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Abstract
We consider distributions arising from a mixture
of causal models, where each model is repre-
sented by a directed acyclic graph (DAG). We
provide a graphical representation of such mixture
distributions and prove that this representation en-
codes the conditional independence relations of
the mixture distribution. We then consider the
problem of structure learning based on samples
from such distributions. Since the mixing variable
is latent, we consider causal structure discovery
algorithms such as FCI that can deal with latent
variables. We show that such algorithms recover a
“union” of the component DAGs and can identify
variables whose conditional distribution across
the component DAGs vary. We demonstrate our
results on synthetic and real data showing that the
inferred graph identifies nodes that vary between
the different mixture components. As an imme-
diate application, we demonstrate how retrieval
of this causal information can be used to cluster
samples according to each mixture component.

1. INTRODUCTION
Determining causal structure from data is a central task
in many applications. (Friedman et al., 2000; Heckerman
et al., 1995) Causal structure is often modeled using a di-
rected acyclic graph (DAG), where the nodes represent the
variables of interest, and the directed edges represent the
direct causal effects between these variables (Pearl, 2009).
Assuming that the generating distribution of the data fac-
tors according to the DAG provides a way to relate the
conditional independence relations in the distribution to
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separation statements in the DAG (known as d-separation)
through the Markov property (Lauritzen, 1996). When not
all variables of interest can be measured, DAGs are not
sufficient to represent the observed distribution, since la-
tent variables may introduce confounding effects between
the observed variables. Instead, a family of mixed graphs
known as maximal ancestral graphs (MAGs) can be used
to model the observed variables by depicting the presence
of latent confounders between pairs of variables through
bidirected edges (Richardson and Spirtes, 2002).

With respect to learning the causal graph from data, the
most ubiquitous methods infer d-separation relations by es-
timating conditional independence relations from the data;
examples are the PC and GSP algorithms in the fully ob-
served setting, and the FCI algorithm in the presence of la-
tent variables (Spirtes et al., 2000; Solus et al., 2017; Zhang,
2008). These algorithms are consistent under the faithful-
ness assumption, which asserts that every conditional inde-
pendence relation in the distribution corresponds to a d-
separation relation in the graph. Note that even under faith-
fulness, the causal graph is in general not fully identifiable
from observational data; it can in general only be identified
up to its Markov equivalence class (Spirtes et al., 2000).

In various applications, data used for causal structure discov-
ery is heterogeneous in that it stems from different causal
models on the same set of variables (Gates and Molenaar,
2012; Chu et al., 2003; Ramsey et al., 2011). This is relevant
for example in biomedical applications, where the goal is
to learn a gene regulatory network based on gene expres-
sion data from a disease that consists of multiple not well
characterized subtypes (as is the case for many neurologi-
cal diseases). In such scenarios, the samples stem from a
mixture of different causal models on the same set of vari-
ables, and the causal effects of the mixture distribution can
in general not be faithfully represented by a single DAG.

Furthermore, a single DAG inferred from such samples can-
not identify differences between the component DAGs in the
mixture, which may be critical for personalized biomedical
interventions, and may lead to flawed conclusions down-
stream.

In this work, we consider distributions arising as mixtures



Causal Structure Discovery from Distributions Arising from Mixtures of DAGs

of causal DAGs. Our main contributions are as follows:

• We introduce the mixture graph to represent such mix-
ture distributions. We prove that this graph encodes the
conditional independence relations in the mixture dis-
tribution through separation statements (Theorem 3.2)
and show that the separation statements in every such
graph can be realized by independence relations in
some mixture distribution (Proposition 3.5).

• We introduce the union graph, a graph defined from
the mixture graph. We prove that, under a faithfulness
and ordering assumption on the DAGs in the mixture,
the FCI algorithm applied to data from a mixture of
DAGs outputs the union graph (Theorem 4.4).

• We prove that the union graph can be used to iden-
tify variables whose conditional distribution across
the component DAGs changes (Proposition 4.6). We
demonstrate the implication of this result for identify-
ing critical nodes and for clustering samples according
to their mixture component on synthetic data and data
from genomics.

2. PRELIMINARIES & RELATED WORK
2.1. Graphical representations: DAGs and MAGs

In this paper, we consider two types of graphs: directed
acyclic graphs (DAGs) and mixed graphs with directed (→)
and bidirected (↔) edges. We denote the former by D =
(V,E) and the latter byM = (V,D,B), where V denotes
the set of vertices, E and D denote the set of directed edges
and B denotes the set of bidirected edges. A mixed graph is
said to be ancestral if it has no directed cycles, and whenever
there is a bidirected edge u↔ v, then there is no directed
path from u to v (Richardson and Spirtes, 2002). While
ancestral graphs have been defined more generally to allow
also for undirected edges, in this work we will only make
use of graphs with directed and bidirected edges.

