. Increasing model size helps average
test error, but worst-group error remains poor across model sizes.

Simulation results. We also evaluate the effect of overparameterization on ERM models on the synthetic dataset introduced
in Section 4. As above, ERM models fail to achieve reasonable worst-group test error across model sizes, but improve in
average test error as model size increases (Figure 8). The best average test error is obtained by a highly overparameterized
model with zero training error—9.0% error at 9,000 random features—while the worst-group test error is nearly random or
worse (> 48%) across model sizes.

A.2. Stronger L2 regularization improves worst-group error in overparameterized reweighted models

In the main text, we studied models with default/weak or no L2 regularization. In this section, we study the role of L2

regularization in modulating the effect of overparameterization on worst-group error by changing the hyperparameter λ that
controls L2 regularization strength. Overall, we find that increasing L2 regularization (to the point where models do not
have zero training error) improves worst-group error but hurts average error in overparameterized reweighted models. In
contrast, L2 regularization has little effect on both worst-group and average error in the underparameterized regime.
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Strong L2 regularization improves worst-group error in overparameterized reweighted models. In the main text,
we trained ResNet10 models with default, weak regularization (λ = 0.0001) on the CelebA dataset, and unregularized
logistic regression on the Waterbirds and synthetic datasets. Here, we consider strongly-regularized models with λ = 0.1
for both types of models; unlike before, these models no longer achieve zero training error even when overparameterized.
Figure 9 shows the results of varying model size on strongly-regularized ERM, reweighted, and subsampled models on the
three datasets.

On all three datasets, with strong regularization, ERM models continue to yield poor worst-group test error across model sizes,
with similar or worse worst-group test error compared to with weak/ no regularization. Conversely, strongly-regularized
subsampled models continue to achieve low worst-group test error across model sizes.

Where strong regularization has a large effect is on reweighted models. With reweighting, we find that strong regularization
improves worst-group error in overparameterized models: across all three datasets, the worst-group test error in the
overparameterized regime is much lower for the strongly-regularized models than their weakly regularized or unregularized
counterparts (Figure 3). These results are consistent with similar observations made in Sagawa et al. (2020). However,
even though strongly-regularized overparameterized models outperform weakly-regularized overparameterized models,
overparameterization can still hurt the worst-group error in strongly-regularized reweighted models. On the CelebA and
synthetic datasets, with λ = 0.1, the best worst-group error is still obtained by an underparameterized model for the CelebA
and synthetic datasets, though overparameterization seems to help worst-group error on the Waterbirds dataset at least in the
range of model sizes studied.
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Figure 9. Strongly-regularized models have lower worst-group error than their weakly-regularized counterparts in the overparameterized
regime (Figure 3). Even under strong regularization, increasing model size can hurt the worst-group error on the CelebA (top) and
synthetic (bottom) datasets, although overparameterization seems to improve worst-group error in the Waterbirds datase (middle) for the
range of model sizes studied.
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Overparameterized models require strong regularization for worst-group test error but not average test error.
Given a fixed overparameterized model size, how does its performance change with the L2 regularization strength λ? We
study this with the logistic regression model on the Waterbirds and synthetic datasets, using a model size of m = 10, 000
random features and varying the L2 regularization strength from λ = 10−9 to λ = 102. 1

Results are in Figure 10. As before, ERM models obtain poor worst-group error regardless of the regularization strength, and
subsampled models are relatively insensitive to regularization, achieving reasonable worst-group error at most settings of λ.

For reweighted models, however, having the right level of regularization is critical for obtaining good worst-group test error.
On both datasets, the best worst-group test error is obtained by strongly-regularized models that do not achieve zero training
error. In contrast, increasing regularization strength hurts average error, with the best average test error attained by models
with nearly zero regularization.
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Figure 10. The effect of regularization on overparameterized random features logistic regression models (m = 10, 000). ERM models
(left) do consistently poorly while subsampled models (right) do consistently well on worst-group error. For reweighted models (middle),
the best worst-group error is obtained by a strongly-regularized model that does not achieve zero training error.

L2 regularization affects where worst-group test error plateaus as model size increases. In the above experiments,
we kept either model size or regularization strength fixed, and varied the other. Here, we vary both: we consider L2

regularization strengths λ ∈ {10−9, 10−6, 0.001, 0.1, 10} and investigate the effect of increasing model size for each λ. We
plot the results for Waterbirds and the synthetic dataset in Figure 11 and Figure 12 respectively.

For reweighted models, the results match what we observed above. Strengthening L2 regularization reduces the detrimental
effect of overparameterization on worst-group error. For any fixed model size in the overparameterized regime, the worst-
group test error improves as λ increases up to a certain value. Worst-group test error seems to plateau at different values as
model size increases, depending on the regularization strength, though we note that it is possible that further increasing model
size beyond the range we studied might lead models with different regularization strengths to eventually converge. Further
empirical studies as well as theoretical characterization of the interaction between regularization and overparameterization
are needed to confirm this phenomenon.

Given sufficiently large λ (e.g., λ = 10 for both Waterbirds and synthetic datasets), overparameterized models seem to

1We did not run this experiment on the CelebA dataset for computational reasons, as doing so would have required tuning a different
learning rate for each choice of regularization strength.
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outperform underparameterized models, at least for the range of model sizes studied. However, we caution that this trend
does not seem to hold on the CelebA dataset (Figure 9).

Finally, in contrast with its effects on overparameterized models, regularization seems to only have a modest effect on
worst-group test error in the underparameterized regime.
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Figure 11. The effect of overparameterization on models with different L2 regularization strengths λ on the Waterbirds dataset. Different
regularization strengths are shown in different colors, with training and test errors plotted in light and dark colors, respectively.
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Figure 12. The effect of overparameterization on models with different L2 regularization strengths λ on the synthetic dataset. The plotting
scheme follows that of Figure 11.
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A.3. Overparameterization helps average test error on the synthetic data regardless of pmaj and rs:c

Figure 13 shows how the average test error changes as a function of model size under different settings of the majority fraction
pmaj and the spurious-core ratio rs:c on the synthetic dataset introduced in Section 4. As expected, overparameterization
helps the average test error regardless of SCR and the majority fraction.
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Figure 13. The effect of overparameterization on average error of a reweighted model on synthetic data. Different values of pmaj and rs:c
are plotted in different colors, with training and test errors plotted in light and dark colors, respectively. Across all values of pmaj and rs:c,
overparameterization helps the average test error.

A.4. Comparison between implicit and explicit implicit memorization

To motivate the explicit-memorization setting, we ran some brief experiments to show that in the overparameterized
regime, linear models in the explicit-memorization setting behave similarly to random projection (RP) models in the
implicit-memorization setting, with σ2

core and σ2
spu in the latter scaled up by a factor of d (Figure 14). Recall that in the latter,

xcore ∈ Rd is distributed as xcore|y ∼ N (y, σ2
coreId). Roughly speaking, all the information about y is contained in the mean

x̄core = 1
d

∑
j xcore,j , which is distributed as N (y, σ2

coreId/d). In the explicit-memorization setting, we can view xcore ∈ R
as equivalent to x̄core in the implicit-memorization setting (and similarly for xspu), explaining the quantitative fit observed in
Figure 14.

However, in the highly underparameterized regime, the RP models do poorly because of model misspecification (owing to a
small number of random projections), whereas the linear models can still learn to use xcore and therefore do well.
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Figure 14. The effect of overparameterization on the worst-group test error for linear models in the explicit-memorization setting
(σ2

core = 1, σ2
spu = 0.01, σ2

noise = 1) and random projection models in the implicit-memorization setting (σ2
core = 100, σ2

spu = 1, d = 100).
The models agree in the overparameterized regime.

A.5. Experimental details

Waterbirds and CelebA datasets. For the CelebA dataset, we use the official train-val-test split from Liu et al. (2015),
with the Blond Hair attribute as the target y and the Male as the spurious association a.

For the Waterbirds dataset, we follow the setup in Sagawa et al. (2020); for convenience, we reproduce some details of how
it was constructed here. This dataset was obtained by combining bird images from the CUB dataset (Wah et al., 2011) with
backgrounds from the Places dataset (Zhou et al., 2017). The CUB dataset comes with annotations of bird species. For the
Waterbirds dataset, each bird was labeled was a waterbird if it was a seabird or waterfowl in the CUB dataset; otherwise, it
was labeled as a landbird. Bird images were cropped using the provided segmentation masks and placed on either a land
(bamboo forest or broadleaf forest) or water (ocean or natural lake) background obtained from the Places dataset.

For Waterbirds, we follow the same train-val-test split as in Sagawa et al. (2020). Note that in these validation and test sets,
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landbirds and waterbirds are uniformly distributed on land and water backgrounds so that accuracy on the rare groups can be
more accurately estimated. When calculating average test accuracy, we therefore first compute the average test accuracy
over each group and then report a weighted average, with weights corresponding to the relative proportion of each group in
the skewed training dataset.

