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A. Proof of Proposition 2.1
We begin by recalling the definition of an inducing path from Richardson and Spirtes (2002), specialized to ancestral graphs.

Definition A.1. A path v1, . . . , vn in an ancestral graph G is inducing if v1 and vn are not adjacent in G and for all
i ∈ {2, . . . , n− 1}, we have

vi−1 ↔ vi ↔ vi+1 and vi ∈ anG({v1, vn}).

Richardson and Spirtes (2002) showed the following condition for an ancestral graph to be maximal.

Lemma A.2 ((Richardson and Spirtes, 2002)). An ancestral graphM is maximal if and only if G does not contain any
inducing paths.

This allows us to prove Proposition 2.1.

Proof of Proposition 2.1. We show that the graph resulting from Algorithm 1 does not contain inducing paths. LetM be
the output of the algorithm. Suppose we have vertices v1, . . . , vn where vi−1 ↔ vi ↔ vi+1 for all i ∈ {2, . . . , n− 1} in
M. Then by step 1 of the algorithm, we must have v1, . . . , vn ∈ chDµ(y), implying that v1 ↔M vn, and hence the path is
not inducing.

B. Counter-example for the Markov property of the mother graph
In the following, we provide a counter-example for the Markov property of the mother-graph representation introduced
by Strobl (2019b;a). We first remark that the Markov property in Strobl (2019a) generalizes that of Strobl (2019b) in the
following sense: if the Markov property of the latter is satisfied, then the former is satisfied. Hence, we here provide a
counter-example for the former, which can serve as a counter-example for both.

(a) D(1) (b) D(2) (c) Dm

Figure 1: (c) shows the mother graph Dm associated with the DAGs D(1) and D(2) in (a) and (b).
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We start by recalling a few definitions from Strobl (2019b) using notation native to our development. Given a mixture
of DAGs with distribution pµ where p(j) factorizes according to D(j), the mother graph Dm = (Vm, Dm) has nodes
Vm := [V ] ∪ {y(1), . . . , y(K)} and directed edges

Dm :=
⋃

1≤j≤K

{y(j) → v(j) : v ∈ V \ VINV} ∪ {u(j) → v(j) : u→D(j) v}.

An example of the mother graph is shown in Figure 1. A variable c(j) ∈ [V ] in the mother graph is called an m-collider if
and only if at least one of the following conditions hold:

• a(j) → c(j) ← b(j), where a, b ∈ V ∪ {y}

• a(j) → c(j) ← y(j) and y(k) → c(k) ← b(k) where a, b ∈ V .

An m-path exists between [A] and [B] in the mother graph if and only if there exists a sequence of triples between [A] and
[B] such that at least one of the following two conditions is true for each triple in the sequence:

• a(j)∗−∗c(j)∗−∗b(j) with a, b, c ∈ V ∪ {y}

• a(j) → c(j) ← y(j) and y(k) → c(k) ← b(k) where a, b, c ∈ V .

Finally, [A] and [B] are said to be m-d-connected given [C] if and only if there exists an m-path between [A] and [B] such
that the following two conditions hold:

• c(j) ∈ [C] for every m-collider on the path, where c ∈ V

• a(j) 6∈ [C] for every non-m-collider on the path, where c ∈ V ∪ {y}.

Now, the Markov property for the mother graph states that if [A] and [B] are not m-d connected given [C] in the mother
graph, then XA ⊥⊥ XB | XC in pµ (Strobl, 2019b;a).

We now provide a counter example for this Markov property. For this, consider the mother graph in Figure 1c over
V = {1, 2, 3, 4}. Note that according to the definition of m-d-connection, [{1}] and [{4}] are not m-d-connected given
[{2, 3}]. Hence, the Markov property should imply that X1 ⊥⊥ X4|X2, X3 in any mixture distribution whose mother graph
is as shown. In the following, construct a mixture distribution where this is not satisfied.

For simplicity, let pJ(1) = pJ(2) =
1
2 . Define p(1)(xV ) as

p(1)(x1) = N (x1; 0, 1),

p(1)(x2|x1) = N (x2;x1, 1),

p(1)(x3) = N (x3; 0, 1),

p(1)(x4) = N (x4; 0, 1),

and p(2)(xV ) as

p(2)(x1) = N (x1; 0, 1),

p(2)(x2) = N (x2; 0, 1),

p(2)(x3|x4) = N (x3;x4, 1),

p(2)(x4) = N (x4; 0, 1).
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Clearly, p(1)(xV ) and p(2)(xV ) factorize according to D(1) of Figure 1a and D(2) of Figure 1b, respectively. Now,

pµ(x1, x2, x3, x4) =
∑

j∈{1,2}

pJ(j)p
(j)(x1, x2, x3, x4)

=
1

2

1

(2π)2
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which cannot be written as
f(x1, x2, x3)g(x2, x3, x4)

for any f, g, implying that X1 6⊥⊥ X4 | X2, X3 in pµ.