Throughout, we will use the notation chM(v), paM(v) and
anM(v) to denote the children, parents and ancestors, re-
spectively, of a node v in the graphM. Furthermore, we
use the standard definitions of path and directed path in a
graph; for these definitions, see e.g. Lauritzen (1996). We
will use the notation v ↔M u as a shorthand to denote “the
edge v ↔ u between nodes u, v in M”, and use similar
notations for other types of edges.

The notion of d-separation from DAGs can be generalized
to ancestral graphs by accounting for the new possible ways
to obtain a collider from bidirected edges (Richardson and
Spirtes, 2002). In ancestral graphs, unlike in DAGs, it is
possible to have a pair of nodes that are not adjacent, but can-
not be d-separated given any subset of nodes. An ancestral
graph where any non-adjacent pair of nodes is d-separated

given some subset of nodes is called maximal, and a non-
maximal ancestral graph can be made maximal by adding a
bidirected edge between all such pairs. An ancestral graph
that is maximal is called a Maximal Ancestral Graph (MAG)
(Richardson and Spirtes, 2002).

Ancestral graphs are a useful representation of DAGs with
unobserved nodes.

Specifically, Richardson and Spirtes (2002) showed that
given a DAG D = (V ∪ L,E), with observed nodes V
and unobserved nodes L, satisfying a set of d-separation
statements of the form “A d-separated from B given C”
for disjoint A,B,C ⊆ V , there exists an ancestral graph
M = (V,D,B) with the same d-separation statements,
called the marginal ancestral graph of D with respect to L.
Sadeghi et al. (2013) gave a local criterion to construct this
graph from D. Throughout our paper, we will make use of
this in the special case where L consists of a single node of
in-degree 0. The specialization of Sadeghi’s algorithm to
this case is provided in Algorithm 1.

Algorithm 1: Construction of the marginal ancestral graph

Input: DAG D = (V ∪ {y}, E), where y has in-degree 0.
Output: the marginal ancestral graph of D w.r.t. y.

(0) Initialize D = ∅, B = ∅
(1) For u, v ∈ chD(y): add u↔ v to B.
(2) For t, u, v such that (t→ u) ∈ E and (u↔ v) ∈ B:

if u ∈ anD(v), then add t→ v to D.
(3) For u, v such that u↔ v ∈ B: if u ∈ anD(v), then

remove u↔ v from B and add u→ v to D.
(4) Return the ancestral graphM = (V,D,B).

Although, in general, the ancestral graph constructed using
Sadeghi’s criterion is not maximal, the relevant restriction
considered here, i.e., when L consists of a single node with
in-degree 0, is always a MAG. The following proposition
states this; a proof is provided in section A of the Appendix

Proposition 2.1. The output of Algorithm 1 is a MAG.

2.2. Markov Properties

Given a graphM with nodes V , we associate to each node
v ∈ V a random variable Xv and denote the joint distri-
bution of XV := (xv : v ∈ V ) by pXV

. The Markov
property associates missing edges inM with conditional
independence statements in pXV

: a distribution pXV
is

said to satisfy the Markov property with respect to M if
for any disjoint A,B,C ⊆ V such that A and B are d-
separated given C in M, it holds that XA ⊥⊥ XB | XC

in pXV
(Lauritzen, 1996). For DAGs, an equivalent con-

dition to the Markov property is for pXV
to factorize as

pXV
(xV ) =

∏
v∈V p(xv|xpaG(v)); see Lauritzen (1996).
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Considering latent variables XL, Richardson and Spirtes
(2002) showed that given a distribution pXV ,XL

that is
Markov with respect to a DAG D over V ∪ L, the marginal
pXV

(xV ) =
∑
xL
pXV ,XL

(xV , xL) is Markov with respect
to the marginal ancestral graph of D with respect to L.

It is possible for two different DAGs D1,D2 over the same
set of nodes to satisfy the same set of d-separation state-
ments. In this case, D1 and D2 are said to be Markov equiv-
alent, and the set of all DAGs that are Markov equivalent
to a DAG D is called the Markov equivalence Class of D.
These definitions trivially extend to MAGs. The Markov
equivalence class of a MAG can be represented by a partial
ancestral graph (PAG): the edges in such a graph have three
types of tips: arrowheads (←), tails (−) and circles ◦−,
where arrowhead (tail) signifies that this arrowhead exists in
all graphs in the Markov equivalence class (Zhang, 2008).

2.3. Causal Structure Discovery

The goal of structure learning is to recover the graph D
orM from data generated from the distribution pXV

. This
task often requires assumptions beyond the Markov property.
One common such assumption is the so-called faithfulness
assumption which states that for any disjoint A,B,C ⊆ V ,
it holds that A and B are d-separated given C whenever
XA ⊥⊥ XB | XC in pXV

(Spirtes et al., 2000). The faithful-
ness assumption allows making inference about the structure
of D orM from conditional independence tests on the data.
Various algorithms have been proposed for this task that
are provably consistent, such as the PC, GES or GSP algo-
rithms for learning DAGs (Spirtes et al., 2000; Chickering,
2002; Solus et al., 2017), and the FCI algorithm for learning
MAGs (Spirtes et al., 2000). Note that even under the faith-
fulness assumption, it is in general only possible to retrieve
the Markov equivalence class of a graph D orM from data;
this is the output of the above algorithms. For example,
FCI in general does not return a specific MAG, but a PAG
representing a Markov equivalence class of MAGs.

