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Supplementary Information
We expand on the discussion of related work in section 5.
We also include here some additional results. Specifically,
evaluation on GloVe dataset is included in section 6, demon-
strating strong performance of BioHash. In section 7, it is
shown that BioConvHash enjoys robustness to intensity
variations. In section 8, we show that the strong performance
of BioHash is not specific to the particular choice of the
architecture (in the main paper only VGG16 was used). In
section 9, we include technical details about implementation
and architecture. In section 10, the KL divergence is calcu-
lated between the distribution of the data and the induced
distribution of the hash codes for the small-dimensional
models discussed in section 2.2. Finally, training time is
discussed in section 11.

5. Additional Discussion of Related Work
Sparse High-Dimensional Representations in Neuro-
science. Previous work has explored the nature of sparse
high-dimensional representations through the lens of sparse
coding and compressed sensing (Ganguli & Sompolinsky,
2012). Additionally, (Sompolinsky, 2014) has examined
the computational role of sparse expansive representations
in the context of categorization of stimuli as appetitive or
aversive. They studied the case of random projections as
well as learned/"structured" projections. However, struc-
tured synapses were formed by a Hebbian-like associa-
tion between each cluster center and a corresponding fixed,
randomly selected pattern from the cortical layer; knowl-
edge of cluster centers provides a strong form a "super-
vision"/additional information, while BioHash does not
assume access to such information. To the best of our knowl-
edge no previous work has systematically examined the pro-
posal that LSH maybe a computational principle in the brain
in the context of structured synapses learned in a biologi-
cally plausible manner.

Classical LSH. A classic LSH algorithm for angular simi-
larity is SimHash (Charikar, 2002), which produces hash
codes by h(x) = sign(W |

x), where entries of W 2 Rm⇥d

are i.i.d from a standard normal distribution and sign() is
element-wise. While LSH is a property and consequently
is sometimes used to refer to hashing methods in general,
when the context is clear we refer to SimHash as LSH
following previous literature.

Fruit Fly inspired LSH. The fruit fly’s olfactory circuit has
inspired research into new families (Dasgupta et al., 2018;
Sharma & Navlakha, 2018; Li et al., 2018) of Locality Sen-
sitive Hashing (LSH) algorithms. Of these, FlyHash (Das-
gupta et al., 2017) and DenseFly (Sharma & Navlakha,
2018) are based on random projections and cannot learn

from data. Sparse Optimal Lifting (SOLHash) (Li et al.,

2018) is based on learned projections and results in improve-
ments in hashing performance. SOLHash attempts to learn
a sparse binary representation Y 2 Rn⇥m, by optimizing

arg min
Y 2[�1,1]n⇥m
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em is an all 1’s vector of size m. Note the relaxation from
a binary Y 2 {�1, 1}n⇥m to continuous Y 2 [�1, 1]n⇥m.
After obtaining a Y , queries are hashed by learning a linear
map from X to Y by minimizing

arg min
W2[�1,1]d⇥m

Wed=(�m+2c)em

||Y � XW ||2
F

+ �||W ||p, (15)

Here, c is the # of synapses with weight 1; the rest are
�1. To optimize this objective, (Li et al., 2018) resorts to
Franke-Wolfe optimization, wherein every learning update
involves solving a constrained linear program involving all
of the training data, which is biologically unrealistic. In
contrast, BioHash is neurobiologically plausible involving
only Hebbian/Anti-Hebbian updates and inhibition.

From a computer science perspective, the scalability of
SOLHash is highly limited; not only does every update
step invoke a constrained linear program but the program
involves pairwise similarity matrices, which can become
intractably large for datasets of even modest size. This issue
is further exacerbated by the fact that m � d and Y Y

| is
recomputed at every step (Li et al., 2018). Indeed, though
(Li et al., 2018) uses the SIFT1M dataset, the discussed
limitations limit training to only 5% of the training data.
Nevertheless, we make a comparison to SOLHash in Table
6 and see that BioHash results in substantially improved
performance.

In the present work, we took the biological plausibility as
a primary since one of the goals of our work was to better
understand the computational role of sparse expansive bio-
logical circuits. Yet from a practical perspective, our work
suggests that this constraint of biological plausibility may be
relaxed while keeping or even improving the performance
benefits - potentially by explicitly training a hashing method
end-to-end using kWTA in lieu of using it post-hoc or by
relaxing the online learning constraint.