We post-process Waterbirds by extracting feature representations taken from the last layer of a ResNet18 model pre-trained
on ImageNet. We use the Pytorch torchvision implementation of the ResNet18 model for this. All models on the
Waterbirds dataset in our paper are logistic regression models trained on top of this (fixed) feature representation.

ResNet. We used a modified ResNet10 with variable widths, following the approach in Nakkiran et al. (2019) and
extending the torchvision implementation. We trained all ResNet10 models with stochastic gradient descent with
momentum of 0.9 and a batch size of 128, with the L2 regularization parameter λ was passed in to the optimizer as the
weight decay parameter. In the experiments in the main text, we used the default setting of λ = 10−4. We used a fixed
learning rate instead of a learning rate schedule and selected the largest learning rate for which optimization was stable,
following Sagawa et al. (2020). This resulted in learning rates of 0.01 and 0.0001 for λ = 10−4 and λ = 0.1, respectively,
across all training procedures. As in the original ResNet paper (He et al., 2016), we used batch normalization (Ioffe &
Szegedy, 2015) and no dropout (Srivastava et al., 2014), and for simplicity, we trained all models without data augmentation.

We trained for 50 epochs for ERM and reweighted models and 500 epochs for subsampled models (due to smaller number
of examples per epoch). We found that worst-group error can be unstable across epochs due to the small sample size and
relatively large learning rate, so in our results we report the error averaged over the last 10 epochs.

Logistic regression. We used the logistic regression implementation from scikit-learn, training with the L-BFGS
solver until convergence with tolerance 0.0001, and setting the regularization parameter as C = 1/(nλ). For unregularized
models, we set λ = 10−9 for numerical stability.

A.6. Subsampling

Formally, given a set of groups G and a dataset D comprising a set of n training points with their group identities
{(x(i), y(i), g(i))}, the subsampling procedure involves two steps. First, we group training points based on group identities:

Dg
def
= {(x(i), y(i)) | g(i) = g} for each g ∈ G. (13)

For each group g, we select a subset Dss
g ⊆ Dg uniformly at random from Dg such that each subset has the same number of

points as the smallest group in the training set. We form a new dataset Dss by combining these subsets:

Dss =
⋃
g∈G

Dss
g , where (14)

Dss
g ⊆ Dg and |Dss

g | = min
g∈G
|Dg|

Note that Dss is group-balanced, with pmaj = 0.5. We then train a model by minimizing the average loss on Dss,

R̂subsample(w)
def
=

1

|Dss|
∑

(x,y)∈Dss

`(w; (x, y)). (15)

Since Dss is group-balanced, the reweighted training loss (Equation 3) has the same weight on all training points and
minimizing the reweighted objective on Dss is equivalent to minimizing the average loss objective above.

B. Proof of Theorem 1
Here, we detail the proof of Theorem 1 presented in Section 5. We structure the proof by splitting Theorem 1 into two
smaller theorems: one for the overparameterized regime (Appendix B.2), and another for the underparameterized regime
(Appendix B.3).



An Investigation of Why Overparameterization Exacerbates Spurious Correlations

B.1. Notation and definitions.

We denote the separate components of the weight vector ŵcore ∈ R, ŵspu ∈ R, ŵnoise ∈ RN such that

ŵ = [ŵcore, ŵspu, ŵnoise]. (16)

Further, by the representer theorem, we decompose ŵnoise as

ŵnoise =

n∑
i=1

α(i)(ŵ)x
(i)
noise. (17)

Note that α(i)(w) is equivalent to the α(i) referred to in the main text. Recall that we define memorization of each training
point x(i) by the weight α(i) as follows.

Definition 2 (γ-memorization). Consider a separator ŵ on training data {(x(i), y(i))}ni=1. For some constant γ ∈ R, we
say that a model γ-memorizes a training point if ∣∣∣α(i)(ŵ)

∣∣∣ > γ2

σ2
noise

. (18)

The component α(i)(ŵ)x
(i)
noise serves to “memorize” x(i) when N is sufficiently large, as it affects the prediction on x(i) but

not on any other training or test points (because noise vectors are nearly orthogonal when N is large). In the proof, we set
the constant γ2 appropriately (based on other parameter settings in Theorem 1) to get the required result.

Finally, let Gmaj, Gmin denote the indices of training points in the majority and minority group respectively.

B.2. Overparameterized regime

In our explicit-memorization set-up, sufficiently overparameterized models provably have high worst-group error under
certain settings of σ2

spu, σ
2
core, nmaj, nmin as stated in Theorem 1 (restated below as Theorem 2).

Theorem 2. For any pmaj ≥
(
1 − 1

2001

)
, σ2

core ≥ 1, σ2
spu ≤ 1

16 log 100nmaj
, σ2

noise ≤
nmaj

6002 and nmin ≥ 100, there exists N0

such that for all N > N0 (overparametrized regime), with high probability over draws of the data,

Errwg(ŵmm) ≥ 2/3, (19)

where ŵmm is the max-margin classifier.

In Section 5, we sketched key ideas in the proof by considering special families of separators: because the minimum-norm
inductive bias favors less memorization, models can prefer to learn the spurious feature and memorize the minority examples
(entailing high worst-group error), instead of learning the core feature and memorizing some fraction of all training points
(possibly attaining reasonable worst-group error). We now provide the full proof of Theorem 2, generalizing the above key
concepts by considering all separators.

Proof. Recall from Section 5 that we consider the maximum-margin classifier ŵminnorm:

ŵminnorm = arg min ‖w‖22 s.t. y(i)(w · x(i)) ≥ 1, ∀i. (20)

In other words, ŵminnorm is the minimum-norm separator, where separator is a classifier with zero training error and required
margins, satisfying y(i)(w · x(i)) ≥ 1 for all i. We analyze the worst-group error of the minimum-norm separator ŵminnorm

as outlined below:

1. We first upper bound the fraction of majority examples memorized by the minimum-norm separator ŵminnorm. We show
that there exists a separator that can use spurious features and needs to memorize only the minority points (Lemma 1)
for the parameter settings in Theorem 2 where σspu is sufficiently small. Since the norm of a separator is roughly scales
with the number of points memorized (|α(i)(ŵ)| ≥ γ2/σ2

noise), we have an upper bound on the number of training
points memorized by ŵminnorm. Since the number of majority points is much larger than the number of minority points,
this says that only a small fraction of majority points could be memorized by ŵminnorm.
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2. Next, we observe that since the core feature is noisy as per the parameter setting in Theorem 2, if we do not use
the spurious feature, a constant fraction of majority points have to be memorized if spurious features are not used.
Conversely, if less than this fraction of majority points can be memorized, the separator must use spurious features.
Since using spurious features leads to higher worst-group test error, this reveals a trade-off between the worst-group
test error of a separator and the fraction of majority points that it memorizes at training time. Succinctly, smaller
fraction memorized implies the use of spurious features which in turn implies higher worst-group test error. Smaller
worst-group test error requires eliminating the use of spurious features which would lead to a large fraction of majority
points requiring memorization in order for a classifier to be a separator. We formalize the above trade-off between the
worst-group test error and fraction of majority examples to be memorized in Proposition 3.

Combining the two steps together, since ŵminnorm memorizes only a small fraction of majority points by virtue of being the
minimum norm separator, ŵminnorm suffers high worst-group test error.

We now formally prove Theorem 2, invoking propositions that we prove in subsequent sections.

B.2.1. BOUNDING THE FRACTION OF MEMORIZED EXAMPLES IN THE MAJORITY GROUPS.

In the first part of the proof, we show that the minimum-norm separator ŵminnorm “memorizes” a small fraction of the
majority examples. Formally, we study the quantity δmaj-train

(
ŵ, γ2

)
defined as follows.

Definition 3. Consider a separator ŵ on training data {(x(i), y(i))}ni=1. Let δmaj-train
(
ŵ, γ2

)
be the fraction of training

examples that ŵ γ-memorizes in the majority groups:

δmaj-train
(
ŵ, γ2

) def
=

1

nmaj

∑
i∈Gmaj

I
[∣∣∣α(i)(ŵ)

∣∣∣ > γ2

σ2
noise

]
(21)

We provide an upper bound on δmaj-train
(
ŵminnorm, γ2

)
(Lemma 4) by first bounding ‖ŵminnorm‖ and then bounding

δmaj-train
(
ŵminnorm, γ2

)
in terms of ‖ŵminnorm‖.

Bounding ‖ŵminnorm‖

Lemma 1. There exists a separator wuse−spu that satisfies y(i)(wuse−spu · x(i)) ≥ 1, ∀i ∈ Gmaj, Gmin. The norm of this
separator gives a bound on ‖ŵminnorm‖ as follows. For the parameter settings under Theorem 2, with high probability, we
have

‖ŵminnorm‖22 ≤ ‖wuse−spu‖22 ≤ u2 + s2σ2
noise(1 + c1)nmin +

s2σ2
noise

n4
, (22)

for constants u = 1.3125, s = 2.61
σ2
noise

.