C. Proof of Lemma 3.3
Proof of Lemma 3.3. By the assumption, p(j1)(xV ) factors according to D(j1). Hence, it is sufficient to define a distribution
p̃XV ,J(xv, j) over XV ∪ {J} that factors according to D̃(j), with J ∈ {j1, j2} for an arbitrarily chosen j2 ∈ {1, . . . ,K} \
{j1}, such that

p̃XV |J(xV |j1) = p(j1)(xV ).

Then, the factorization with respect to D̃(j1) along with the two d-separation statements in the hypothesis of the lemma
would imply

p(j1)(xA, xB |xC) =
∑
xV \(A∪B∪C)

p(j1)(xV )∑
xV \C

p(j1)(xV )

=

∑
xV \(A∪B∪C)

p̃(xV |j1)∑
xV \C

p̃(xV |j1)

= p̃(xA, xB |xC , j1)
= p̃(xA|xC)p̃(xB |xC , j1).

To complete the proof, we define such a distribution p̃. First let Vy := chD̃(j1)(y) and note that

p̃(xV , j) = p̃J(j)
∏
v∈V

p̃(xv|xpaD̃(j1) (v), j)

= p̃J(j)
∏
v∈Vy

p̃(xv|xpaD(j1) (v), j)
∏

v∈V \Vy

p̃(xv|xpaD(j1) (v)).

Define

p̃J(j) :=

{
pJ(j1) j = j1

1− pJ(j1) j = j2
,

p̃(xv|xpaD(j) (v)) := p(xv|xpaD(j) (v)) ∀v ∈ V \ Vy.

Now, for each v ∈ Vy , define
U(v) := paD(j1)(v) ∩ paD(j2)(v)

and
D(v) := paD(j2)(v) \ paD(j1)(v),

and choose an arbitrary fixed value for xpaD(i)(v)
\ paD(j)(v)

and denote it by x′d(v).
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(a) Mµ (b) M(1) (c) M(2) (d) M∪

Figure 2

Then define for all v ∈ Vy ,

p̃(xv|xpaD(j) (v), j) :=

{
pXv|Xpa

D(j1) (v)
,J(xv|xpaD(j1) (v), j1) j = j1

pXv|XU(v),XD(v),J(xv|xU(v), x
′
d(v), j2) j = j2

.

Now, one easily checks that this distribution indeed satisfies the factorization property, which completes the proof.

D. Proof of Lemma 4.3
The ancestral property follows directly since we impose the order compatibility assumption of Definition 4.1. In the
following, we show maximality using the definition of inducing path and the associated maximality condition in Section A.

Proof of Lemma 4.3. Suppose we have a path v1 ↔ v2 ↔ . . . vn−1 ↔ vn in M∪. Then, for all m ∈ {1, . . . , n − 1},
we must have some j ∈ {1, . . . ,K} such that v(j)m ↔ v

(j)
m+1 in M(j), implying that for all m, we must have a j such

that v(j)m , v
(j)
m+1 ∈ chD(j)(y) and hence a j such that v(j)m , v

(j)
m+1 ∈ chDµ(y). But by construction of Dµ, this implies

that v(j)m v
(j)
m+1 ∈ chDµ(y) for all j ∈ {1, . . . ,K}. Therefore, for any j, we have v(j)1 · · · , v

(j)
n ∈ chD(j)(y), and hence

Algorithm 1 adds an edge between v(j)1 and v(j)n inM(j), resulting in an edge between v1 and vn inM∪. Therefore, the
path v1, . . . , vn is not inducing inM∪.

E. Proof of Theorem 4.4
Since we assume that A,B,C ⊆ V , i.e., these sets do not contain y, then [A] and [B] are d-separated in Dµ given [C] if and
only if they are d-separated in the marginal MAG of Dµ w.r.t. {y} obtained from Algorithm 1. We refer to this MAG as the
mixture MAG and denote it byMµ. We will make use of this MAG in parts of the following proof since it simplifies the
arguments.

One thing to note aboutMµ is that if we remove the edges of the form u(j)◦−◦v(i) for u, v ∈ V and i 6= j, then we obtain a
bijection between the edges ofMµ and the union of all the edges ofM(j) for all j. Figure 2 illustrates this for an example.
Hence, we can alternatively think of the union graph as having directed edges

D∪ := {u→ v : u, v ∈ V, ∃i u(i) →Mµ
v(i)},

and bidirected edges
B∪ := {u↔ v : u, v ∈ V, ∃i u(i) ↔Mµ v

(i)}.