Other WTA approaches Previous hashing approaches
(Yagnik et al., 2011; Chen & Shrivastava, 2018) have used
WTA (like BioHash and FlyHash) but do not use dimen-
sionality expansion and do not learn to adapt to the data
manifold.

Deep LSH. A number of state-of-the-art approaches (Su
et al., 2018; Jin, 2018; Do et al., 2017a; Lin et al., 2015)
to unsupervised hashing for image retrieval are perhaps
unsurprisingly, based on deep CNNs trained on ImageNet
(Deng et al., 2009); A common approach (Su et al., 2018)
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Table 6. mAP@100 (%) on MNIST, using Euclidean distance in
pixel space as the ground truth, following protocol in (Li et al.,
2018). BioHash demonstrates the best retrieval performance,
substantially outperforming SOLHash.

Hash Length (k)
Method 2 4 8 16 32 64
BioHash 39.57 54.40 65.53 73.07 77.70 80.75
SOLHash 11.59 20.03 30.44 41.50 51.30 -

Table 7. mAP@100 (%) on GloVe (d = 300), ground truth based
on Euclidean distance. Best results (second best) for each hash
length are in bold (underlined). BioHash demonstrates the best
retrieval performance, especially at small k.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 0.37 0.51 1.93 12.91 18.23 26.83

PCAHash 0.74 1.45 4.86 19.57 28.52 37.49
FlyHash 13.95 15.78 21.15 28.12 39.72 54.24

SH 0.81 1.31 4.81 19.16 27.44 35.65
ITQ 0.59 1.42 4.57 19.81 31.50 43.08

BioHash 23.06 34.42 43.21 50.32 56.94 62.87

is to adopt a pretrained DCNN as a backbone, replace the
last layer with a custom hash layer and objective function
and to train the network by backpropogation. Some other
approaches (Yang et al., 2018), use DCNNs as feature ex-
tractors or to compute a measure of similarity in it’s feature
space, which is then used as a training signal. While deep
hashing methods are not the purpose of our work, we include
them here for completeness.

Discrete locality sensitive hash codes have also been used
for modelling dialogues in (Garg et al., 2018).

6. Evaluation on GloVe
We include evaluation on GloVe embeddings (Pennington
et al., 2014). We use the top 50,000 most frequent words.
As in previous work (Dasgupta et al., 2017), we selected
a random subset of 10,000 words as the database and each
word in turn was used as a query; ground truth was based on
nearest neighbors in the database. Methods that are trainable
(e.g.BioHash, ITQ), are trained on the remaining 40,000
words. Results shown are averages over 10 random parti-
tions; Activity a = 0.01. Results are shown for Euclidean
distance in Table 7 and cosine distance in Table 8.

7. Robustness of BioConvHash to variations
in intensity

Patch normalization is reminiscent of the canonical neural
computation of divisive normalization (Carandini & Heeger,
2011) and performs local intensity normalization. This
makes BioConvHash robust to variations in light intensity.
To test this idea, we modified the intensities in the query

Table 8. mAP@100 (%) on GloVe (d = 300), ground truth based
on cosine distance. Best results (second best) for each hash length
are in bold (underlined). BioHash demonstrates the best retrieval
performance, especially at small k.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 0.41 0.65 2.23 13.91 30.30 32.60

PCAHash 0.65 1.71 7.18 25.87 40.07 53.13
FlyHash 15.06 17.09 24.64 34.12 50.96 72.37

SH 0.79 1.74 7.01 25.39 37.68 49.39
ITQ 0.76 1.84 6.84 27.64 44.47 61.15

BioHash 38.13 54.22 66.85 76.30 84.05 89.78

Table 9. Robustness to shadows. mAP@1000 (%) on CIFAR-10
(higher is better), when query set has "shadows". Performance
of other hashing methods drops substantially, while the perfor-
mance of BioConvHash remains largely unchanged due to patch
normalization. For small k, BioConvHash substantially outper-
forms all the other methods, while still being competitive at higher
hash lengths. Best results (second best) for each hash length are in
bold (underlined).