Proof. In order to get an upper bound on ‖ŵminnorm‖, we compute the norm of a particular separator. Concretely, we
consider a separator wuse−spu of the following form:

wuse−spu
core = 0

wuse−spu
spu = u

wuse−spu
noise =

∑
i

α(i)(wuse−spu)x
(i)
noise

α(i)(wuse−spu) = 0 for i ∈ Gmaj

α(i)(wuse−spu) = y(i)s for i ∈ Gmin

First, because we are interested in wuse−spu that does not use the core feature and relies on the spurious feature instead, we let
wuse−spu

core = 0 and wuse−spu
spu = u, u ∈ R. We set the value u appropriately so that none of the majority points are memorized

(corresponding to α(i)(wuse−spu) = 0 for all i ∈ Gmaj). However since the spurious correlations are reversed in the minority
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points and wuse−spu
core = 0, the minority points have to be memorized. For simplicity, we set α(i)(wuse−spu) = y(i)s for all

i ∈ Gmin.

Now it remains to select appropriate values of constants u and s such that y(i)(wuse−spu ·x(i)) ≥ 1 is satisfied for all training
examples.

For majority points, this involves setting u large enough such that the less noisy spurious feature can be used to obtain the
required margin. Without loss of generality, assume y(i) = 1. Formally, for i ∈ Gmaj,

wuse−spu · x(i) ≥ x(i)spuu+
∑
j∈Gmin

sx
(i)
noise · x

(j)
noise

≥ 4/5u+
∑
j∈Gmin

sx
(i)
noise · x

(j)
noise, w.h.p. from Lemma 5 with a = y = 1

≥ 4/5u− sσ2
noise

n5
, w.h.p. from Lemma 8.

≥ 4/5u− sσ2
noise

100
.

The first inequality follows from the fact that σspu is small enough under the parameter settings of Theorem 2 to allow a
uniform bound on x(i)spu (Lemma 5). The second inequality follows from setting the number of random features N to be large
enough so that the noise features are near orthogonal (Lemma 8). Conversely, we have

4/5u− sσ2
noise

100
≥ 1 =⇒ wuse−spu is a separator on the majority points w.h.p. (23)

Notice that the condition in Equation 23 requires that u be greater than 0. Since the minority points have spurious attribute
a = −y, we need to set s to be large enough so that wuse−spu as defined above separates the minority points. Just as before,
we set y = 1 WLOG. For i ∈ Gmin, we have

wuse−spu · x(i) ≥ x(i)spuu+
∑
j∈Gmin

sx
(i)
noise · x

(j)
noise

≥ −6/5u+
∑
j∈Gmin

sx
(i)
noise · x

(j)
noise, From Lemma 5 with a = −y = −1

≥ −6/5u+ s(1− c1)σ2
noise −

sσ2
noise

n5
, w.h.p from Lemma 8 and Lemma 9

≥ −6/5u+ s(1− c1)σ2
noise −

sσ2
noise

100
.

The steps are similar to the condition for majority points, with the key difference that the contribution from the noise term
involves s‖x(i)noise‖22 (Lemma 9).

Conversely, we have

−6/5u+ s(1− c1)σ2
noise −

sσ2
noise

100
≥ 1 =⇒ wuse−spu is a separator on the minority points w.h.p.. (24)

A set of parameters that satisfies both conditions above Equation 24 and Equation 23 is the following:

u = 1.3125, sσ2
noise = 2.61.

We use the fact that c1 < 1/2000 (From Lemma 9).

Finally, we have w.h.p,

‖wuse−spu‖22 ≤ u2 + s2σ2
noise(1 + c1)nmin +

s2σ2
noise

n4
. (25)

This follows from bounds on ‖x(i)noise‖22 (Lemma 9) and sum of less than n2 terms involving s2x(i)noise · x
(j)
noise (using Lemma 8).
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Bounding δmaj-train
(
ŵ, γ2

)
in terms of ‖ŵ‖

Lemma 2. For a separator ŵ with bounded α(i)(ŵ)2 ≤ 10n
σ2
noise

for all i = 1, . . . , n, its norm can be bounded with high
probability as

‖ŵ‖22 ≥
γ4(1− c1)

σ2
noise

δmaj-train
(
ŵ, γ2

)
nmaj −

10

σ2
noisen

3
(26)

under the parameter settings of Theorem 2.

Proof. The result follows bounded norms (Lemma 9), bounded dot products (Lemma 8), and the definition of δmaj-train
(
ŵ, γ2

)
(Definition 3).

‖ŵ‖22 ≥
∑
i∈Gmaj

α(i)(ŵ)
2
‖x(i)noise‖

2
2 +

∑
j 6=k

α(j)(ŵ)α(k)(ŵ)x
(j)
noise · x

(k)
noise (27)

≥
(γ4(1− c1)

σ2
noise

)
δmaj-train

(
ŵ, γ2

)
nmaj︸ ︷︷ ︸

Choosing only points with α(i)(ŵ) ≥ γ2/σ2
noise

− M2

σ2
noisen

4︸ ︷︷ ︸
maxα(i)(ŵ) = M/σ2

noise

, w.h.p. (28)

≥ γ4(1− c1)

σ2
noise

δmaj-train
(
ŵ, γ2

)
nmaj −

10

σ2
noisen

3
(29)

Bounding δmaj-train
(
ŵminnorm, γ2

)
We now apply Lemma 1 and Lemma 2 in order to bound δmaj-train

(
ŵminnorm, γ2

)
, showing that the fraction of majority points

that are memorized is small for appropriate choice of γ.

To invoke Lemma 2, we first show that the coefficient α(i)(ŵminnorm) is bounded above with high probabiltity.

Lemma 3. Under the parameter settings of Theorem 2, with high probability, α(i)(ŵminnorm) is bounded above for
i = 1, . . . , n as

α(i)(ŵminnorm)
2
≤ 10n

σ4
noise

. (30)

Proof. Let max
i
α(i)(ŵminnorm) = M

σ2
noise

.

‖ŵminnorm‖22 ≥ ‖ŵminnorm
noise ‖22 (31)

=
∑

i∈GminGmaj

α(i)(ŵminnorm)
2
‖x(i)noise‖

2
2 +

∑
i,j

α(i)(ŵminnorm)α(j)(ŵminnorm)x
(i)
noise · x

(j)
noise (32)

≥ M2(1− c1)

σ2
noise

− M2

σ2
noisen

6
n2 (33)

≥ M2(1− c1)

σ2
noise

− M2

σ2
noisen

4
. (34)
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From the upper bound on ‖ŵminnorm‖22 (Lemma 1), we have

M2(1− c1)

σ2
noise

− M2

σ2
noisen

4
≤ u2 + s2σ2

noise(1 + c1)nmin +
s2σ2

noise

n4
(35)

=⇒ M2

(
1− c1 −

1

n4

)
≤ u2σ2

noise + (sσ2
noise)

2

(
(1 + c1)nmin +

1

n4

)
(36)

=⇒ M2

(
1− c1 −

1

n4

)
≤ u2 nmaj

360000
+ (sσ2

noise)
2

(
(1 + c1)nmin +

1

n4

)
, (37)

From a bound on σ2
noise in the parameter settings. (38)

Since c1 < 1/2000, and n ≥ 2000, setting u = 1.3125, sσ2
noise = 2.61, we get M2 ≤ 10n.

Now, we are ready to show that δmaj-train
(
ŵminnorm, γ2

)
is small.

Lemma 4. Under the parameter settings of Theorem 2, the following is true with high probability.

δmaj-train

(
ŵminnorm,

9

10

)
≤ 1/200, (39)

Proof. Applying Lemma 2 to ŵminnorm by invoking the bounds on α(i)(ŵminnorm) (Lemma 3),

‖ŵminnorm‖22 ≥
γ4(1− c1)

σ2
noise

δmaj-train
(
ŵminnorm, γ2

)
nmaj −

10

σ2
noisen

3
(40)

with high probability. Putting this together with Lemma 1, we have

γ4(1− c1)

σ2
noise

δmaj-train
(
ŵminnorm, γ2

)
nmaj −

10

σ2
noisen

3
≤ u2 + s2σ2

noise(1 + c1)nmin +
s2σ2

noise

n4

=⇒ δmaj-train
(
ŵminnorm, γ2

)
≤ u2σ2

noise

γ4nmaj(1− c1)︸ ︷︷ ︸
Very small

+

(
(sσ2

noise)
2(1 + c1)

γ4(1− c1)

)
nmin

nmaj︸ ︷︷ ︸
≈0.0042

+
(sσ2

noise)
2

n4nmaj︸ ︷︷ ︸
Very small

+
10

γ4(1− c1)n3︸ ︷︷ ︸
Very small

=⇒ δmaj-train

(
ŵminnorm,

9

10

)
≤ 1/200,w.h.p,

where in the last step we substitute the constants γ2 = 9/10, u = 1.3125, sσ2
noise = 2.61, nmaj/nmin ≤ 1/2000 and

σ2
noise ≤ nmaj/360000.

B.2.2. CONCENTRATION INEQUALITIES

Lemma 5. With probability > 1− 1/100, if σspu ≤ 1
4
√
log 100n

,

a− 1/5 ≤ x(i)spu ≤ a+ 1/5, ∀i = 1, . . . n, (41)

where a is the spurious attribute.