We prove Theorem 4.4 in 3 main steps. First, in Lemma E.5 we show that for any d-connecting path between a and b given
C inM∪, we can find a d-connecting path between a(i) and b(k) given [C] inMµ. Second, in Lemma E.7 we show the
converse: that for any d-connecting path a(i) and b(k) given [C] inMµ, we can find a d-connecting path between a and b
given C inM∪. Finally, in Lemma E.8 we show that this equivalence implies that for any disjoint sets A,B,C ⊆ V , A and
B are d-separated inM∪ if and only if [A] and [B] are d-separated inMµ given [C].

The proof strategy in Lemmas E.5 and E.7 relies on concatenating d-connecting paths given C of the form P1 = 〈v1, . . . , vn〉
and P2 = 〈vn . . . , vm〉 together to create longer d-connecting paths given C of the form P = 〈v1, . . . , vm〉. When doing so,
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we must take care to ensure that vn is active on the longer path, i.e., we must ensure that vn is a collider on the path P if and
only if vn ∈ C.

E.1. A connecting path inM∪ implies an analogus one inMµ

We begin by proving some auxiliary results for step 1.

Lemma E.1 (Bidirected Connections). If a(i) ↔Mµ b(k) for any i, k ∈ {1, . . . ,K}, then a(i) ↔Mµ b(j) for all j ∈
{1, . . . ,K} \ {i}.

Proof. a(i) ↔Mµ b
(k) implies that a(i), b(k) ∈ chDµ(y). By construction of Dµ, this implies a(j), b(j) ∈ chDµ(y) for

all j ∈ {1, . . . ,K}, and hence step 1 of Algorithm 1 will add the bidirected edges a(i) ↔ b(j) for all j ∈ {1, . . . ,K}.
Step 3 will only remove it if a(i) and a(j) are ancestors of one another in Dµ, which could happen only if j = i. Hence,
a(i) ↔Mµ

b(j) for all j ∈ {1, . . . ,K} \ {i}.

Lemma E.2 (Bidirected district). Assume a(i) ↔Mµ
b(j) and c(k) ↔Mµ

d(l).

• If i 6= l, then a(i) ↔Mµ
d(l).

• If i = l, then

– a(i) ↔Mµ
d(l) if neither a(i), d(l) is an ancestor of another inMµ,

– a(i) →Mµ
d(l) if a(i) ∈ anMµ

(d(l)); or

– a(i) ←Mµ
d(l) if d(l) ∈ anMµ

(a(i)).

Proof. a(i) ↔Mµ
b(j) and c(k) ↔Mµ

d(l) implies that a(ι), b(ι), c(ι), d(ι) ∈ chDµ(y) for all ι ∈ {1, . . . ,K}. Hence, step 1
of Algorithm 1 will add a(i) ↔Mµ

d(l). If i 6= l, then a(i) and d(l) cannot be ancestors of one another, implying that step 3
will not remove this bidirected edge. If i = l, then the edge will be removed and replaced with the appropriate directed edge
if one of a(i) or d(l) is an ancestor of the other. Otherwise, the bidirected edge will remain.

Lemma E.3 (Arrow tip lemma). Under the ordering assumption in Definition 4.1, if a directed edge a→M∪ b exists in
M∪, then we must have aj →Mµ

bj for some j inMµ. If a bidirected edge a↔M∪ b exists inM∪, then we must have
aj ↔Mµ

bj for some j inMµ.

Proof. The proof follows directly from the definition of the union graph.

Lemma E.4 (Changing Arrowtips Lemma). Under the ordering assumption in Definition 4.1, if a(j)∗→Mµ
b(j) but not

a(k)∗→Mµ
b(k) (same type of edge) for some j 6= k, then we must have b(j) ↔ b(k).

Proof. The ordering assumption does not allow a(j) →Mµ
b(j) and a(k) ↔Mµ

b(k) (and vice versa). Hence, we must only
look at the existence of a(j)∗→b(j) and the in-existence of an edge between a(k) and b(k).

First, we note that if step 1 of Algorithm 1 defining Mµ adds b(j) ↔ b(k), then it will remain since step 2 does not
modify edges but only adds them, while step 3 will never remove an edge b(j) ↔ b(k) since neither can be an ancestor or a
descendant of the other in Dµ.