2.4. Causal Inference from Mixtures of DAGs

While the problem of learning appropriate representations
from data of DAG mixtures arises in various applications,
little work has been done on theory and methodology in
this direction. Spirtes (1994) investigated the conditional
independence properties of such mixture distributions; he
defined a cyclic graphical model derivable from the com-
ponent DAGs and proved that the mixture distribution
is Markov with respect to it. However, this graph does not
capture the full set of conditional independence relations
for any reasonable mixture. In fact, as we discuss later,
this graph is similar to the representation we define in Sec-
tion 4, which also only provides partial information about
the structure of the component DAGs. To capture the full

set of independences in the mixture distribution, a represen-
tation sparser than that of Spirtes (1994) is necessary. Strobl
(2019a;b) built on this work to define a sparser graph. How-
ever, we provide examples in Section B of the Appendix
showing that the Markov condition in general does not hold
for this graph, i.e., there can be d-separation statements in
the graph that do not correspond to conditional indepen-
dence relations in the mixture distribution. Finally, Ramsey
et al. (2011) provided conditions for the mixture distribu-
tion to be representable by a graph that is a union of the
component DAGs.

To learn the component DAGs from mixture data, a sim-
ple approach is to cluster the data using, for example, the
Expectation-Maximization (EM) algorithm and then learn
a DAG from each cluster. This, however, uses a reduced
sample size to learn each DAG (corresponding to the size of
the associated cluster). In the case where the cluster labels
are known and the DAGs are related, Wang et al. (2020)
showed that learning each DAG separately can lead to loss
in accuracy compared to when the full sample size is used
to learn the DAGs jointly. When the expectation in the EM
algorithm can be computed, as e.g. for Gaussians, Thiesson
et al. (1997) proposed a heuristic approach based on the EM
algorithm to directly learn the component DAGs from the
mixture data. In this work, we consider a different prob-
lem. Instead of learning the component DAGs we provide
a graphical representation of the mixture distribution and
identify critical aspects of the component DAGs that are cap-
tured by this graph and can be identified by algorithms such
as FCI when applied directly to the mixture distribution.

3. MIXTURE DAG AND MARKOV
PROPERTY

In this section, we provide our first main result: after for-
mally introducing distributions that arise as mixtures of
DAGs, we define the mixture DAG and prove in Theorem 3.2
and Proposition 3.5 that it is a valid representation of the
model, i.e., the DAG encodes the conditional independence
relations of the mixture distributions. More precisely, not
only is the Markov condition satisfied (i.e., all separation
statements in the mixture DAG correspond to conditional
independence relations in the mixture distribution), but in
addition, every mixture DAG is also realizable by a mixture
distribution (meaning that the mixture DAG cannot be made
sparser without losing the Markov property).

3.1. Mixture of Causal DAGs

To introduce the mixture model, we consider K DAGs
{D(1), . . . ,D(K)} with D(j) = (V,E(j)) for 1 ≤ j ≤ K,
i.e., these K DAGs are defined on the same set of nodes.

Associated with each component DAGD(j) is a random vec-
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tor XV with distribution p(j)(xV ). Let V INV denote the set
of nodes that are invariant across the K component DAGs,
i.e., nodes whose conditional distribution in the factorization
does not vary across D(1), . . . ,D(K); that is

V INV=
{
v∈V : p(j)(xv|xpaD(j) (v)) = p(k)(xv|xpaD(k) (v))

for all j, k ∈ {1, 2, · · · ,K}
}
.

(1)

Assuming that each distribution p(j)(xV ) admits a factor-
ization according to DAG D(j), we then obtain:

p(j)(xV ) =
∏

v∈V \V INV

p(j)(xv|xpaD(j) (v))
∏

v∈V INV

p(j)(xv|xpaD(j) (v))

=
∏

v∈V \V INV

p(j)(xv|xpaD(j) (v))
∏

v∈V INV

p(1)(xv|xpaD(1) (v))

for all 1 ≤ j ≤ K, i.e., each distribution decouples into two
components: one over the variables associated with V INV
that remains constant across all K distributions, and another
over the remaining variables which may differ with j.

Let J be a discrete variable taking values in {1, . . . ,K}
with probabilities pJ(j) for each j ∈ {1, . . . ,K}. Defining
a joint distribution pµ over XV ∪ J by

pµ(xV , j) := pJ(j) · p(j)(xV ), (2)

this joint distribution satisfies p(j)(xV ) = pµ(xV |J = j)
and the observed mixture distribution is obtained by
marginalizing pµ over the unobserved index variable J .
With a slight abuse of notation, we denote the resulting
mixture distribution also by pµ. Given samples from this
distribution, i.e., without knowledge of the membership of
each sample to its generating DAG, we analyze what can
still be inferred regarding the structure of D(1), . . . ,D(K).