This follows from standard subgaussian concentration and union bound over n = nmaj + nmin points.

Lemma 6. For a vector z ∈ RN such that z ∈ N (0, σ2I),

P(|‖z‖2 − σ2N | ≥ σ2t) ≤ 2 exp
(−Nt2

8

)
. (42)

Lemma 7. For two vectors zi, zj ∈ RN such that zi, zj ∼ N (0, σ2I), by Hoeffding’s inequality, we have

P(|zi · zj | ≥ σ2t) ≤ 2 exp
(
− t2

2‖zi‖2
)
. (43)
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Corollary 1. Combining Lemma 6 and Lemma 7, we get

P(|zi · zj | ≥ σ2t) ≤ 2 exp
(−N3

8

)
+ 2 exp

(
− t2

8N

)
. (44)

Lemma 8. For N = Ω(poly(n)), with probability greater than 1− 1/2000,

|x(i)noise · x
(j)
noise| ≤

σ2
noise

n6
∀x(i)noise, x

(j)
noise. (45)

This follows from Corollary 1 and union bound over n2 pairs of training points.

Lemma 9. For N = Ω(poly(n)), with probability greater than 1− 1/2000,

(1− c1)σ2 ≤ ‖x(i)noise‖
2 ≤ (1 + c1)σ2,∀i. (46)

This follows from Lemma 6 and union bound over n training points. In particular, we can set c1 < 1/2000 for large enough
N .

B.2.3. SMALL δMAJ-TRAIN

(
ŵminnorm, γ2

)
IMPLIES HIGH WORST-GROUP ERROR

In the previous section, we proved that δmaj-train
(
ŵminnorm, γ2

)
, the fraction of majority training samples that can have

coefficient on the noise vectors greater than γ2/σ2
noise in the max margin separator ŵminnorm is bounded for suitable value of

γ. We showed this using the fact that the norm of ŵminnorm is the smallest among all separators and the observation that the
squared norm of a separator roughlty scales proportional the number of training points that have large coefficient along the
noise vectors.

What does small δmaj-train
(
ŵminnorm, γ2

)
imply? We now show that the bound on δmaj-train

(
ŵminnorm, γ2

)
has an important

consequence on the worst-group error Errwg(ŵminnorm); low δmaj-train
(
ŵminnorm, γ

)
would imply high worst-group error

Errwg(ŵminnorm). We show that there is a trade-off between the worst-group test error of a separator and the fraction of
majority points that it “memorizes” at training time. If a model that has low worst-group test error must use the core feature
and not the spurious feature, and to obtain zero training error such a model would memorize a potentially large fraction of
majority and minority points. In contrast, if the model instead uses only the spurious feature, then the worst-group test error
would be high, but it would memorize only a small fraction of majority examples at training time; because we assume that
the spurious feature is much less noisy than the core feature (σcore � σspu), much fewer majority examples would need to be
memorized. To summarize, a large ŵspu would require smaller fraction of majority points to be memorized δmaj-train

(
ŵ, γ2

)
but increase the worst-group test error Errwg(ŵ). We formalize the above trade-off between the worst-group error and
fraction of majority examples to be memorized in Proposition 3.

Proposition 3. For the minimum norm separator ŵminnorm, under the parameter settings of Theorem 2, with high probability,

Errwg(ŵminnorm) ≥ Φ

(
−c3 + ŵminnorm

spu − ŵminnorm
core√

ŵminnorm
core

2σ2
core + ŵminnorm

spu
2σ2

spu

)
− c4, (47)

for some constants c3, c4 < 1/1000 and Φ the Gaussian CDF.

For any separator ŵ that spans the training points and satisfies

α(i)(ŵ)
2
≤ 10n

σ4
noise

, (48)

under the parameter settings of Theorem 2, with high probability,

δmaj-train
(
ŵ, γ2

)
≥ Φ

(
1− (1 + c1)γ2 − c5 − ŵspu − ŵcore√

ŵ2
coreσ

2
core + ŵ2

spuσ
2
spu

)
− c6, (49)

for some constants c1 < 1/2000; c5, c6 < 1/1000 and Φ the Gaussian CDF.
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We prove Proposition 3 in Section B.2.5.

As mentioned before, we see that the spurious component weight ŵminnorm
spu has opposite effects on the two quantities;

Errwg(ŵ) increases with increase ŵspu, but δmaj-train (ŵ, γ) decreases with increase in ŵspu. This dependence can be exploited
to relate the two quantities to each other as follows.

Φ−1(δmaj-train
(
ŵminnorm, γ

)
+ c6) + Φ−1(Errwg(ŵminnorm) + c4) ≥ 1− c3 − c5 − (1 + c1)γ2 − 2ŵminnorm

core√
ŵ2

coreσ
2
core + ŵ2

spuσ
2
spu

. (50)

In other words, if the δmaj-train
(
ŵminnorm, γ

)
is low, then Errwg(ŵminnorm) would need to be high.

B.2.4. WORST-GROUP ERROR IS HIGH

Recall from part 1 that δmaj-train
(
ŵminnorm, γ

)
< 1/200 for appropriate choice of γ, and from part 2 the trade-off between

δmaj-train
(
ŵminnorm, γ

)
and Errwg(ŵminnorm) (Equation (50)). As a final step, we need to bound the quantities on the RHS of

Equation (50). All the constants are small, and γ2 = 9/10, δmaj-train
(
ŵminnorm, 9/10

)
≤ 1/200 (Lemma 4) which allows us

to write

Φ−1(0.006) + Φ−1(Errwg(ŵminnorm) + c4) ≥ −2ŵminnorm
core√

ŵminnorm
core

2σ2
core + ŵminnorm

spu
2σ2

spu

≥ −2

σcore
(51)

=⇒ Φ−1(Errwg(ŵminnorm) + c4) ≥ 0.512 (52)

=⇒ Errwg(ŵminnorm) ≥ 0.67 (53)

We have hence proved that the minimum-norm separator ŵminnorm incurs high worst-group error with high probability under
the specified conditions.

B.2.5. PROOF OF PROPOSITION 3

Proposition 3. For the minimum norm separator ŵminnorm, under the parameter settings of Theorem 2, with high probability,

Errwg(ŵminnorm) ≥ Φ

(
−c3 + ŵminnorm

spu − ŵminnorm
core√

ŵminnorm
core

2σ2
core + ŵminnorm

spu
2σ2

spu

)
− c4, (47)

for some constants c3, c4 < 1/1000 and Φ the Gaussian CDF.

For any separator ŵ that spans the training points and satisfies

α(i)(ŵ)
2
≤ 10n

σ4
noise

, (48)

under the parameter settings of Theorem 2, with high probability,

δmaj-train
(
ŵ, γ2

)
≥ Φ

(
1− (1 + c1)γ2 − c5 − ŵspu − ŵcore√

ŵ2
coreσ

2
core + ŵ2

spuσ
2
spu

)
− c6, (49)

for some constants c1 < 1/2000; c5, c6 < 1/1000 and Φ the Gaussian CDF.

Proof. We derive the two bounds below.

Worst-group test error
We bound the expected worst-group error Errwg(ŵminnorm), which is the expected worst-group loss over the data distribution.
Below, we lower bound the worst-group error Errwg(ŵminnorm) by bounding the error on a particular group: minority positive
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points which have label y = 1 and spurious attribute a = −1. The test error is the probability that a test example x from this
group gets misclassified, i.e. ŵminnorm · x < 0.

Errwg(ŵminnorm) ≥ P
(
ŵminnorm · x < 0 | y = 1, a = −1

)
(54)

= P
(
ŵminnorm

core xcore + ŵminnorm
spu xspu + ŵminnorm

noise · xnoise < 0 | y = 1, a = −1
)

(55)

= P
(
ŵminnorm

core (1 + σcorez1) + ŵminnorm
spu (−1 + σspuz2) + ŵminnorm

noise · xnoise < 0
)

(56)

In the last step, we rewrite for convenience xcore = y + σcorez1 and xspu = a+ σspuz2, where z1, z2 ∼ N (0, 1).

We use the properties of high-dimensional Gaussian random vectors to bound the quantity ŵminnorm
noise · xnoise. Recall that

ŵminnorm
noise can be written as

ŵminnorm
noise =

∑
i∈Gmaj,Gmin

α(i)(ŵminnorm)x
(i)
noise. (57)

From Lemma 3, we know that max
i
α(i)(ŵminnorm)

2
< 10n

σ4
noise

. This, along with Lemma 7 gives |xnoise · ŵminnorm
noise | ≤ c3 with

probability 1− c4 for some small constants c3, c4 < 1/1000. Let B denote the event that this high probability event where
the dot product |xnoise · ŵminnorm

noise | ≤ c3. Using the fact that P(A) ≥ P(A | B)− P(¬B) which follows from simple algebra,
we have

Errwg(ŵminnorm) ≥ P
(
ŵminnorm

core (1 + σcorez1) + ŵminnorm
spu (−1 + σspuz2) + ŵminnorm

noise · xnoise < 0
)

(58)

≥ P
(
ŵminnorm

core (1 + σcorez1) + ŵminnorm
spu (1− σspuz2) < −c3

)
− c4 (59)

= P
(
ŵminnorm

core σcorez1 + ŵminnorm
spu σspuz2 < −c3 + ŵminnorm

spu − ŵminnorm
core

)
− c4 (60)

= Φ

(
−c3 + ŵminnorm

spu − ŵminnorm
core√

ŵminnorm
core

2σ2
core + ŵminnorm

spu
2σ2

spu

)
− c4. (61)

From the expression above, we see that Errwg(ŵminnorm) increases as the spurious component ŵminnorm
spu increases. This is

because in the minority group, the spurious feature is negatively correlated with the label.