Now, if a(j) →D(j) b(j) but not a(k) →D(k) b(k) for some k, then we must have b ∈ V \ V I and hence b(ι) ∈ chDµ(y) for
all ι ∈ {1, . . . ,K} by construction of Dµ. Therefore, step 1 of Algorithm 1 will add b(j) ↔ b(k).

For the other case we must check that a(j)◦→b(j) was added by the algorithm that createdMµ. In all steps, the algorithm
will only add such an edge if b ∈ V \ VINV and hence b(j) ↔ b(k) must have been added in step 1.

Lemma E.5 (Step 1). Under the ordering compatibility assumption in Definition 4.1, if there is a connecting path between
a and b given some C ⊆ V \ {a, b} inM∪ ending in an arrow head (or tail respectively) incident to b, then there is a
connecting path between a(i) and b(k) given [C] inMµ for some i, k ∈ {1, . . . ,K} that also ends in an arrow head (or tail
respectively) towards b(k).
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Proof. We use induction on the number of edges in the connecting path inM∪. The base case for 1 edge follows directly
from Lemma E.3.

Now assume we have a d-connecting path given C consisting of m + 1 edges inM∪: P∪ = 〈a, . . . , d, b〉 ending in an
arrow head (or tail respectively). Consider the sub-path 〈a, . . . , d〉 with m edges. By the inductive hypothesis, there is a
path Pµ = 〈a(i), . . . , d(j)〉 inMµ that is d-connecting given [C], for some i, j, ending in the same tip. In the following, we
show that we can always find a path of the form 〈d(j), . . . , b(k)〉 for some k that can be joined together with Pµ to create a
path 〈a(i), b(k)〉 that is d-connecting given [C]. We do this by considering all the different cases for the tips of the edges
c∗−∗M∪d and d∗−∗M∪b.

Before discussing the different cases, note that if the edge d(j)∗−∗Mµ
b(k) exists and is of the same type as the edge

d∗−∗M∪b, then we can create the desired d-connecting path P̃µ from a(j) to b(i) given [C] by concatenating this edge with
Pµ, since:

d is active on Q∪ ⇒
(
d is a collider on Q∪ ⇔ d ∈ C

)
⇒
(
d(j) is a collider on P̃µ ⇔ d(j) ∈ [C]

)
⇒ d(j) is active on P̃µ,

where the second implication follows because the path Pµ ends in the correct type of arrow tip by the inductive hypothesis
(I.H.). Hence, in what follows, it is sufficient to

assume either d(j)∗−∗b(k) is not inMµ or is not the same edge type as d∗−∗b inM∪. (1)

(i) case c∗→d←∗b inM∪:

Since d is a collider on the path Q∪, we must have d ∈ C, and hence d(j) ∈ [C] for all j. Hence the path Pµ is of
the form 〈a(i), . . . , γ(ι), d(j)〉, where γ(ι)∗→d(j) for some γ ∈ V and ι ∈ {1, . . . ,K} by the I.H. Furthermore, by
Lemma E.3, we must have d(ι)←∗Mµb

(k) for some ι, k ∈ {1, . . . ,K}. Since we assumed in (1) that this isn’t true
for ι = j, then by Lemma E.4 we must have d(j) ↔ d(ι), creating the path ∗→d(j) ↔ d(ι)←∗b(k) that is d-connected
given [C] (recall d(j), d(ι) ∈ [C]). Concatenating d(j) ↔ d(ι)←◦b(k) to Pµ gives the desired d-connecting path
〈a(i), . . . , d(j), d(ι), b(k)〉.

For the remaining cases, we begin by recalling that the edge d∗−∗M∪b must exist since d(k)∗−∗Mµb
(k) for some k by

Lemma E.3. Now, let α(j) be the node on the path Pµ closest to a(i) such that all nodes between α(j) and d(j) have the
same index j, i.e., all of these are contained in the same MAGM(j). This means that the node preceding α(j) on this path,
call it γ(κ), either has a different index (i.e., a part of a differentM(κ)), or α(j) = a(i).

Call P (j)
µ = 〈α(j), . . . , d(j)〉 the subpath of Pµ from α(j) to d(j). This path is completely contained inM(j). If it is possible

to find a path P (k)
µ = 〈α(k), . . . , d(k)〉 inM(k) that is analogous to P (j)

µ (same types of edges), then we can replace the
segment P (j)

µ of Pµ with P (k)
µ to obtain a connecting path between a(i) and d(k) given [C]. Then, concatenating d(k)∗−∗b(k)

gives us the desired connecting path from a(i) to b(k) given [C] inMµ.

