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A. Algorithm for Finding the Accuracy of a
Fair Classifier

Alg. 2 gives the full algorithm for lower-bounding the
error of a classifier which is known to be fair. Its time
complexity is linear in |G|.

Algorithm 2 Lower-bounding the error of a classifier
which is known to be fair
Input: Inputs ≡ ({wg}, {πyg}{p̂yg)}) for a fair classifier
Output: A lower bound on the error of the classifier, or

UNFAIR if the input is inconsistent with a fair classi-
fier.

1: For g ∈ G+, rg ← 1− p̂1
g/π

1
g and qg ← 1/π1

g − 1.
2: Solve the following linear minimization problem:

Minimizeα0
all,α

1
all∈[0,1] error ≡

∑
y∈Y

αyall

∑
g∈G

wgπ
y
g

such that

∀g ∈ G+, α1
all = rg + qgα

0
all

∀g ∈ G \ G+, y ∈ Y s.t. πyg = 1, αyall = 1− p̂yg .

3: if no solution exists then
4: return UNFAIR.
5: else
6: return error =

∑
y∈Y α

y
all

∑
g∈G wgπ

y
g .

7: end if

B. Proof of Theorem 4.1
In this section, we prove Theorem 4.1. First, we show that
minimizing Obj for a fixed ᾱ can be done using a small fi-
nite number of possibilities for each variable in {α0

g}g∈G+ .

Lemma B.1. Let Obj be as defined in Eq. (7) and let Obj2
be as defined in Eq. (9). Then, for any ᾱ ∈ [0, 1]2,

Obj2(ᾱ) = min
{α0

g∈domg}g∈G+

Obj(ᾱ, {α0
g}g∈G+).

Proof. Fix ᾱ ∈ [0, 1]2. We show that there exists an as-
signment that minimizes Obj(ᾱ, {α0

g}g∈G+), which satis-
fies α0

g ∈ Sg(ᾱ) for all g ∈ G+, where Sg is as defined in
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Figure 8. ρ(αyg) and the inflection points p1, p2 for α0 =
0.2, α1 = 0.6, π1

g = 0.1, p̂1g = 0.1.

Theorem 4.1. From the definition of Obj2, this suffices to
prove the claim.

From the definition of Obj, it suffices to show that for any
fixed ᾱ, ρ(α0

g) :=
∑
y π

y
gτ(αy, αyg) is minimized by some

αyg ∈ Sg(ᾱ). Consider the function b 7→ τ(a, b) for a fixed
a. It is a convex combination of η(a, b) and of b. Now,
for a fixed a ∈ [0, 1], b 7→ η(a, b) is a convex piecewise-
linear function: it is linear and decreasing over [0, a] and
linear and increasing over [a, 1], as can be verified from the
definition of η (see Figure 1 (left) for illustration). Since by
Eq. (5), α1

g is linear in α0
g , it follows that ρ(α0

g) is convex
and piecewise-linear, with inflection points at α0

g = α0 =:
p1, and at α1

g = α1, that is at α0
g = (α1 − rg)/qg =: p2

(see Figure 8 for illustration). It follows that the minimizer
of τ(α0

g) must be one of p1, p2 or the end points of domg .
These are exactly the values in Sg(ᾱ) defined in Theorem
4.1.

Next, we show that the set of possible minimizers for Obj2
can be reduced to a finite family of one-dimensional solu-
tion sets. We note that since Obj2 is only two-dimensional,
a straight-forward approach to minimizing it might be to
run a grid search over [0, 1]2 at some fixed resolution. How-
ever, when data is severely unbalanced, as in the case of
cancer occurrence statistics, which we study in Section 5,
the necessary grid size can be very large, and squaring this
number can make the grid size infeasible. For instance,
cancer occurrence statistics can be of the order 10−6. A
two-dimensional grid of this resolution would be of order
1012, leading to a possibly impractical search size.