Fraction of memorized training examples in majority groups
We now compute a lower bound on δmaj-train

(
ŵminnorm, γ2

)
, which is the number of majority points (where a = y) that are

“memorized.” Intuitively, we want to show that the fraction depends on ŵspu − ŵcore. The more the core feature is used
relative to the spurious feature, the larger fraction of points need to be memorized because the core feature is more noisy.

First, consider a separator ŵ with some core and spurious components ŵcore and ŵspu. Recall that ŵnoise =
∑
i

α(i)(ŵ)x
(i)
noise

and y(i)(ŵ · x(i)) ≥ 1 by the definition of separators. For a given ŵcore and ŵspu, we want to bound the fraction of majority
points (a = y) which can have α(i)(ŵ) < γ2

σ2
noise

. We focus only on separators with bounded memorization, i.e. those that

satisfy α(i)(ŵ)
2 ≤ 10n

σ4
noise

. Note that from Lemma 3, w.h.p., the mininum-norm separator ŵminnorm satifies this condition.

We bound the above by bounding a related quantity: the fraction of points that are memorized in the training distribution in
expectation. We then use concentration to relate it to the fraction of the training set.

Formally, we have fixed quantities ŵcore and ŵspu. The training set is generated as per the usual data generating distribution.
As before, we are interested in separators on the training set. For any majority training point, the coefficient α(i)(ŵ) in a
separator is a random variable. Since training point i is separated, we have

ŵcore(1 + σcorez1) + ŵspu(1 + σspuz2) +
(∑

i

α(i)(ŵ)x
(i)
noise

)>
x
(i)
noise ≥ 1.

From Lemma 8, Lemma 6, and the condition on α(i)(ŵ), this implies with high probability that

ŵcore(1 + σcorez1) + ŵspu(1 + σspuz2) ≥ 1− (1 + c1)σ2
noiseα

(i)(ŵ)− c5,



An Investigation of Why Overparameterization Exacerbates Spurious Correlations

for some constant c5 < 1/1000. Conditioning on the high probability event just as before (P(A) ≤ P(A | B) + P(¬B)),
we get

P(α(i)(ŵ) ≤ γ2

σ2
noise

) ≤ P
(
ŵcoreσcorez1 + ŵspuσspuz2 ≤ −1 + (1 + c1)γ2 + c5 + ŵcore + ŵspu

)
+ δ (62)

= Φ

(
−1 + (1 + c1)γ2 + c5 + ŵspu + ŵcore√

ŵ2
coreσ

2
core + ŵ2

spuσ
2
spu

)
+ δ (63)

=⇒ P(α(i)(ŵ) ≥ γ2

σ2
noise

) ≥ Φ

(
1− (1 + c1)γ2 − c5 − ŵspu − ŵcore√

ŵ2
coreσ

2
core + ŵ2

spuσ
2
spu

)
− δ, (64)

for some δ < 1/2000. Finally, we connect to δmaj-train (ŵ) (γ2) which is the finite sample version of the quantity P(α(i)(ŵ) ≤
γ2

σ2
noise

). By DKW, we know that the empirical CDF converges to the population CDF. Under the conditions of Theorem 2,
which lower bounds the number of majority elements, we have with high probability,

δmaj-train (ŵ) (γ2) ≥ Φ

(
1− (1 + c1)γ2 − c5 − ŵspu − ŵcore√

ŵ2
coreσ

2
core + ŵ2

spuσ
2
spu

)
− c6, (65)

for constants c5, c6 < 1/1000.

B.2.6. PROOF OF PROPOSITION 1

Proposition 1 (Norm of models using the spurious feature). When σ2
core, σ

2
spu satisfy the conditions in Theorem 1, there

exists N0 such that for all N > N0, with high probability, there exists a separator wuse−spu ∈ Wuse−spu such that

‖wuse−spu‖22 ≤ γ21 +

(
γ2nmin

σ2
noise

)
,

for some constants γ1, γ2 > 0.

Proof. The proposition follows directly from Lemma 1.

‖wuse−spu‖22 ≤ u2 + s2σ2
noise(1 + c1)nmin +

s2σ2
noise

n4

≤ u2 + s2σ2
noise(2 + c1)nmin.

The constant γ1 = u = 1.3125 and γ2 = sσ2
noise(2 + c1) = 2.61(2 + c1) for c1 < 1/2000.

B.2.7. PROOF OF PROPOSITION 2

Proposition 2 (Norm of models using the core feature). When σ2
core, σ

2
spu satisfy the conditions in Theorem 1 and nmin ≥ 100,

there exists N0 such that for all N > N0, with high probability, all separators wuse−core ∈ Wuse−core satisfy

‖wuse−core‖22 ≥
γ3n

σ2
noise

,

for some constant γ3 > 0.
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Proof. To bound the norm for all wuse−core ∈ Wuse−core, we provide a lower bound on the norm of the minimum-norm
separator in the setWuse−core:

w̄use−core def
= arg min

w∈Wuse−core
‖w‖2. (66)

We bound the ‖w̄use−core‖ in two steps:

1. We first provide a lower bound for ‖w̄use−core‖ in terms of the fraction of training points memorized δtrain
(
w̄use−core, γ2

)
(defined formally below) in Corollary 2.

2. We then provide a lower bound for δtrain
(
w̄use−core, γ2

)
in Corollary 3.

We first formally define δtrain
(
ŵ, γ2

)
.

Definition 4. For a separator ŵ on training data {(x(i), y(i))}ni=1, let δtrain
(
ŵ, γ2

)
be the fraction of training examples

that ŵ γ-memorizes:

δtrain
(
ŵ, γ2

) def
=

1

n

n∑
i=1

I
[∣∣∣α(i)(ŵ)

∣∣∣ > γ2

σ2
noise

]
(67)

Bounding ‖w̄use−core‖ by δtrain
(
w̄use−core, γ2

)
Lemma 10. For a separator ŵ with bounded α(i)(ŵ)2 ≤ 10n

σ2
noise

for all i = 1, . . . , n, its norm can be bounded with high
probability as

‖ŵ‖22 ≥
γ4(1− c1)

σ2
noise

δtrain
(
ŵ, γ2

)
n− 10

σ2
noisen

3
(68)

Proof. Similarly to the proof of Lemma 2, the result follows bounded norms (Lemma 9), bounded dot products (Lemma 8),
and the definition of δtrain

(
ŵ, γ2

)
(Definition 4).

‖ŵ‖22 ≥
∑
i∈Gmaj

α(i)(ŵ)
2
‖x(i)noise‖

2
2 +

∑
j 6=k

α(j)(ŵ)α(k)(ŵ)x
(j)
noise · x

(k)
noise (69)

≥
(γ4(1− c1)

σ2
noise

)
δtrain

(
ŵ, γ2

)
n︸ ︷︷ ︸

Choosing only points with α(i)(ŵ) ≥ γ2/σ2
noise

− M2

σ2
noisen

4︸ ︷︷ ︸
maxα(i)(ŵ) = M/σ2

noise

, w.h.p. (70)

≥ γ4(1− c1)

σ2
noise

δtrain
(
ŵ, γ2

)
n− 10

σ2
noisen

3
(71)

Corollary 2. With high probability,

‖w̄use−core‖22 ≥
γ4(1− c1)

σ2
noise

δmaj-train
(
w̄use−core, γ2

)
nmaj −

10

σ2
noisen

3
(72)

Proof. The result follows from applying Lemma 10 to w̄use−core, invoking the bounds on any individual component
α(i)(w̄use−core) obtained below in Lemma 11.

Below, we bound α(i)(w̄use−core), where α(i)(w̄use−core) is the component of training point i to the classifier w̄use−core via
the representer theorem.
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Lemma 11. With high probability, i = 1, . . . , n, α(i)(w̄use−core) can be bounded as follows.

α(i)(w̄use−core)
2
≤ 10n

σ4
noise

. (73)

Proof. As a first step, we upper bound the norm of w̄use−core by the norm of another separator wuse−core ∈ Wuse−core, using
the fact that w̄use−core is the minimum-norm separator inWuse−core. In particular, we construct a separator wuse−core ∈
Wuse−core that “memorizes” all training points, of the following form:

wuse−core
core = 0

wuse−core
spu = 0

α(i)(wuse−core) = y(i)α for all i = 1, . . . , n.

