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A. Algorithm for Finding the Accuracy of a
Fair Classifier

Alg. [2] gives the full algorithm for lower-bounding the
error of a classifier which is known to be fair. Its time
complexity is linear in |G|.

Algorithm 2 Lower-bounding the error of a classifier
which is known to be fair
Input: Inputs = ({wy}, {7y }{py)}) for afair classifier
Output: A lower bound on the error of the classifier, or
UNFAIR if the input is inconsistent with a fair classi-
fier.
I: Forg e G, ry 1 —p}/m)and g5  1/m} — 1.
2: Solve the following linear minimization problem:

L — Y y
Mlnlmlzeagu’aiue[o’” error = E oy E wyTy
yey 9€9

such that
1 0
Vg € g+, Q) = Tg + g0y

VgeG\GryeVstay=1 af=1-p.
if no solution exists then

return UNFAIR.
else

_ Yy Y
return error = ) yey Yall ) geg WgTy-
end if

RSN

B. Proof of Theorem

In this section, we prove Theorem First, we show that
minimizing Obj for a fixed & can be done using a small fi-
nite number of possibilities for each variable in {ag} gegt-

Lemma B.1. Let Obj be as defined in Eq. (7) and let Obj,
be as defined in Eq. (@]} Then, for any & € [0, 1]?,

Obj, (@) = min Obj(a, {a®} cg+).

()=, min  Obi(@ (0])sege)

Proof. Fix a € [0,1]2. We show that there exists an as-

signment that minimizes Obj(a, {a}gcg+), which satis-
fies o) € Sy(a) forall g € GF, where S, is as defined in

0 0.05 0.1 0.15 0.2 0.25

Figure 8. p(a¥) and the inflection points p1,p2 for o’ =

0.2,a" =0.6,7, = 0.1,p, = 0.1.

Theorem .1} From the definition of Obj,, this suffices to
prove the claim.

From the definition of Obj, it suffices to show that for any
fixed a, p(al) := >, Ty7(a?, ay) is minimized by some
ay € Sy(a). Consider the function b +— 7(a, b) for a fixed
a. It is a convex combination of 7(a,b) and of b. Now,
for a fixed a € [0,1], b — n(a,b) is a convex piecewise-
linear function: it is linear and decreasing over [0, a] and
linear and increasing over [a, 1], as can be verified from the
definition of 7) (see Figure[T|(left) for illustration). Since by
Eq. , oz; is linear in ozg, it follows that p(ag) is convex
and piecewise-linear, with inflection points at ag =al =
p1, and at o) = o', that is at o) = (o —79)/qy =: p2
(see Figure for illustration). It follows that the minimizer
of 7(aj)) must be one of py,p or the end points of dom,.
These are exactly the values in S, (&) defined in Theorem

41l O

Next, we show that the set of possible minimizers for Obj,
can be reduced to a finite family of one-dimensional solu-
tion sets. We note that since Obj,, is only two-dimensional,
a straight-forward approach to minimizing it might be to
run a grid search over [0, 1]? at some fixed resolution. How-
ever, when data is severely unbalanced, as in the case of
cancer occurrence statistics, which we study in Section [5}
the necessary grid size can be very large, and squaring this
number can make the grid size infeasible. For instance,
cancer occurrence statistics can be of the order 1076, A
two-dimensional grid of this resolution would be of order
10*2, leading to a possibly impractical search size.

We start with the observation that each of the functions
st (@) is continuous in a”,«'. Thus, Obj, can be redefined

using continuous functions. Define

Vgegtiield, fya):= (11)
7787'(040, Sé(@))-ﬁ-ﬂ';T(O&l,Tg+qg32(d)) 52(6‘) € domy,
00 otherwise.
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In addition, for g € G \ G, define

fy@) = > wyr(a¥,1—pY),

yTrq 1

and f} := oo fori € {2,3,4}. Then, it easily follows that

The following lemma shows that each of the functions f; i
is concave in o' on an appropriate split of its domain. A
technical detail is that in some cases, f;( &) might not be
continuous in o' at ! = 0 or at o' = 1. This occurs
because for b € {0,1}, we have 1 = lim,_,;n(a,b) #
1(b,b) = 0. Thus, in some cases the concavity holds on a
restricted domain, which does not include O or 1.

Lemma B.2. Fix o’ € [0,1]. Forg € G, i € [4], consider
the function o' — f;(ao, al) and the domain I; on which
it is finite. Define 07,(a) as follows:

max{ry, 0} i=1,9€g";
min{r, +¢,,1} i=2,9€G";
9;(0[0) _ et qqga® 1€ £3,4},g egr,
a’ € domg;
1 i=lgegm=1
0 otherwise.

Then o +— fi(a, ) is concave on each of the intervals
(0,0 (a®)]NI} and [0 (), 1)NI}. Moreover, if §},(a°) €
(0, 1), then this holds also for the closed intervals.