Hash Length (k)
Method 2 4 8 16 32 64
LSH 10.62 11.82 11.71 11.25 11.32 11.90

PCAHash 10.61 10.60 10.88 11.33 11.79 11.83
FlyHash 11.44 11.09 11.86 11.89 11.45 11.44

SH 10.64 10.45 10.45 11.70 11.26 11.30
ITQ 10.54 10.68 11.65 11.00 10.95 10.94

BioHash 11.05 11.50 11.57 11.33 11.59 -
BioConvHash 26.84 27.60 29.31 29.57 29.95 -
GreedyHash 10.56 21.47 25.21 30.74 30.16 37.63

set of CIFAR-10 by multiplying 80% of each image by a
factor of 0.3; such images largely remain discriminable to
human perception, see Figure 6. We evaluated the retrieval
performance of this query set with "shadows", while the
database (and synapses) remain unmodified. We find that
BioConvHash performs best at small hash lengths, while
the performance of other methods except GreedyHash
is almost at chance. These results suggest that it maybe
beneficial to incorporate divisive normalization into DCNNs
architectures to increase robustness to intensity variations.

Table 10. mAP@1000 (%) on CIFAR-10CNN, VGG16BN. Best
results (second best) for each hash length are in bold (underlined).
BioHash demonstrates the best retrieval performance, especially
at small k.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 13.16 15.86 20.85 27.59 38.26 47.97

PCAHash 21.72 34.05 38.64 40.81 38.75 36.87
FlyHash 27.07 34.68 39.94 46.17 52.65 57.26

SH 21.76 34.19 38.85 41.80 42.44 39.69
ITQ 23.02 34.04 44.57 51.23 55.51 58.74

BioHash 60.56 62.76 65.08 66.75 67.53 -
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Figure 6. Examples of images with and without a "shadow". We modified the intensities in the query set of CIFAR-10 by multiplying 80%
of each image by a factor of 0.3; such images largely remain discriminable to human perception.

Table 11. mAP@1000 (%) on CIFAR-10CNN, AlexNet. Best re-
sults (second best) for each hash length are in bold (underlined).
BioHash demonstrates the best retrieval performance, especially
at small k.

Hash Length (k)
Method 2 4 8 16 32 64
LSH 13.25 12.94 18.06 23.28 25.79 32.99

PCAHash 17.19 22.89 27.76 29.21 28.22 26.73
FlyHash 18.52 23.48 27.70 30.58 35.54 38.41

SH 16.66 22.28 27.72 28.60 29.27 27.50
ITQ 17.56 23.94 31.30 36.25 39.34 42.56

BioHash 44.17 45.98 47.66 49.32 50.13 -

8. Evaluation using VGG16BN and AlexNet
The strong empirical performance of BioHash using fea-
tures extracted from VGG16 fc7 is not specific to choice of
VGG16. To demonstrate this, we evaluated the performance
of BioHash using VGG16 with batch normalization (BN)
(Ioffe & Szegedy, 2015) as well as AlexNet (Krizhevsky
et al., 2012). Consistent with the evaluation using VGG16
reported in the main paper, BioHash consistently demon-
strates the best retrieval performance, especially at small
k.

9. Implementation details
• BioHash: The training /retrieval database was cen-

tered. Queries were also centered using mean com-
puted on the training set. Weights were initialized by
sampling from the standard normal distribution. For
simplicity we used p = 2, � = 0. We set initial
learning rate ✏0 = 2 ⇥ 10�2, which was decayed as
✏t = ✏0(1 � t

Tmax
), where t is epoch number and Tmax

is maximum number of epochs. We used Tmax = 100
and a mini-batch size of 100. The criterion for con-
vergence was average norm of synapses was < 1.06.
Convergence usually took < 20 epochs.

In order to set the activity level, we performed cross-
validation. In the case of MNIST, we separated 1k ran-
dom samples (100 from each class) from the training

set, to create a training set of size 68k and validation set
of 1k images. Activity level with highest mAP@All
on the validation set was determined to be 5%, see
Figure 4 (main text). We then retrained BioHash on
the whole training data of size 69k and reported the
performance on the query set. Similarly for CIFAR-
10, we separated 1k samples (100 images per class) to
create a training set of size 49k and validation set of
1k. We set the activity level to be 0.5%, see Figure 4
(main text). We then retrained BioHash on the whole
training data of size 50k and reported the performance
on the query set.