3.2. Mixture DAG and Markov Property

We now present the mixture DAG, a DAG that is represen-
tative of the independence relations induced amongst the
observed variables after marginalizing over the index vari-
able J in (2). Denoting the number of vertices in V by |V |,
the mixture DAG is a graph onK · |V |+1 nodes constructed
by placing the K component DAGs next to each other, giv-
ing rise to a DAG on K · |V | nodes, and using an additional
node to represent J . We now provide the precise definition.

Definition 3.1 (Mixture DAG). Let v(j) denote vertex v in
DAG j and let [V ] := ∪1≤j≤KV (j) denote the vertices of
the K component DAGs. The mixture DAG, denoted by Dµ,
has nodes [V ] ∪ {y} and edges Eµ consisting of edges in
each component DAG, namely

K⋃
j=1

{
v(j) → ṽ(j) : v, ṽ ∈ V, v → ṽ ∈ E(j)

}
,

and additional edges from node y to some nodes in [V ],
namely those corresponding to variables that have condi-
tionals that are not the same for all j, i.e.,

K⋃
j=1

{
y → v(j) : v ∈ V \ VINV}.

Figure 1 provides an example of the mixture DAG arising
from a mixture with K = 2 and |V | = 4. Note that, while
the results of this section hold even when

the DAGs D(j) have no common topological ordering
(meaning that there exists no ordering π such that v < u
in π only if u 6∈ anD(j)(v) for all 1 ≤ j ≤ K), the
mixture DAG is sparsest, and hence provides informa-
tion about the component DAGs through separation state-
ments, when a common topological ordering exists (as in
Figure 1). When there is no common ordering, the set
VINV is generally smaller, since paD(j) 6= paD(k) implies
p(j)(xv|xpaD(j) (v)) 6= p(k)(xv|xpaD(k) (v)), which implies a
denser mixture DAG.

We emphasize here that the DAG in Definition 3.1 is not a
graphical model representation of the mixture distribution
in the standard sense. This is already clear from the fact that
the mixture DAG hasK · |V |+1 nodes, whereas the mixture
distribution is only |V |-dimensional. Yet, in the following
theorem we show that it is possible to read off conditional
independence relations that hold in the mixture distribution
pµ from the mixture graph in an intuitive manner.

For A ⊂ V , we use the notation [A] to denote all K copies
of the nodes in A, i.e., A = ∪1≤j≤KA(j).

Theorem 3.2 (Markov Property). Let A,B,C ⊆ V be dis-
joint. If [A] and [B] are d-separated given [C] in the mixture
DAG Dµ, then XA⊥⊥XB |XC in the mixture distribution pµ.

To illustrate this result, consider the example in Figure 2.
Since [1] = {1(1), 1(2)} and [4] = {4(2), 4(2)} are d-
separated given ∅ in the mixture DAG, then the mixture
distribution pµ(x1, x2, x3, x4) satisfies X1 ⊥⊥ X4.

We note that while the graphical representation provided
by Strobl (2019b) (the mother graph) is similar to the mix-
ture DAG, it critically differs in how the component DAGs
are connected via the node y. Importantly, we show in Sec-
tion B in the Appendix that the mixture distribution pµ is
not Markov with respect to the mother graph1.

In the following, we provide a proof for Theorem 3.2. For
each 1 ≤ j ≤ K, let D̃(j) be the sub-DAG induced by
Dµ on the vertices V (j) ∪ {y}.The main ingredient of the
proof is the following lemma, which connects d-separation
statements in the mixture DAG to conditional independence

1Strobl (2019a;b) provides two different constructions; we
show that the Markov property does not hold in either.
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(a) D(1) (b) D(2) (c) Dµ (d) M(1) (e) M(2) (f) M∪

Figure 1: (a)-(b): component DAGs for a mixture model with K = 2; (c): corresponding mixture DAG (see Definition 3.1);
(d)-(e): associated component MAGs (see Section 4); (f): associated union graph (see Definition 4.2).

relations in the mixture distribution via d-separation in D̃(j).

Lemma 3.3. Let A,B,C ⊆ V be disjoint. If for all 1 ≤
j ≤ K it holds that

(a) A(j) and B(j) are d-separated given C(j), and;

(b) A(j) and y are d-separated given C(j) in D̃(j),

then XA ⊥⊥ J | XC in pµ, implying the factorization

p(j)(xA, xB |xC) = p(1)(xA|xC)p(j)(xB |xC)

for all 1 ≤ j ≤ K.

We now provide the proof for Theorem 3.2.