We start with the observation that each of the functions
sig(ᾱ) is continuous in α0,α1. Thus, Obj2 can be redefined
using continuous functions. Define

∀g ∈ G+, i ∈ [4], f ig(ᾱ) := (11){
π0
gτ(α0, sig(ᾱ))+π1

gτ(α1, rg+qgs
i
g(ᾱ)) sig(ᾱ) ∈ domg,

∞ otherwise.
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In addition, for g ∈ G \ G+, define

f1
g (ᾱ) :=

∑
y:πy

g=1

wgτ(αy, 1− p̂yg),

and f ig :=∞ for i ∈ {2, 3, 4}. Then, it easily follows that

Obj2(ᾱ) =
∑
g∈G+

wg min
i∈[4]

f ig(ᾱ).

The following lemma shows that each of the functions f ig
is concave in α1 on an appropriate split of its domain. A
technical detail is that in some cases, f ig(ᾱ) might not be
continuous in α1 at α1 = 0 or at α1 = 1. This occurs
because for b ∈ {0, 1}, we have 1 = lima→b η(a, b) 6=
η(b, b) = 0. Thus, in some cases the concavity holds on a
restricted domain, which does not include 0 or 1.

Lemma B.2. Fix α0 ∈ [0, 1]. For g ∈ G, i ∈ [4], consider
the function α1 7→ f ig(α

0, α1) and the domain Iig on which
it is finite. Define θig(α

0) as follows:

θig(α
0) =



max{rg, 0} i = 1, g ∈ G+;

min{rg + qg, 1} i = 2, g ∈ G+;

rg + qgα
0 i ∈ {3, 4}, g ∈ G+,

α0 ∈ domg;

1− p̂1
g i = 1, g ∈ G, π1

g = 1;

0 otherwise.

Then α1 7→ f ig(α
0, α1) is concave on each of the intervals

(0, θig(α
0)]∩Iig and [θig(α

0), 1)∩Iig . Moreover, if θig(α
0) ∈

(0, 1), then this holds also for the closed intervals.

Proof. For given g ∈ G, i ∈ [4], define v0 := sig(ᾱ), and
v1 := rg + qgv

0. First, let i ∈ [3], g ∈ G+, and assume
sig(α

0) ∈ domg . In this case, f ig(ᾱ) = π0
gτ(α0, v0) +

π1
gτ(α1, v1). Observe that s1

g, s
2
g, s

3
g are constant in α1,

thus v0 does not depend on α1, and the same holds for
τ(α0, v0). Therefore, from the definition of τ , the func-
tion α1 7→ f ig(ᾱ) is an affine function of η(α1, v1) (with
non-negative coefficients). Note that v1 does not depend
on α1. It is easy to verify that for any fixed v1 ∈ (0, 1),
α1 7→ η(α1, v1) is concave on the interval [0, v1] and on the
interval [v1, 1] (see illustration in Figure 1 (right)). There-
fore, α1 7→ f ig(ᾱ) is also concave on the same intervals.
Substituting v1 with its definition, we get θig(α

0) as de-
fined above. If v1 ∈ {0, 1} then the function is concave on
(0, v1] and on [v1, 1).

Next, consider i = 4, g ∈ G+. Note that we have I4
g =

[rg, qg+rg]∩[0, 1], since α1 ∈ I4
g iff v0 ≡ s4

g(α
1) ∈ domg .

In this case, we have v1 = α1, thus η(α1, v1) = 0 and so
τ(α1, v1) is linear in α1. In addition, τ(α0, v0) is an affine
function of η(α0, v0) = η(α0, (α1−rg)/qg). This function

is linear in α1 on each of the intervals [0, rg + qgα
0] ∩ Iig

and [rg + qgα
0, 1] ∩ Iig . Thus, α1 7→ f4

g (ᾱ) is linear on
each of these intervals.

Lastly, consider g ∈ G \ G+. In this case, only i = 1 is
finite. If π0

g = 1, then α1 7→ f1
g (ᾱ) is constant. If π1

g = 1,
then f1

g is an affine function with positive coefficients of
η(α1, 1 − p̂yg). Similarly to the first case, this implies that
α1 7→ f ig(ᾱ) is concave on [0, 1−p̂1

g] and on [1−p̂1
g, 1].

From the concavity property proved in Lemma B.2, we can
conclude that it is easy to minimize Obj2(ᾱ) over α1 when
α0 is fixed, since there is only a small finite number of
solutions. This is proved in the following lemma.