This is analogous to the construction of wuse−spu ∈ Wuse−spu (Lemma 1), and similar calculations can be used to obtain a
suitable value α to ensure that wuse−core is a separator with high probability. We provide it below for completeness. We
show that the following condition is sufficient to satisfy the margin constraints y(i)wuse−core · x(i) ≥ 1 for all i = 1, . . . , n
with high probability:

ασ2
noise ≥

1

1− c1 − 1/n5
. (74)

for c1 < 1/2000. We obtain the above condition by applying Lemma 8 and Lemma 9 to the margin condition.

wuse−core · x(i) ≥ 1 (75)

=⇒ α‖x(i)noise‖
2 − α

∑
j 6=i

∣∣∣x(i)noise · x
(j)
noise

∣∣∣ ≥ 1 (76)

=⇒ ασ2
noise(1− c1)− ασ2

noise

n5
≥ 1 with high probability (77)

Thus, we can construct wuse−core by setting some constant ασ2
noise ≤ 2.

Now that we have constructed wuse−core, we can bound the norm of the minimum norm separator w̄use−core by the norm of
wuse−core. The following is true with high probability,

‖w̄use−core‖2 ≤ ‖wuse−core
noise ‖2 (78)

=

n∑
i=1

α2‖x(i)noise‖
2 +

∑
i 6=j

α2x
(i)
noise · x

(j)
noise (79)

≤ α2σ2
noise(1 + c1)n+

α2σ2
noise

n4
(80)

Finally, we bound α(i)(w̄use−core) for all i by bounding max
i
α(i)(w̄use−core) = M

σ2
noise

. As we showed in the proof of

Lemma 3, following is true with high probability:

‖w̄use−core‖22 ≥
M2(1− c1)

σ2
noise

− M2

σ2
noisen

4
. (81)

Combined with the upper bound on ‖w̄use−core‖22 (Equation (80)), we have

M2(1− c1)

σ2
noise

− M2

σ2
noisen

4
≤ ‖w̄use−core‖ ≤ α2σ2

noise(1 + c1)n+
α2σ2

noise

n4
(82)

=⇒ M2

(
1− c1 −

1

n4

)
≤ (ασ2

noise)
2

(
(1 + c1)n+

1

n4

)
. (83)

Since c1 < 1/2000, and n ≥ 2000, setting ασ2
noise = 2 yields M2 ≤ 10n with high probability.
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Bounding δtrain
(
w̄use−core, γ2

)
Corollary 3. Under the parameter settings of Theorem 2, with high probability,

δtrain
(
w̄use−core, γ2

)
≥ Φ

(
1− (1 + c1)γ2 − c5 − w̄use−core

core∣∣w̄use−core
core σcore

∣∣
)
− c6, (84)

for some constants c1 < 1/2000; c5, c6 < 1/1000 where Φ is the Gaussian CDF.

Proof. The result follows from applying Proposition 3 (which computes a bound on the majority fraction of points that
is γ−memorized) to w̄use−core, invoking Lemma 11, and plugging in w̄use−core

spu = 0. Note that when w̄use−core
spu = 0,

δtrain
(
w̄use−core, γ2

)
= δmaj-train

(
w̄use−core, γ2

)
.

Finally, the above bound on δtrain
(
w̄use−core, γ2

)
translates to a bound on the norm ‖w̄use−core‖ via simple algebra. For γ

that satisfies 1− (1 + c1)γ2 − c5 > 0:

δtrain
(
w̄use−core, γ2

)
≥ Φ

(
−1

σcore
+

1− (1 + c1)γ2 − c5∣∣w̄use−core
core σcore

∣∣
)
− c6 (85)

≥ Φ

(
−1

σcore

)
− c6. (86)

Plugging the above lower bound into the bound on ‖w̄use−core‖ from Corollary 2, we have

‖w̄use−core‖22 ≥
γ4(1− c1)

σ2
noise

δtrain
(
w̄use−core, γ2

)
nmaj −

10

σ2
noisen

3
(87)

≥ n

σ2
noise

(
Φ

(
−1

σcore

)
− c6

)
γ4(1− c1)− 10

σ2
noisen

3
(88)

≥ n

σ2
noise

[(
Φ

(
−1

σcore

)
− c6

)
γ4(1− c1)− c7

]
︸ ︷︷ ︸

set to γ3

(89)

for some c7 < 1/1000.

B.3. Underparameterized regime

So far, we have studied the overparameterized regime for the data distribution described in Section 5. In the overparameterized
setting, where the dimension of noise features N is very large, logistic regression (both ERM and reweighted) leads to
max-margin classifiers. We showed that for some setting of parameters nmaj, nmin, σspu, σcore, the robust error of such max-
margin classifiers can be > 2/3, worse than random guessing. How does the same reweighted logistic regression perform in
the underparameterized regime? We focus on the setting where N = 0. In this setting, the data is two-dimensional, and
w.h.p., the training data is not linearly separable unless σcore = 0. Consequently, the learned model ŵrwR2 that minimizes
the reweighted training loss is not generally a max-margin separator.

For intuition, consider the following two sets of models, which are analogous to what we considered in Equation 12 in the
main text for the overparameterized regime:

Wuse−spu def
= {w ∈ R2 such that wcore = 0}

Wuse−core def
= {w ∈ R2 such that wspu = 0}. (90)

The first setWuse−spu comprises models that use the spurious feature but not the core feature, and the second setWuse−core

comprises models that use the core feature but not the spurious feature. Models inWuse−spu that exclusively use xspu will
have high training loss on the minorities since the minority points cannot be memorized. Due to upweighting the minorities,
these models will have high reweighted training loss. On the other hand, models inWuse−core exclusively use the core
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features that are informative for the label y across all groups. Hence they obtain reasonable loss across all groups and have
smaller reweighted training loss than models inWuse−spu.

We will show in this section that the population minimizer of the reweighted loss is indeed inWuse−core and bound the
asymptotic variance of the reweighted estimator, leading to the final result in Theorem 1. Our approach is to study the
asypmtotic behavior of the reweighted estimator when the number of data points n� d.

Data distribution. We first recap the data generating distribution (described in Section 5). x = [xcore, xspu] where,

xcore | y ∼ N (y, σ2
core), xspu | a ∼ N (a, σ2

spu),

For pmaj fraction of points, we have a = y (majority points) and for 1− pmaj fraction of points, we have a = −y (minority
points).

Reweighted logistic loss. Let pmaj be the fraction of the majority group points and (1− pmaj) be the fraction of minority
points. In order to use standard results from the asymptotics of M-estimators, we rewrite the reweighted estimator (defined
in Section 2) as the minimizer of the following loss over n training points [xi, yi]

n
i=1.

ŵrw = arg min
1

n

n∑
i=1

`rw(xi, yi, w) (91)

`rw(x, y, w) =
−1

pmaj
log

(
1

1 + exp(−yw>x)

)
, For (x, y) from majority group (92)

`rw(x, y, w) =
−1

1− pmaj
log

(
1

1 + exp(−yw>x)

)
, For (x, y) from minority group. (93)

We follow the standard steps of asymptotic analysis where we:

1. Compute the population minimizer w? that satisfies∇Lrw(w?) = 0, where Lrw(w?) = E[`rw(x, y, w?)].

2. Bound the asymptotic variance∇2Lrw(w?)−1 Cov[∇`rw(x, y, w?)]∇2Lrw(w?)−1.

Proposition 4. For the data distribution under study, the population minimizer w? that satisfies ∇Lrw(w?) = 0 is the
following.

w? =

[
2

σ2
core

, 0

]
. (94)

This is a very important property in the underparameterized regime: the population minimizer has the best possible
worst-group error by only using the core feature and not the spurious feature.

Proposition 5. The asymptotic distribution of the reweighted logistic regression estimator is as follows.

√
n(ŵ − w?)→d N (0, V ), (95)

V � diag

(
16 exp

(
8

(σ2
core+8)σ2

core

)
(σ2

core + 1)(1 + 8/σ2
core)

3

pmaj(1− pmaj)(σ2
core + 9)2

,
16 exp

(
8

(σ2
core+8)σ2

core

)
(1 + 8/σ2

core)

pmaj(1− pmaj)(σ2
spu + 1)

)
. (96)

For σcore ≥ 1, we have

V � diag

(
C1

pmaj(1− pmaj)
,

C2

pmaj(1− pmaj)

)
, (97)

for some constants C1, C2.
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We see that the asymptotic variance increases as pmaj increases. This is expected because the reweighted estimator upweights
the minority points by inverse of group size. As these weights increase, the variance also increases. However, as we
noted before, since the population minimizer has small worst-group error, for large enough training set size, we get small
worst-group error since the asymptotic variance is finite (for fixed pmaj) and the estimator approaches the population
minimizer.

We now prove Theorem 1 for the underparameterized regime, restated as Theorem 3 below.