Proof of Theorem 3.2. We start by showing that the condi-
tions of Lemma 3.3 are satisfied. First, note that [A] and [B]
are d-separated given [C] in Dµ implies that A(j) and B(j)

are d-separated given C(j) in D(j) for all 1 ≤ j ≤ K. Sec-
ond, note that since y has in-degree 0, we cannot have both
a d-connecting path given [C] between [A] and y and one
between [B] and y in Dµ. Hence, we may assume without
loss of generality that [A] and y are d-separated given [C]
(otherwise, [B] and y are d-separated given [C]).

We now use Lemma 3.3 to show that pµ(xA, xB |xC) fac-
torizes as fA(xA, xC)fB(xB , xC), which would prove that
XA ⊥⊥ XB |XC in pµ. By definition of pµ in (2),

pµ(xA, xB |xC) =
K∑
j=1

p(j)(xA, xB |xC)pJ(j),

and hence as a consequence of Lemma 3.3 we obtain

pµ(xA, xB |xC) =
K∑
j=1

p(1)(xA|xC)p(j)(xB |xC)pJ(j)

= p(1)(xA|xC)
K∑
j=1

p(j)(xB |xC)pJ(j),

providing a factorization of the desired form.

In Theorem 3.2, we established that every separation state-
ment in the mixture DAG Dµ corresponds to a conditional
independence relation in the mixture distribution pµ. Next,
we show that every mixture DAG is realizable, i.e., that
for any mixture DAG Dµ, there exists a pµ whose condi-
tional independence relations are faithfully represented by
the separation statements of Dµ. This implies that Dµ is the
“correct” graphical representation of a mixture of DAGs and
cannot be made sparser without losing the Markov property.

3.3. Faithfulness

We define faithfulness of a mixture distribution pµ with re-
spect to a mixture DAG Dµ analogously to how faithfulness
is defined for a distribution with respect to a DAG model.

Definition 3.4 (Mixture Faithfulness). The mixture distri-
bution pµ is faithful with respect to a mixture DAG Dµ if
for any disjoint A,B,C ⊆ V with XA ⊥⊥ XB |XC in pµ it
holds that [A] and [B] are d-separated given [C].

We next provide an example showing that mixture faith-
fulness is not implied by faithfulness of each component
distribution p(j) with respect to the corresponding DAG
D(j). Hence, to establish realizability of the mixture graph,
it is not sufficient to rely on the fact that for every DAG
D(j), there exists a distribution p(j) that is faithful to it.

Example 1. Consider the distributions p(1)(xV ), p(2)(xV )
on V = {1, 2, 3, 4} that factor according to the DAGs
D(1),D(2), respectively, shown in Figure 1. Namely

p(1)(xV ) = p(1)(x1)p
(1)(x2|x1)p(1)(x3)p(1)(x4),

p(2)(xV ) = p(2)(x1)p
(2)(x2)p

(2)(x3|x4)p(2)(x4),

where

p(1)(x1) = N (x1; 0, 1), p(2)(x1) = N (x1; 0, 1),

p(1)(x2|x1) = N (x2;x1, 1), p(2)(x2) = N (x2; 0, 2),

p(1)(x3) = N (x3; 0, 1), p(2)(x3|x4) = N (x3;x4, 1),

p(1)(x4) = N (x4; 0, 1), p(2)(x4) = N (x4; 0, 1).
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Then, defining pµ(xV ) :=
∑2
j=1 p

(j)(xV )pJ(j), for some
J ∼ pJ(j), we obtain that

pµ(x2, x3) =

∫
pµ(xV )dx1dx4

=

∫
pJ(1)p

(1)(x1)p
(1)(x2|x1)p(1)(x3)p(1)(x4)dx1dx4

+

∫
pJ(2)p

(2)(x1)p
(2)(x2)p

(2)(x3|x4)p(2)(x4)dx1dx4

= pJ(1) N (x2; 0, 2) N (x3; 0, 1)

+ pJ(2) N (x2; 0, 2) N (x3; 0, 2)

= N (x2; 0, 2)
(
pJ(1)N (x3; 0, 1) + pJ(2)N (x3; 0, 2)

)
= f(x2)g(x3),

which implies that X2 ⊥⊥ X3 in pµ, although in the mixture
DAG corresponding to pµ shown in Figure 1 the nodes 2
and 3 are d-connected via the path through y.

This example was carefully crafted; even a slight per-
turbation such as choosing p(2)(x2) = N (x2; 0, 2.001)
would have meant that pµ(x2, x3) does not factor, indi-
cating that mixture-faithfulness violations are rare. More
precisely, consider the family of Gaussian mixture mod-
els where each p(j) is a Gaussian distribution that is
faithful with respect to D(j). A violation of mixture-
faithfulness occurs if and only if

∑
j p

(j)(xA, xB |xC) fac-
tors as pµ(xA|xC)pµ(xB |xC), i.e.,∑
j

p(j)(xA, xB |xC) =
∑
i

p(i)(xA|xC)
∑
j

p(j)(xB |xC),

when [A] and [B] are d-connected given [C] in Dµ. This
represents an equality constraint on the parameters of the
Gaussians p(j) for 1 ≤ j ≤ K. As a consequence, mixture-
faithfulness holds almost surely and any Dµ is realizable by
a mixture of Gaussians, thereby proving the following.
Proposition 3.5 (Realizability of Dµ). For any mixture
DAG Dµ, there exists a mixture distribution pµ that is faith-
ful with respect to Dµ.