Proof. For given g € G,i € [4], define v° := s (@), and
vl =1y + qg0°. First, leti € [3], g € G, and assume
st (a) € domyg. In this case, fi(@) = mhr(a®,0%) +
W;T(Oxl v'). Observe that s;, 3,53 are constant in al,
thus v° does not depend on at, and the same holds for

7(a%,v°). Therefore, from the definition of 7, the func-
tion o' +— fi(a) is an affine function of n(at,vl) (with
non- negatlve coefﬁc1ents) Note that v* does not depend
on al. It is easy to verify that for any fixed v! € (0,1),
al — n(a ,v1) is concave on the interval [0, v!] and on the
interval [v!, 1] (see illustration in Figure (right)). There-
fore, al fi(*) is also concave on the same intervals.
Substituting v? W1th its definition, we get 07 (a°) as de-
fined above. If v! € {0, 1} then the function is concave on

(0,v'] and on [v!, 1).

Next, consider i = 4, g e GT. Note that we have I, =
[rg, ag+7g]N[0, 1], since o' € I} iff v° = ;}( e domg
In this case, we have vl =al, thus n(at,v!) = 0 and so

7(at, vl) is linear in o, In addition, T(ao, v?) is an affine

function of n(a®,v°) = n(a®, (a' —r,)/qy). This function

is linear in ' on each of the intervals [0, ry + ¢, N I}

and [rg + gga°,1] N I}, Thus, ' — fJ(a) is linear on
each of these intervals.

Lastly, consider geqg \ G*. In this case, only i = 1 is
finite. If 7Tg =1, then o' — f; (@) is constant. If 7} = 1,
then f, ! is an affine function w1th positive coefﬁments of

n(a 1 — py). Similarly to the first case, this implies that
ol — fi(a)isconcaveon [0,1—p;]andon [1—p},1]. O

From the concavity property proved in Lemma we can
conclude that it is easy to minimize Obj, (&) over a* when
oV is fixed, since there is only a small finite number of
solutions. This is proved in the following lemma.

Lemma B.3. Ler of [0,1], and define ©(a
{9;(&0)}geg’ie[41 U {0,1}. Then,

0) =

Obj,(@).

11’2%(?1] ObJ2( ) a algg?ao)

Proof. Fix a'. Ordering the points in ©(a’) in an as-
cending order and naming them 0 = p; < ps < ... <
pn = 1, where N = |©(a’)|, define the set of intervals
T = {[pi, pi+1]\ {0, 1} }ic(v—1). Observe that the intervals
in Z partition (0, 1) (with overlaps at end points). More-
over, forall g € G,i € [4] each of the intervals I € 7
satisfies either I C (0,6 (a°)]NI} or I C [0} (a®),1)N 1.
By Lemma it follows that for allg € GT,i ¢ [4]
al — fi(a) is concave on I.

Obj, is a conic combination of minima of concave func-
tions on I, thus it is concave on I. Thus, oneach I € 7
which is a closed interval (that is, with endpoints other than
0 or 1), Obj,(@) is minimized by one of the endpoints of
I. Now, consider I with an endpoint O or 1. For simplicity,
assume I = (0, po]; the other case is symmetric. Obj, (&)
is concave on I. Thus, it is either minimized on I at p; or
satisfies limy, 0 Objy(@) < inf,i17(Objy(@)). In the
latter case, there are two options: if a' — Objy(a) is
continuous at 0, then Obj,(a®,0) = lim,, o Obj, (@),
implying that the function is minimized on I by a! =
0. If it is not continuous at O, this can only happen if
Tg+qqsh (@) = 0, which leads to n(a ,Tg+qgsh (@) =0,
whereas hm aison(al,rg + qgsh (@) = 1. Thus, in this
case, Obj,(a®,0) < lim,, 0 ObJQ( ). Tt follows that in
this case as well, Obj, is minimized on I by 0.

It follows that the minimizer of o' +— Obj, (@) must be
one of the end points of ©(a?), as claimed. O

Now, due to the complete symmetry of the problem def-
inition between the two labels, Lemma implies also
the symmetric property, that for a fixed a! € [0, 1],
mingoeo,1] Obja(@) = minocg41) Objy(@), where ©
is symmetric to O and is obtained by switching the roles of
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y = 1 and y = 0 in all definitions. By explicitly calculating
the resulting values, we get that

O(a') = Vo U{(a! —19)/qg}geq+
0’ =W u {rqy+ qgao}geg+,

Where Vj, V; are defined as in Theorem 1] Using the
above results, we can now prove Theorem [{.1]

Proof of Theorem[d.1| From Lemma [B.I] we have that
V* = mingepo,12 Objy(@). Thus, we have left to
show that there exists a minimizer for Obj,(@&) in
the set Sols defined in Theorem B1l From Lemma

it follows that there exists a minimizing solution
(a% a') € argminge(y 12 Objy(@) such that a' € ©(a®).
The symmetric counterpart of Lemma implies that
there exists some #° € ©O(a!) such that (1°,a') €
argming e 12 Obj,(@). Thus, at least one of the follow-
ing options must hold:

° (bo,al) e Vo x V1.

e ol ¢ V7, this implies that al = rg + qgao for some
gegr.

o 10 ¢ Vp; this implies that b° = (a' —r,)/q, for some
gegr.

In the first case, there exists a minimizer in V; x V7. In the
second and third case, there exists a minimizer in the set
{(v,rg + q4v) | v € [0,1],9g € G"}. Thus, in all cases
there is a minimizer in the set Sols, as required. O