Hence, in checking the remaining cases, we further

assume that it is not possible to find a path P (k)
µ inM(k). (2)

Therefore, walking along the path P (j)
µ backwards starting at d(j) until α(j), we will eventually find an edge β(j)∗−∗δ(j)

such that β(k)∗−∗δ(k) is not an edge. Take the first such edge. Now, if this edge was β(j) ↔ δ(j), then by Lemma E.1, we
must have β(j) ↔ δ(k), implying that we can concatenate the subpath of Pµ of the form 〈a(i), . . . , β(j)〉 with β(j) ↔ δ(k)

and the subpath of P (k)
µ of the form 〈δ(k), . . . , b(k)〉 to create the desired d-connecting path given [C]. Next we look at the

situations where we do not have β(j) ↔ δ(j), considering each remaining case on the arrowheads of c∗−∗d∗−∗b inM∪
separately.
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(ii) case c← d→ b inM∪: This case is depicted in Figure 3a. If the first edge found is of the form β(j) ← δ(j) where
β(k) ← δ(k) is not present (see Figure 3b), then by Lemmas E.4 and E.2, we must have β(j) ↔ b(k) (Figure 3d).
Replacing the segment 〈β(j), . . . , d(j)〉 of Pµ with β(j) ↔ b(k) gives the desired path.

Otherwise, if we have β(j) → δ(j) instead (Figure 3c), then Lemmas E.4 and E.2 again say that we must have
δ(j) ↔ b(k) (Figure 3e). The subpath of Pµ of the form 〈δ(j), c(j)〉 shown in Figure 3e is connecting given [C] by the
I.H. Starting at δ(j) and walking towards c(j), we can find a collider that is in [C] (shown in Figure 3f). This collider
must be a descendant of δ(j) Hence, δ(j) is active given [C] on the path β(j) → δ(j) ↔ b(k) since it is a collider whose
descendant is in [C]. Replacing the segment 〈β(j), . . . , d(j)〉 in Pµ with this path gives the desired connecting path
given [C].

(iii) case c → d → b inM∪: Proceeding similarly, if the edge found is of the form β(j) ← δ(j), then we must have
β(j) ↔ b(k) similar to before and for the same reasons. Furthermore, we can find a d-connecting path by performing a
concatenation similar to the one we did before: replace the segment 〈β(j), . . . , d(j)〉 of Pµ with β(j) ↔Mµ b

(k). This
is illustrated in Figure 4a,

If, otherwise, the edge found is of the form β(j) → δ(j). We can conclude that we have the bidirected edge δ(j) ↔ d(k)

by applying the Lemmas E.2 and E.4 again.

If there is a collider on the subpath between 〈δ(j), . . . , c(j)〉, then any such collider must be in [C] since Pµ is d-
connecting given [C] (see Figure 4b). Furthermore, one of these colliders will be a descendant of δ(j), and we can
apply similar logic to that in Case (ii) to show that the path obtained by replacing the segment 〈β(j), . . . , d(j)〉 of Pµ
with δ(j) ↔ d(k) is d-connecting given [C].

Otherwise, no such collider exists between δ(j) and c(j) and hence c(j) is a descendant of δ(j) (see Figure 4c).
Therefore, b(k) is a descendant of δ(k) by the ordering compatibility assumption, and Algorithm 1 adds the directed
edge δ(k) → b(k) since δ(k) and b(k) will both be in chDµ(y). This further implies that δ(j), b(j) ∈ chDµ(y), so
Algorithm 1 will add an edge between these two nodes. The ordering assumption once again ensures that this edge is
of the form δ(j) → b(j).

(iv) case c← d← b inM∪. Proceeding similarly, if we have the edge β(j) → δ(j), then we can follow the same logic to

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: An illustration of the logic in the proof of Lemma E.5, case (ii). We do not plot all possible edges in order to reduce
clutter. Instead, we plot non-edges using an x superimposed on a dashed line. Furthermore, we indicate paths between
two nodes with a squiggly line. (a), (b) and (c) show the relevant segment of the path Pµ in blue; (d), (e) and (f) show the
segment that replaces 〈β(j), . . . , d(j)〉 on Pµ to create the desired d-connecting path in blue.
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(a) (b) (c)

Figure 4: An illustration of the d-connecting paths constructed by following the logic of case (iii) in the proof of Lemma E.5.
In each of (a), (b) and (c), the segment that replaces 〈β(j), . . . , d(j)〉 on Pµ to create the desired d-connecting path is colored
in blue.

(a) (b) (c)

Figure 5: An illustration of the d-connecting paths constructed by following the logic of case (iv) in the proof of lemma E.5.
In each of (a) and (b), the segment that replaces 〈β(j), . . . , d(j)〉 on Pµ to create the desired d-connecting path is colored in
blue.

create the d-connecting path (see Figure 5a).