4. LEARNING FROM MIXTURE DATA
Without knowing the membership of each sample to a com-
ponent DAG, we cannot generally learn the structure of
D(j) for each j from the data. Since the mixing variable is
latent, an intuitive approach is to apply FCI to learn a MAG
representation of pµ. In this section, we will characterize
the output of FCI. In particular, we will show that FCI iden-
tifies critical nodes in the component DAGs: those whose
conditionals across the component DAGs vary.

A difficulty for structure discovery using MAG-based learn-
ing algorithms such as FCI, is that even under the mixture-
faithfulness assumption the conditional independence rela-
tions in a mixture distribution pµ may not be representable

by any MAG. We illustrate this in the following example
and then provide conditions to avoid this phenomenon.

Example 2. Consider Dµ shown in Figure 2a. We show
that there does not exist any MAG M̃ over the variables
V = {1, . . . , 5} that satisfies: A d-sep from B given C in
M̃ if and only if [A] d-sep from [B] given [C] in Dµ. First,
note that such a MAG would need to have the same skeleton
as the graph in Figure 2b to respect the adjacencies inMµ.
Otherwise it would have an extra or missing d-separation
with no analog inMµ. In addition, M̃ would also need
to contain the colliders 4 → 5 ← 2 and 1 → 2 ← 5
to respect the d-separation relations resulting from 4(2) →
5(2) ← y → 2(2) and 1(1) → 2(1) ← y → 5(1) respectively.
This implies the existence of 2 ↔M̃ 5. Further note that
conditioning on either [2], [3] or [4] (or any subset of these)
connects [5] and [1] in Dµ which are d-separated given ∅.
The only orientation of arrowheads compatible with both
the skeleton and these separation/connection relations is
2 → 3 → 4. Hence, 4 ∈ deM̃(2). Finally, the existence
of an arrowhead 4←∗5 would violate the separation: [5]
d-separated from [1] given ∅. Hence, 2 ↔M̃ 5 and 2 ∈
anM̃(5), violating the ancestral property.

We now identify a class of mixture models for which
the d-separations in the mixture DAG are equivalent to d-
separation statements in a MAG.
Definition 4.1. LetM(j) be the MAG constructed via Al-
gorithm 1 from the induced sub-DAG D̃(j) defined in Sec-
tion 3.2. The MAGsM(1), . . . ,M(K) are said to be com-
patible with the same poset if there exists a partial order
π on V such that for all 1 ≤ j ≤ K it holds that (a) u ∈
anM(j)(v)⇒ u <π v; and (b) u↔M(j) v ⇒ u 6≶π v.

Figures 1d and 1e show examples of MAGsM(j) that sat-
isfy this poset compatibility condition. One can further
check that the MAGsM(1) andM(2) associated with the
mixture DAG in Figure 2a do not satisfy this condition. This
example shows that there exist DAGsD(1), . . . ,D(K) with a
common topological ordering whose corresponding MAGs
M(1), . . . ,M(K) do not satisfy the poset compatibility con-
dition 4.1. On the other hand, it can be readily verified that
the compatibility assumption onM(1), . . . ,M(K) implies
that D(1), . . . ,D(K) have a common topological ordering.

In the following, we show that poset compatibility ensures
that d-separation relations in Dµ are representable by a
MAG, which we call the union graph since it is obtained as
a union of the edges ofM(1) . . . ,M(K).
Definition 4.2 (Union Graph). The union graph M∪ :=
(V,D∪, B∪) has vertices V , directed edges

D∪ = {v → u : u, v ∈ V, ∃jvj →M(j) uj},

and bidirected edges

B∪ = {v ↔ u : v, u ∈ V, ∃jvj ↔M(j) uj}.
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We remark that Spirtes (1994) studied a similar graph and
proved the Markov property for a DAG with vertices V ∪{y}
and directed edges given by the union of D(1), . . . ,D(K).

An example of a union graphM∪ is given in Figure 1f. In
general, M∪ may neither be maximal nor ancestral (see
Figure 2b for an example). However, the following lemma
states that under poset compatibility it is guaranteed to be
both. The proof is given in Section D of the Appendix,

Lemma 4.3. Under the assumption thatM(1) . . . ,M(K)

are compatible with the same poset,M∪ is a MAG.

We now state the main results of this section, characterizing
the output of FCI when run on mixtures of DAGs.

Theorem 4.4. Let A,B,C ⊆ V be disjoint. If the compo-
nent MAGs satisfy the poset compatibility assumption, then
A and B are d-separated given C inM∪ if and only if [A]
and [B] are d-separated given [C] in Dµ.

The proof is provided in Section E in the Appendix. The
following corollary follows directly from the asymptotic
consistency of FCI (Spirtes et al., 2000).