Theorem 3. In the underparameterized regime with N = 0, for pmaj =
(
1 − 1

2001

)
, σ2

core = 1, and σ2
spu = 0, in the

asymptotic regime with nmaj, nmin →∞, we have

Errwg(ŵrw) < 1/4. (98)

Proof. We now put the two Propositions 5 and 4 together. We have ŵrw
core ≥ 2 − ε1 and |ŵrw

spu| ≤ ε2 for ε1, ε2 < 1/10,
i.e the estimator is very close to the population minimizer. This follows from setting σcore, σspu, pmaj =

nmaj

nmaj+nmin
to their

corresponding values and setting n = nmaj + nmin to be large enough. In order to compute the worst-group error, WLOG
consider points with label y = 1 (labels are balanced in the population). For a point from the majority group, the probability
of misclassification is as follows.

Pr[ŵrw
corexcore + ŵrw

spuxspu ≥ 0] = Pr[z ≥
ŵrw

core + ŵrw
spu

σ2
coreŵ

rw
core

2 + σ2
spuŵ

rw
spu

2
], (99)

where z ∼ N (0, 1).

Similarly, for the minority group, the probability of misclassification is

Pr[z ≥
ŵrw

core − ŵrw
spu

σ2
coreŵ

rw
core

2 + σ2
spuŵ

rw
spu

2
], where z ∼ N (0, 1). (100)

Therefore, the worst-group error of ŵrw can be bounded as.

Errwg(ŵrw) ≤ 1− Φ

(
ŵrw

core − |ŵrw
spu|

σ2
coreŵ

rw
core

2 + σ2
spuŵ

rw
spu

2

)
, (101)

where Φ is the Gaussian CDF. Substituting σcore = 1, σspu = 0, ŵrw
core ≥ 2− ε1, |ŵrw

spu| ≤ ε2 gives the required result that
Errwg(ŵrw) < 1/4. In contrast, in the overparameterized regime where N � n, even for very large n, the reweighted
estimator has high worst-group error, as shown in Theorem 1.

B.3.1. COMPLETE PROOFS

We now provide the proofs for Proposition 4 and Proposition 5 which mostly follow from straightforward algebra.

Proposition 4. For the data distribution under study, the population minimizer w? that satisfies ∇Lrw(w?) = 0 is the
following.

w? =

[
2

σ2
core

, 0

]
. (94)

Proof. For convenience, we compute expectations over the majority and minority groups separately and express the
population loss Lrw as the weighted sum of the two terms. Recall that we denote x = [xcore, xspu].

Lrw(w) = pmajLrw-maj + (1− pmaj)Lrw-min (102)
Lrw-maj(w) = EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)
[`rw(x, y, w)]. (103)

Lrw-min(w) = EyExcore∼N (y,σ2
core)

Exspu∼N (−y,σ2
spu)

[`rw(x, y, w)]. (104)

We use the following expression for computing the population gradient.

∇ log

(
1

1 + exp(−yw>x)

)
=

(
−y exp(−yw>x)

1 + exp(−yw>x)

)
x. (105)
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Combining the definition of the reweighted loss and population losses (Equation 91 and Equation 102) with the gradient
expression above gives the following.

∇Lrw-maj(w) = EyExcore∼N (y,σ2
core)

Exspu∼N (y,σ2
spu)

[
1

pmaj

(
−y exp(−yw>x)

1 + exp(−yw>x)

)
x

]
. (106)

∇Lrw-min(w) = EyExcore∼N (y,σ2
core)

Exspu∼N (−y,σ2
spu)

[
1

1− pmaj

(
−y exp(−yw>x)

1 + exp(−yw>x)

)
x

]
. (107)

Now we compute∇Lrw(w?) = pmaj∇Lrw-maj(w
?) + (1− pmaj)∇Lrw-min(w?). First we compute wrt the spurious attribute

∇spuLrw(w?). For convenience, let c = 2
σ2
core

.

∇spuLrw-maj(w
?) = EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)

[
1

pmaj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)
xspu

]

=
1

2
Excore∼N (1,σ2

core)
Exspu∼N (1,σ2

spu)

[
1

pmaj

(
− exp(−cxcore)

1 + exp(−cxcore)

)
xspu

]

+
1

2
Excore∼N (−1,σ2

core)
Exspu∼N (−1,σ2

spu)

[
1

pmaj

(
exp(cxcore)

1 + exp(cxcore)

)
xspu

]

=
1

2
Excore∼N (1,σ2

core)

[
1

pmaj

(
− exp(−cxcore)

1 + exp(−cxcore)

)]
− 1

2
Excore∼N (−1,σ2

core)

[
1

pmaj

(
exp(cxcore)

1 + exp(cxcore)

)]

=
1

2
Excore∼N (1,σ2

core)

[
1

pmaj

(
− exp(−cxcore)

1 + exp(−cxcore)

)]
− 1

2
Excore∼N (1,σ2

core)

[
1

pmaj

(
exp(−cxcore)

1 + exp(−cxcore)

)]
︸ ︷︷ ︸

Replacing xcore ∼ N (−1, σ2
core) with−xcore ∼ N (1, σ2

core)

= Excore∼N (1,σ2
core)

[
1

pmaj

(
− exp(−cxcore)

1 + exp(−cxcore)

)]

∇spuLrw-min(w?) = EyExcore∼N (y,σ2
core)

Exspu∼N (−y,σ2
spu)

[
1

1− pmaj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)
xspu

]

=
1

2
Excore∼N (1,σ2

core)

[
1

pmaj

(
exp(−cxcore)

1 + exp(−cxcore)

)]
+

1

2
Excore∼N (−1,σ2

core)

[
1

pmaj

(
exp(cxcore)

1 + exp(cxcore)

)]

= Excore∼N (1,σ2
core)

[
1

1− pmaj

(
exp(−cxcore)

1 + exp(−cxcore)

)]

Now we take the weighted combination of ∇spuLrw-maj(w
?) and ∇spuLrw-min(w?), based on the fraction of the majority and

minority samples in the population, which makes the two terms cancel out.

∇spuLrw = pmaj∇spuLrw-maj(w
?) + (1− pmaj)∇spuLrw-min(w?) = 0. (108)
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Now we compute ∇coreLrw(w?).

∇coreLrw-maj(w
?) = EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)

[
1

pmaj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)
xcore

]

=
1

2
Excore∼N (1,σ2

core)

[
1

pmaj

(
− exp(−cxcore)

1 + exp(−cxcore)

)
xcore

]
+

1

2
Excore∼N (−1,σ2

core)

[
1

pmaj

(
exp(cxcore)

1 + exp(cxcore)

)
xcore

]

=
1

2
Excore∼N (1,σ2

core)

[
1

pmaj

(
− exp(−cxcore)

1 + exp(−cxcore)

)
xcore

]
+

1

2
Excore∼N (−1,σ2

core)

[
1

pmaj

(
1

1 + exp(−cxcore)

)
xcore

]

=
1

2pmaj

1

σcore
√

2π

∫ ∞
−∞

exp(−cxcore) exp
(
−(x−1)2
2σ2

core

)
− exp

(
−(x+1)2

2σ2
core

)
1 + exp(−cxcore)

xcore dxcore

=
1

2pmaj

1

σcore
√

2π

∫ ∞
−∞

0 dxcore, Substituting c =
2

σ2
core

= 0.

Similarly, we get∇coreLrw-min(w?) = 0 and hence proved that∇coreLrw(w?) = 0.

Lemma 12. The following is true.

Cov[∇`rw(x, y, w?)] � diag

(
σ2
core + 1

pmaj(1− pmaj)
,

σ2
spu + 1

pmaj(1− pmaj)

)
. (109)

We now compute the asymptotic variance which involves computing∇2L(w?) and Cov[∇`rw(w?)].

Proof. First, we show that the off-diagonal entries of Cov[`rw(x, y, w?)] are zero.

E[∇core`rw(x, y, w?)∇spu`rw(x, y, w?)]− E[∇core`rw(x, y, w?)]E[∇spu`rw(x, y, w?)]

= E[∇core`rw(x, y, w?)∇spu`rw(x, y, w?)]

= pmajEyExcore∼N (y,σ2
core)

Exspu∼N (y,σ2
spu)

 1

p2maj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

xcorexspu


+ (1− pmaj)EyExcore∼N (y,σ2

core)
Exspu∼N (−y,σ2

spu)

 1

(1− pmaj)2

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

xcorexspu


= EyExcore∼N (y,σ2

core)

 1

pmaj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

y


− EyExcore∼N (y,σ2

core)

 1

1− pmaj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

y


=

1− 2pmaj

2pmaj(1− pmaj)
Excore∼N (1,σ2

core)

( exp(−cxcore)
1 + exp(−cxcore)

)2
− 1− 2pmaj

2pmaj(1− pmaj)
Excore∼N (−1,σ2

core)

( exp(cxcore)

1 + exp(cxcore)

)2


=
1− 2pmaj

2pmaj(1− pmaj)
Excore∼N (1,σ2

core)

( exp(−cxcore)
1 + exp(−cxcore)

)2
− 1− 2pmaj

2pmaj(1− pmaj)
Excore∼N (1,σ2

core)

( exp(−cxcore)
1 + exp(−cxcore)

)2
 = 0.
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Now, we bound the diagonal elements.