Otherwise, β(j) ← δ(j), and we have the bidirected edge β(j) ↔ d(k), and we again check for colliders between β(j)

and d(j).

If there is a collider, it will be both in [C] and a descendant of d(k) inMµ, and we can find the desired d-connecting
path with the same logic followed previously (see Figure 5b).

If there is no such collider, then β(j) will be a descendant of d(j), and using a similar argument to that used for
Figure 4c, we can conclude that we have directed edges β(j) ←Mµ

d(j) and β(k) ←Mµ
d(k) (see Figure 5c). In such

a scenario, we can repeat the logic for the node β in place of the node c: we continue walking along the path P (j)
µ

starting from β(j) until α(j) is reached or until we find another edge along this path that does not exist on P (k)
µ . If

the former happens first, we deal with the case like we would have if P (k)
µ and P (j)

µ had identical edges. If the latter
happens first, then we recursively repeat the logic of case (iv).

This completes the proof.

E.2. A d-connecting path inMµ implies an analogous d-connecting path inM∪

Again, we begin with some auxiliary results.

Lemma E.6 (At most 1 bidirected edge). If there exists a connecting path between a(i) and b(k) given some [C] where
a, b ∈ V and C ⊆ V \ {a, b} inMµ, then there must exist a path P̃µ between a(i) and b(k) that is also connecting given
[C] that contains at most one bidirected edge.

Proof. Since a(i) and b(k) are connected given [C] inMµ, then they must also be connected given [C] inDµ. Let Pµ denote
the path connecting a(i) to b(k) given [C] inDµ. Let Pµ = 〈a(i), u1, . . . , u(l)〉 and let ux, uz be the first and last occurrences
of the vertex y on Pµ, respectively, if any. Since y has an in-degree of 0, neither ux nor uz can be a collider. Hence, we can
concatentate the paths P1 = 〈a(i), . . . , ux〉 and P2 = 〈uz, . . . , b(k)〉 to get a connecting path given [C] in Dµ.



Appendix: Causal Structure Discovery from Distributions Arising from Mixtures of DAGs

Now, if ux−1 is neither an ancestor nor a descendant of dz+1, then in Mµ, we will have the path
a(i), . . . , ux−1, uz+1, . . . , b

(k) by virtue of Algorithm 1, since it adds a bidirected edge between any pair of children
of y. This is a path from a(i) to b(k) that is also connected given [C] that contains only 1 bidirected edge.

Otherwise, (W.L.O.G) ux−1 ∈ anDµ(uz+1), i.e., there is a directed path from ux−1 to uz+1 in Dµ. Step 3 of Algorithm 1
adds the edge ux−1 → uz+1 to Mµ to create the path P̃µ := 〈a(i), . . . , ux−1, uz+1, . . . , b

(k)〉. This path is from a(i)

to b(k) and passes through no bidirected edges. If this path is active, then we are done. If this path is not active, then,
since 〈a(i) . . . , ux−1〉 and 〈uz+1, . . . , b

(k) are active, P̃µ must be inactive by virtue of ux−1 ∈ [C]. But since Pµ in Dµ is
connecting, this implies that ux−1 must have been a collider on that path, hence we have the edge ux−2 → ux−1 in Dµ
andMµ. Step 2 of Algorithm 1 adds ux−2 → uz+1 in such a case. Then, the path 〈a(i), . . . , ux−1, uz+1, . . . , b

(k)〉 must be
connecting from a(i) to b(k) given [C], which completes the proof.

Lemma E.7 (A Connecting Path inMµ implies a connecting path inM∪). Under the assumptionin Defintion 4.1, if there
is a connecting path between a(i) and b(k) given some [C] inMµ for some i, k ∈ {1, . . . ,K}, where C ⊆ V \ {a, b}, then
there is a connecting path between a and b given C inM∪.

Proof. By Lemma E.6, we must have a connecting path inMµ between a(i) and b(k) given [C] that passes through at most
1 bidirected edge. If there exist paths that pass through no bidirected edges, take any such path. Otherwise, take any path
that passes through 1 bidirected edge. Call this path Pµ = 〈a(i) =: u

(i)
0 , u

(i)
1 , . . . , u

(k)
m := b(k)〉.

By the structure ofMµ discussed in the beginning of this section, only a bidirected edge can connect a node u(i)x to a node
u
(k)
x+1 inMµ for i 6= k. Hence, if there is no bidirected edge on this path, then all the nodes u(i)0 , . . . , u

(i)
m will be contained

in the same MAGM(i). Each edge along this d-connecting path given [C] will show up inM∪, and hence we can create a
path 〈u0, . . . , um〉 that is d-connecting given C inM∪.