Corollary 4.5. If the distribution pµ is faithful with respect
to a mixture DAG whose component MAGs satisfy the poset
compatibility assumption 4.1, then FCI outputs the Markov
equivalence class of the corresponding union MAGM∪.

We end this section by pointing out an important structural
property ofM∪, which can be used to recover key informa-
tion about the component distributions in the mixture. We
leave the proof to Section F of the Appendix.

Proposition 4.6. A bidirected edge u ↔ v in the union
graph M∪ implies that u ∈ V \ VINV. Additionally, this
implies that p(j)(xu|xpaD(j) (u)) 6= p(i)(xu|xpaD(i) (u)).

Hence bidirected edges identify nodes in the component
DAGs whose conditional distribution varies across mixture
components. As we show in the following section, these
nodes are natural candidates for features when clustering.

5. EXPERIMENTS
5.1. Synthetic Data

In the following, we demonstrate the effectiveness of learn-
ing the union graph from mixture data, analyze the perfor-
mance when estimating V \ VINV using Proposition 4.6,
and investigate the performance of clustering using mixture
data when V \ VINV are used as features.

We generated K component DAGs each with |V | = 10
nodes and the same topological ordering from an Erdös-
Rényi model with expected degree d = 1.5/K so that the
nodes in theM∪ have expected degree less than 1.5. From
these DAGs, the corresponding MAGsM(j) were computed

using Algorithm 1. If the MAGs were not compatible with
the same poset, the DAGs were discarded to ensure poset-
compatibility (2 out of 270 graphs were discarded).

Data was sampled from each DAG based on a linear
structural equation model with additive Gaussian noise,
where each edge weight (u, v) was sampled uniformly in
[−2,−0.25] ∪ [0.25, 2] (to ensure that it was bounded away
from zero) and set to be equal for the edges (u(j), v(j))
for all 1 ≤ j ≤ K if this edge existed in DAG D(j). In
this case, v ∈ VINV if and only if the parents of Xv are
the same across all K DAGs. The mean for the Gaus-
sian noise was sampled uniformly in [−2, 2] with stan-
dard deviation 1. From each DAG D(j), we generated
n pj observations where

∑K
j=1 pj = 1 yielding a total

of n samples. For the plots in the main paper, we chose
pj = 1/K. We present additional plots in Appendix G for
when p = (pk : 1 ≤ k ≤ K) is sampled from a Dirichlet
distribution.

Learning the Union MAG. To evaluate Corollary 4.5, we
ran the R implementation of FCI from the pcalg library
on this synthetic data using Gaussian conditional indepen-
dence tests (despite the true distribution being a mixture of
Gaussians) with threshold α. The output is a PAG P̂∪ repre-
senting the Markov equivalence class of the union graph. As
comparison, we computed the true union graphM∪ based
on the MAGsM(j), generated n samples from this graph
(using a structural equation model with the same parameters
as in the mixture) and ran FCI on these samples to obtain an
estimate P̃∪ for the PAG of the union graph. This offsets the
estimation errors that are intrinsic to FCI. The difference be-
tween the PAGs P̂∪ and P̃∪ was measured via a normalized
structural Hamming distance; the structural Hamming dis-
tance (SHD) between PAGs counts the occurrences of ∗→
in one of the PAGs versus ∗− in the other, plus the number
of adjacencies present in one graph but not the other. The
normalization is done by dividing over the possible number
of errors for the realization at hand to keep the value in [0, 1]
and make the numbers comparable. Figure 2e shows the
normalized SHD averaged over 30 realizations of synthetic
datasets. We used K = 4 and n = 5000 in this plot; in
Section G in the Appendix, we provide plots forK ∈ {2, 6}
and n ∈ {1000, 10000}.

Identifying Nodes in V \VINV. To evaluate Proposition 4.6,
we estimated V \ VINV by determining all nodes incident
to bidirected edges in the PAG P̂∪ estimated using FCI.
This set was compared to the ground truth; Figure 2f shows
true positive and false positive rates for varying significance
levels2, averaged over 30 realizations. We used K = 4 and

2We do not use ROC plots since while increasing the threshold
monotonically increases the true positive rate of the estimated ad-
jacencies, it generally does not monotonically increase the number
of correctly inferred edge orientations.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: (a) shows a mixture DAG Dµ and (b) shows the associated union graphM∪. In this model, each DAG D(j) has
a common topological ordering, however, the union MAG is not ancestral; (c) shows the output of FCI on genes in the
apoptosis pathway using mixture data without knowledge of the cluster membership for each sample, while (d) shows the
difference graph of Wang et al. (2018) on the same genes learned when cluster membership of each sample is known; (e)
shows the average normalized SHD between the PAG P̂∪ estimated using the mixture data, and P̃∪ estimated using data
sampled fromM∪; (f) shows the true and false positive rate in estimating V \ VINV; (g) shows the performance of clustering
when the set [V \ VINV] has no descendants in Dµ, while (h) shows the same plot when [V \ VINV] has descendants in Dµ.

n = 5000 in this plot. In Section G in the Appendix, we
show plots for K ∈ {2, 6} and n ∈ {1000, 10000}.