E[∇core(`rw(x, y, w?))2]− (E[∇core`rw(x, y, w?)])2

= E[∇core(`rw(x, y, w?))2]

= pmajEyExcore∼N (y,σ2
core)

 1

p2maj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

x2core


+ (1− pmaj)EyExcore∼N (y,σ2

core)

 1

(1− pmaj)2

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

x2core


=

1

pmaj(1− pmaj)
EyExcore∼N (y,σ2

core)

( −y exp(−ycxcore)
1 + exp(−ycxcore)

)2

x2core


=

1

2pmaj(1− pmaj)
Excore∼N (1,σ2

core)

( − exp(−cxcore)
1 + exp(−cxcore)

)2

x2core

+
1

2pmaj(1− pmaj)
Excore∼N (−1,σ2

core)

( − exp(cxcore)

1 + exp(cxcore)

)2

x2core


=

1

pmaj(1− pmaj)
Excore∼N (1,σ2

core)

( − exp(−cxcore)
1 + exp(−cxcore)

)2

x2core


≤ 1

pmaj(1− pmaj)
Excore∼N (1,σ2

core)
[x2core] =

σ2
core + 1

pmaj(1− pmaj)
.

Finally,

E[∇spu(`rw(x, y, w?))2]− (E[∇spu`rw(x, y, w?)])2

= E[∇spu(`rw(x, y, w?))2]

= pmajEyExcore∼N (y,σ2
core)

Exspu∼N (y,σ2
spu)

 1

p2maj

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

x2spu


+ (1− pmaj)EyExcore∼N (y,σ2

core)
Exspu∼N (−y,σ2

spu)

 1

(1− pmaj)2

(
−y exp(−ycxcore)
1 + exp(−ycxcore)

)2

x2spu


≤ 1

pmaj
EyExspu∼N (y,σ2

spu)
[x2spu] +

1

1− pmaj
EyExspu∼N (−y,σ2

spu)
[x2spu] =

σ2
spu + 1

pmaj(1− pmaj)
.

Lemma 13. The following is true.

∇2Lrw(x, y, w?)] � diag

(
exp

(
−4

(σ2
core+8)σ2

core

)
(σ2

core + 9)

4(1 + 8/σ2
core)

3/2
,

exp
(

−4
(σ2

core+8)σ2
core

)
(σ2

spu + 1)

4
√

1 + 8/σ2
core

)
. (110)

Proof. We use the following expression for computing the population gradient.

∇2 log

(
1

1 + exp(−yw>x)

)
= ∇

(
−y exp(−yw>x)

1 + exp(−yw>x)

)
x = ∇

(
−y

1 + exp(yw>x)

)
x =

(
exp(yw>x)

(1 + exp(yw>x))2

)
xx>.

(111)
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Recall the definition of the population majority and minority losses (Equation 102).

∇2Lrw-maj(w) = EyExcore∼N (y,σ2
core)

Exspu∼N (y,σ2
spu)

[
1

pmaj

(
exp(yw>x)

(1 + exp(yw>x))2

)
xx>

]
. (112)

∇2Lrw-min(w) = EyExcore∼N (y,σ2
core)

Exspu∼N (−y,σ2
spu)

[
1

1− pmaj

(
exp(yw>x)

(1 + exp(yw>x))2

)
xx>

]
. (113)

Like previously, we first compute the off-diagonal entries.

[∇2Lrw-maj(w
?)]spu, core =

1

pmaj
EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)

[(
exp(yw?>x)

(1 + exp(yw?>x))2

)
xcorexspu

]

+
1

pmaj
EyExcore∼N (y,σ2

core)
Exspu∼N (−y,σ2

spu)

[(
exp(yw?>x)

(1 + exp(yw?>x))2

)
xcorexspu

]

=
1

pmaj
EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)

[(
exp(yw?>x)

(1 + exp(yw?>x))2

)
xcorexspu

]

− 1

pmaj
EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)

[(
exp(yw?>x)

(1 + exp(yw?>x))2

)
xcorexspu

]
= 0

[∇2Lrw-min(w?)]spu, core = 0, Similar calculation as above

[∇2Lrw(w?)]spu, core = 0.

Now, we bound the diagonal entries. Recall that w?spu = 0 and w?core = c where c = 2
σ2
core

.

[∇2Lrw-maj(w
?)]core, core =

1

pmaj
EyExcore∼N (y,σ2

core)

[(
exp(ycxcore)

(1 + exp(ycxcore))2

)
x2core

]

=
1

2pmaj
Excore∼N (1,σ2

core)

[(
exp(cxcore)

(1 + exp(cxcore))2

)
x2core

]
+

1

2pmaj
Excore∼N (−1,σ2

core)

[(
exp(−cxcore)

(1 + exp(−cxcore))2

)
x2core

]

=
1

pmaj
Excore∼N (1,σ2

core)

[(
exp(cxcore)

(1 + exp(cxcore))2

)
x2core

]

≥ 1

pmaj

1

4
Excore∼N (1,σ2

core)

[
exp(−c2x2core)x2core

]
=

1

pmaj

1

4σcore
√

2π

∫ ∞
−∞

exp(−c2x2core) exp
(−(xcore − 1)2

2σ2
core

)
x2core dxcore

=
1

pmaj

1

4σcore
√

2π

∫ ∞
−∞

exp
(
− 8x2core/σ

2
core

2σ2
core

)
exp

(−(xcore − 1)2

2σ2
core

)
x2core dxcore

=
1

pmaj

exp
(

−8
(σ2

core+8)σ2
core

)
4σcore

√
2π

∫ ∞
−∞

exp
(−(

√
1 + 8/σ2

corexcore − 1√
1+8/σ2

core

)2

2σ2
core

)
x2core dxcore

=
1

pmaj

exp
(

−8
(σ2

core+8)σ2
core

)
(σ2

core + 9)

4(1 + 8/σ2
core)

5/2
.

[∇2Lrw-min(w?)]core, core =
1

1− pmaj

exp
(

−8
(σ2

core+8)σ2
core

)
(σ2

core + 9)

4(1 + 8/σ2
core)

5/2
, By symmetry.

[∇2Lrw(w?)]core, core = pmaj[∇2Lrw-maj(w
?)]core, core + (1− pmaj)[∇2Lrw-min(w?)]core, core

=
exp

(
−8

(σ2
core+8)σ2

core

)
(σ2

core + 9)

4(1 + 8/σ2
core)

5/2
.
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Finally, we calculate [∇2Lrw-maj(w
?)]spu, spu as follows.

[∇2Lrw-maj(w
?)]spu, spu =

1

pmaj
EyExcore∼N (y,σ2

core)
Exspu∼N (y,σ2

spu)

[(
exp(ycxcore)

(1 + exp(ycxcore))2

)
x2spu

]

=
1

2pmaj
Excore∼N (1,σ2

core)

[(
exp(cxcore)

(1 + exp(cxcore))2

)]
(σ2

spu + 1)

+
1

2pmaj
Excore∼N (−1,σ2

core)

[(
exp(−cxcore)

(1 + exp(−cxcore))2

)]
(σ2

spu + 1)

≥ 1

4pmaj
Excore∼N (1,σ2

core)
[exp(−c2x2core)](σ2

spu + 1)

=
1

4pmaj

exp
(

−4
(σ2

core+8)σ2
core

)
√

1 + 8/σ2
core

(σ2
spu + 1)

[∇2Lrw-min(w?)]spu, spu =
1

4(1− pmaj)

exp
(

−4
(σ2

core+8)σ2
core

)
√

1 + 8/σ2
core

(σ2
spu + 1), By symmetry.

[∇2Lrw(w?)]spu, spu =
exp

(
−4

(σ2
core+8)σ2

core

)
(σ2

spu + 1)

4
√

1 + 8/σ2
core

.

Proposition 5. The asymptotic distribution of the reweighted logistic regression estimator is as follows.
√
n(ŵ − w?)→d N (0, V ), (95)

V � diag

(
16 exp

(
8

(σ2
core+8)σ2

core

)
(σ2

core + 1)(1 + 8/σ2
core)

3

pmaj(1− pmaj)(σ2
core + 9)2

,
16 exp

(
8

(σ2
core+8)σ2

core

)
(1 + 8/σ2

core)

pmaj(1− pmaj)(σ2
spu + 1)

)
. (96)

For σcore ≥ 1, we have

V � diag

(
C1

pmaj(1− pmaj)
,

C2

pmaj(1− pmaj)

)
, (97)

for some constants C1, C2.

Proof. By asymptotic normality, we have
√
n(ŵ−w?)→ N (0,∇2L(w?)−1 Cov[∇`(x, y, w?)]∇2L(w?)−1). Combining

Lemma 12 and Lemma 13, we get the expression in Equation 96. Each term is decreasing in σcore, and hence we get the
final result by substituting σ2

core = 1 to obtain the constants C1, C2 (and noting that σ2
spu ≥ 0).