In the case where Pµ contains a bidirected edge, let us label the nodes incident as u(i)x ↔ u
(k)
x+1. The segments 〈u(i)0 , . . . , u

(i)
x 〉

and 〈u(k)x+1, . . . , u
(k)
m 〉 will each be contained inM(i) andM(k) respectively, and hence we can find d-connecting paths

〈u0, . . . , ux〉 and 〈ux+1, . . . , um〉 inM∪ that are each d-connecting given C. We must now show that we can connect these
paths to create a d-connecting path given C from u0 = a to um = b inM∪.

Of course, there is no difficulty if the bidirected edge ux ↔ ux+1 appears inM∪, since we can connect these two subpaths
with this bidirected edge and have the desired connecting path. The difficulty is when this edge does not appear. From the
definition ofM∪, we can see that this only happens when the bidirected edge connects u(i)x and u(k)x+1 for i 6= k, i.e., the
bidirected edge is not contained in any MAGM(j) for any j. We split the remainder into two cases.

(i) case ux = ux+1. If u(i)x and u(k)x+1 are both colliders on Pµ, then we must have ux, ux+1 ∈ C. Then c = d will be an
active collider given C inM∪ on the path obtained by concatenating 〈u0, . . . , ux〉 and 〈ux+1, . . . , um〉 inM∪, and
hence we have our d-connecting path given C. We therefore assume, W.L.O.G., that u(i)x is not a collider on Pµ.

If there is a path 〈u(k)0 , . . . , u
(k)
x 〉 inMµ where every pair of adjacent vertices u(k)n , u

(k)
n+1 on this path are connected by

the same edge type as the pair u(i)n , u
(i)
n+1 in Pµ, then we can replace the segment of 〈u(i)0 , . . . , u

(i)
x 〉 of Pµ with 〈u(k)0 to

u
(k)
x 〉 to obtain a path that is d-connecting given [C] and contained completely inM(k), meaning that we can find the

desired d-connecting path given C inM∪. If no such path exists inMµ, then starting at u(i)x and walking backwards
along Pµ towards u(i)0 , we will find an edge u(i)z ∗−∗Mµ

u
(i)
z+1 where u(k)z ∗−∗Mµ

u
(k)
z+1 is not an edge. Take the first such

edge found (i.e., the edge closest to u(i)x that satisfies this; see Figure 6a).

If u(i)z →Mµ u
(i)
z+1, then by Lemmas E.4 and E.2, there is a bidirected edge u(i)z+1 ↔Mµ u

(k)
x , implying that step 1

of Algorithm 1 adds another bidirected edge u(k)z+1 ↔ u
(k)
x . If u(i)z+1 is not a descendant of u(i)x , then the bidirected

edge u(k)z+1 ↔Mµ
u
(k)
x would not be removed by step 3 of Algorithm 1 and hence will appear inMµ. Furthermore,

we will have collliders α(i) and γ(i) between u(i)z+1 and u(i)x that are in [C] that will be descendants of u(i)z+1 and u(i)x
respectively. The ordering assumption ensures that α and γ are descendants of uz+1 and ux inM∪, respectively.
Hence, the path 〈u0, . . . , uz+1, ux, . . . , um〉 inM∪ is d-connecting inM∪ given C. Figures 6a and 6b illustrate this.
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(a) (b) (c) (d)

Figure 6: An illustration of the logic for case (i) for the proof of Lemma E.7. In (a) and (c), we color in blue the relevant
segments of the d-connecting path inMµ, while in (b) and (d), we color in blue the relevant segments of the constructed
d-connecting path inM∪.

(a) (b) (c) (d)

Figure 7: An illustration of the logic for case (ii) for the proof of Lemma E.7. In (a) and (c), we color in blue the relevant
segments of the d-connecting path inMµ, while in (b) and (d), we color in blue the relevant segments of the constructed
d-connecting path inM∪.

Now we check the case where u(i)z ← u
(i)
z+1. If u(i)z is not a descendant of u(i)x , then we can construct a path in

M∪ by a similar argument to the above. If u(i)z is a descendant of u(i)x , then by Lemma E.2, there is a directed edge
u
(i)
z ←Mµ

u
(i)
x , which appears as uz ←M∪ ux. We can use this to construct a path inM∪ as shown in Figures 6c and

6d. This path is active since u(i)x is not a collider, and hence u(i)x 6∈ [C], implying that ux 6∈ C.