Clustering. Under mixture-faithfulness, XV \VINV repre-
sents the set of nodes whose conditionals vary across the
component DAGs. This motivates using the nodes XV \VINV

and their descendents as features for clustering since these
are the only nodes with different marginals across the mix-
ture components. Since FCI generally cannot identify all the
descendents of XV \VINV , we used only XV \VINV for cluster-
ing. As a proof-of-concept demonstrating that these features
can be useful, we considered two settings, one in which
[V \ VINV] has no descendants in Dµ (see Figure 2g), and
another one in which this set has descendants (Figure 2h).

In both settings, we used K̃-means clustering for various
values of K̃. To compare the quality of clustering us-
ing [V \ VINV] versus all nodes as features, we used the
V-measure score from Rosenberg and Hirschberg (2007)
which is based on ground truth cluster assignments; a higher
score represents better performance. As per what is expected
from our theoretical results, Figure 2g shows that clustering
based on the reduced number of features [V \VINV] results in
higher quality clusters as compared to using all features for
clustering in the setting where [V \VINV] has no descendants
in Dµ, while otherwise both feature sets perform equally.

5.2. Real Data

Ovarian Cancer. We applied this framework to gene ex-
pression data from ovarian cancer in K = 2 patient groups
(with 93 and 168 observations, respectively) with different
survival rates (Tothill et al., 2008). We followed the analysis
of Wang et al. (2018), where the difference-DAG was esti-
mated for the two groups based on the apoptosis pathway
consisting of |V | = 10 genes. The resulting difference-
DAG is shown in Figure 2d. While the difference-DAG
can identify edges that are different between the two DAGs
D(1) and D(2) and hence provides more information than
the union graph, computing the difference-DAG requires
knowledge of the membership of each observation to the
two disease subgroups, which is not available for many
diseases. The estimated PAG P̃∪ based on the combined
samples from the two patient groups is shown in Figure 2c.
It was estimated using FCI with stability selection. FCI
identified BIRC3 as the node with the highest number of
incident bidirected edges; BIRC3 is known to be one of the
major disregulated genes in ovarian cancer and an inhibitor
of apoptosis (Johnstone et al., 2008; Jönsson et al., 2014).

T cell activation. We also applied our framework to single-
cell gene expression data of naive and activated T cells
(i.e. K = 2, with 298 and 377 samples, respectively)
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from Singer et al. (2016). Following the analysis in Wang
et al. (2018), we performed the analysis on 60 genes that had
a fold expression change above 10. The FCI output on these
60 nodes is shown in Section G.2 in the Appendix. The fol-
lowing nodes have the highest number of incident bidirected
edges, indicating that they may play important roles in T cell
activation: CDC6, CDC20, SHCBP1, NKG2A, GZMB4 and
KIF2C. All these genes have been discribed before as criti-
cal: CDC6 and CDC20 are essential regulators of the cell
division cycle. Shorter cell cycle time for increased prolifer-
ation is a hallmark of T cell activation (Qiao et al., 2016;
Borlado and Méndez, 2008). SHCBP1 has been shown to
be tightly linked to cell proliferation and strongly correlates
with proliferative stages of T cell development (Schmandt
et al., 1999; Buckley et al., 2014). NKG2A functions to
limit excessive activation, prevent apoptosis, and preserve
the specific T cell response (Rapaport et al., 2015). GZMB4
has been shown to regulate antiviral T cell response (Salti
et al., 2011). Finally, the gene KIF2C encodes a Kinesin-like
protein that functions as a microtubule-dependent molecular
motor. It is over-expressed in a variety of solid tumors and
induces frequent T cell responses (Gnjatic et al., 2010).

6. DISCUSSION
In this paper, we provided a graphical representation (via
the mixture DAG) of distributions that arise as mixtures of
causal DAGs. We showed that the mixture DAG not only
satisfies the Markov property with respect to such mixture
distributions, but is also always realizable by a mixture dis-
tribution, meaning that it cannot be made sparser without
losing the Markov property. In addition, we characterized
the output of the prominent FCI algorithm when applied
to data from such mixture distributions. FCI is a natural
candidate in this setting due to the presence of the latent
mixing variable. We proved that FCI can identify variables
whose conditionals vary across the different components
and showed how this property can be used to infer cluster
membership of samples. This is relevant for many applica-
tions, as for example when studying diseases consisting of
multiple not well characterized subtypes. In such studies, ge-
nomic perturbation experiments can now be performed rela-
tively routinely, leading to high-throughput interventional
data. In future work it would be interesting to study how in-
terventional data could be used to enhance causal inference
based on mixtures of DAGs or which interventions to per-
form in order to enhance identifiability of pathways that are
shared among the different subtypes as well as those that are
different across the subtypes for personalized interventions.
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