Lemma B.3. Let α0 ∈ [0, 1], and define Θ(α0) :=
{θig(α0)}g∈G,i∈[4] ∪ {0, 1}. Then,

min
α1∈[0,1]

Obj2(ᾱ) = min
α1∈Θ(α0)

Obj2(ᾱ).

Proof. Fix α0. Ordering the points in Θ(α0) in an as-
cending order and naming them 0 = p1 < p2 < . . . <
pN = 1, where N = |Θ(α0)|, define the set of intervals
I = {[pi, pi+1]\{0, 1}}i∈[N−1]. Observe that the intervals
in I partition (0, 1) (with overlaps at end points). More-
over, for all g ∈ G+, i ∈ [4], each of the intervals I ∈ I
satisfies either I ⊆ (0, θig(α

0)]∩Iig or I ⊆ [θig(α
0), 1)∩Iig .

By Lemma B.2, it follows that for all g ∈ G+, i ∈ [4],
α1 7→ f̃ ig(ᾱ) is concave on I .

Obj2 is a conic combination of minima of concave func-
tions on I , thus it is concave on I . Thus, on each I ∈ I
which is a closed interval (that is, with endpoints other than
0 or 1), Obj2(ᾱ) is minimized by one of the endpoints of
I . Now, consider I with an endpoint 0 or 1. For simplicity,
assume I = (0, p2]; the other case is symmetric. Obj2(ᾱ)
is concave on I . Thus, it is either minimized on I at p1 or
satisfies limα1→0 Obj2(ᾱ) ≤ infα1∈I(Obj2(ᾱ)). In the
latter case, there are two options: if α1 7→ Obj2(ᾱ) is
continuous at 0, then Obj2(α0, 0) = limα1→0 Obj2(ᾱ),
implying that the function is minimized on I by α1 =
0. If it is not continuous at 0, this can only happen if
rg+qgs

i
g(ᾱ) = 0, which leads to η(α1, rg+qgs

i
g(ᾱ)) = 0,

whereas limα1→0 η(α1, rg + qgs
i
g(ᾱ)) = 1. Thus, in this

case, Obj2(α0, 0) ≤ limα1→0 Obj2(ᾱ). It follows that in
this case as well, Obj2 is minimized on I by 0.

It follows that the minimizer of α1 7→ Obj2(ᾱ) must be
one of the end points of Θ(α0), as claimed.

Now, due to the complete symmetry of the problem def-
inition between the two labels, Lemma B.3 implies also
the symmetric property, that for a fixed α1 ∈ [0, 1],
minα0∈[0,1] Obj2(ᾱ) = minα0∈Θ̃(α1) Obj2(ᾱ), where Θ̃
is symmetric to Θ and is obtained by switching the roles of
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y = 1 and y = 0 in all definitions. By explicitly calculating
the resulting values, we get that

Θ̃(α1) = V0 ∪ {(α1 − rg)/qg}g∈G+ ,

Θ(α0) = V1 ∪ {rg + qgα
0}g∈G+ ,

Where V0, V1 are defined as in Theorem 4.1. Using the
above results, we can now prove Theorem 4.1.

Proof of Theorem 4.1. From Lemma B.1, we have that
V ∗ = minᾱ∈[0,1]2 Obj2(ᾱ). Thus, we have left to
show that there exists a minimizer for Obj2(ᾱ) in
the set Sols defined in Theorem 4.1. From Lemma
B.3, it follows that there exists a minimizing solution
(a0, a1) ∈ argminᾱ∈[0,1]2 Obj2(ᾱ) such that a1 ∈ Θ(a0).
The symmetric counterpart of Lemma B.3 implies that
there exists some b0 ∈ Θ̃(a1) such that (b0, a1) ∈
argminᾱ∈[0,1]2 Obj2(ᾱ). Thus, at least one of the follow-
ing options must hold:

• (b0, a1) ∈ V0 × V1.

• a1 /∈ V1; this implies that a1 = rg + qga
0 for some

g ∈ G+.

• b0 /∈ V0; this implies that b0 = (a1 − rg)/qg for some
g ∈ G+.

In the first case, there exists a minimizer in V0 × V1. In the
second and third case, there exists a minimizer in the set
{(v, rg + qgv) | v ∈ [0, 1], g ∈ G+}. Thus, in all cases
there is a minimizer in the set Sols, as required.