(ii) case ux 6= ux+1: Step 1 of Algorithm 1 adds the bidirected edge u(k)x ↔ u
(k)
x+1, which will show up inM∪ as an edge

ux ↔ ux+1 unless it is removed by step 3; so this is the only case we must check. Assume W.L.O.G. that this edge is
removed by step 3 because u(k)x is a descendant of u(k)x+1 inDµ and therefore inMµ. Then a directed edge u(i)x ← u

(i)
x+1

will be added instead, which appears inM∪ as ux ← ux+1. The only case where we cannot join 〈u0, . . . , ux〉 and
〈ux+1, . . . , um inM∪ together using this directed edge ux ← ux+1 to create a d-connected path given C is when
u
(k)
x+1 is in [C], and hence is a collider on Pµ. This implies that we have u(k)x+1 ←Mµ

u
(k)
x+2. in which case step 2 of

Algorithm 1 would have added the edge u(k)x+1 ← u
(k)
x+2, which appears as ux+1 ←M∪ ux+2. This edge can be used to

create the d-connecting path given C given by 〈u0, . . . , ux, ux+2, . . . , um〉 inM∪. This is illustrated in Figure 7 and
completes the proof.

E.3. The main result

Finally, we use the results of the first two steps to prove the following.

Theorem E.8. Under the assumption in Definition 4.1, for any disjoint A,B,C ⊆ V , [A] and [B] are d-separated given
[C] in Dµ if and only if A and B are d-separated given C inM∪.

Proof. SinceMµ is the marginal MAG in Dµ with respect to the vertex y, the d-separation statements involving subsets not
including y are the same in both. By proposition 2.1,Mµ is a MAG, hence d-separation inMµ is compositional (Sadeghi
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and Lauritzen, 2014); therefore for A,B,C ⊆ V disjoint it holds that

{
[A] sep from [B] inMµ given [C]

}
⇔
{
ai sep from bk inMµ given [C] for all ai ∈ [A], bk ∈ [B]

}
.

Now Lemmas E.5 and E.7 imply

{
ai sep from bk inMµ given [C] for all ai ∈ [A], bk ∈ [B]

}
⇔
{
a sep from b given C for all a ∈ A, b ∈ B

}
.

Finally, sinceM∪ is a MAG, applying compositionality gives

{
a sep from binM∪ given C for all a ∈ A, b ∈ B

}
⇔
{
A sep from B given C inM∪

}
,

which completes the proof.

F. Proof of Proposition 4.6
u↔M∪ v implies u(j) ↔M(j) v(j) for some j, which implies u← y → v in Dµ. Hence, u, v ∈ V \ VINV. By definition of
VINV, this implies the claim.

G. Additional Experimental Results
G.1. Synthetic Data

In the following, we present figures for the experiments described in Section 5 for additional values of K and n, and when
p(j) is not uniform over the mixture components. Figures ?? shows the normalized SHD plot in evaluating the union graph
as described in the main paper, while Figures ?? shows the true and false positives in predicted V \ VINV. Finally, Figure 12
shows the result of K-means clustering.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Normalized SHD evaluating the estimation of the union graph from mixture data using FCI for K ∈ {2, 4, 6} and
n ∈ {1000, 5000, 10000}. We take p(j) uniform over the mixture components.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Normalized SHD evaluating the estimation of the union graph from mixture data using FCI for K ∈ {2, 4, 6} and
n ∈ {1000, 5000, 10000}. We take p(j) to be Dirichlet with parameter 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: True and false positive rates in estimating V \ VINV using Proposition 4.6 applied to the PAG P̂∪ estimated by
running FCI on the mxiture data. The figures show the results for K ∈ {2, 4, 6} and n ∈ {1000, 5000, 10000}. We take
p(j) to be uniform.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: True and false positive rates in estimating V \ VINV using Proposition 4.6 applied to the PAG P̂∪ estimated by
running FCI on the mxiture data. The figures show the results for K ∈ {2, 4, 6} and n ∈ {1000, 5000, 10000}. We take
p(j) to be Dirichlet with parameter 2
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(a) (b) (c)

(d) (e) (f)

Figure 12: A comparison of clustering when all the variables are used as features vs. when only the variables in the estimated
set V \ VINV are used as features. In generating figures (a), (b) and (c), V \ VINV has descendants in the generating model,
while in figures (d), (e) and (f), V \ VINV has no descendants.
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G.2. Real Data

Here, we present the output of FCI on the T cell mixture data referenced in section 5.2.

Figure 13: The PAG learned using FCI on the T cell mixture data. The inferred arrowheads are shown in red, while the
inferred arrowtails are shown as blue brackets.
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