• BioConvHash A convolutional filter of kernel size
K is learned by dividing the training set into patches
of sizes K ⇥ K and applying the learning dynamics.
In the case of MNIST, we trained 500 filters of kernel
sizes K = 3, 4. The filters were trained with p = 2,
r = 2, � = 0.1; ✏0 = 10�3. In the case of CIFAR-
10, we trained 400 filters of kernel sizes K = 3, 4, 10
(corresponding � = 0.1, 0.2, 0.2; for all filters p =
2, r = 2; ✏0 = 10�4). For both datasets, we used a
stride of 1 in the convolutional layers. We set kCI = 10
for MNIST and kCI = 1 for CIFAR-10 during hashing.
Hyperparameters were set cross-validation. The effect
of channel inhibition is shown in Table 3 (main text)
for the query set. kCI = 1 means that only the largest
activation across channels per spatial location was kept,
while the rest are set to 0. This was followed by 2d max-
pooling with a stride of 2 and kernel size of 7. This
was followed by a fully connected layer (the "hash"
layer).

• FlyHash Following (Dasgupta et al., 2017), we set
m = 10d for all hash lengths k and each neuron in
the hashing layer ("Kenyon" cell) sampled from 0.1
dimensions of input data (Projection neurons). Fol-
lowing (Gong & Lazebnik, 2011), ITQ employed 50
iterations.

• To extract representations from VGG16
fc7, CIFAR-10 images were resized to
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224 ⇥ 224 and normalized using default values:
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]. To make
a fair comparison we used the pre-trained VGG16
model (without BN), since this model is frequently
employed by deep hashing methods. We also evaluated
the performance using VGG16 with BN and also using
AlexNet (Krizhevsky et al., 2012), see Tables 10, 11.

• GreedyHash replaces the softmax layer of VGG16
with a hash layer and is trained end-to-end via back-
propogation using a custom objective function, see
(Su et al., 2018) for more details. We use the code
5 provided by the authors to measure performance at
k = 2, 4, 8, since these numbers were not reported
in (Su et al., 2018). We used the default parameters:
mini-batch size of 32, learning rate of 1 ⇥ 10�4 and
trained for 60 epochs.

10. Distribution of the data in the hash space
A distribution of the data in the input space induces a dis-
tribution over all possible hash codes. In this section the
analysis of the small dimensional toy model examples from
section (2.2) is expanded to compare the properties of these
two distributions. Specifically, consider a data distribu-
tion ⇢(') described by equation (9), and assume that only
m = 3 hidden units are available. Similarly to the case of
m = 2, considered in the main text, an explicit expression
for the energy function can be derived and the three angles
corresponding to the positions of the hidden units can be
calculated (see Figure 7 ). The angle  is determined as a
solution to the following equation

�
� cos �sin 

�
e
�⇡
�+

�
� cos

 

2
�sin

 

2

�
e
�  

2� = 0. (16)

It can be easily solved in the limiting cases: � ! 0 with
 ! 2�, and � ! 1 with  = 2⇡

3 . Notice an extra factor
of 2 in the former case compared with  = |'1,2| ⇡ � in
the case of m = 2 (see the main text). This extra factor of
2 reflects an additional force of repulsion from the middle
hidden unit exerted onto the flanking hidden units. As a
result of this additional force the flanking hidden units are
positioned (twice) further away from the mean of the data
distribution than in the case of m = 2, which does not have
a hidden unit in the middle.

For m = 3, two possible choices of the hash lengths can
be made: a) k = 1, for every data point a nearest hidden
unit is activated, and b) k = 2, two nearest hidden units
are activated. The corresponding distributions over the hash
codes are denoted as Pk=1 and Pk=2. It is possible to calcu-
late a KL divergence between the original distribution and
the induced distributions in the hash space. For k = 1, we

5https://github.com/ssppp/GreedyHash
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Figure 7. Positions of the m = 3 hidden units (shown in red)
relative to the density of the data described by (9) (shown in blue).
The angle between the middle hidden unit and one of the flanking
hidden units is denoted by  .

obtained:
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For k = 2, the following expression holds:
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For sufficiently smooth distributions of the data � ! 1,
both divergences approach zero. Thus, in this limiting case
the original and the induced distributions match exactly. For
finite values of � the divergence of the original and induced
distributions is quantified by the expressions above.

As with almost any representation learning algorithm (e.g.
deep neural nets) it is difficult to provide theoretical guar-
antees in generality. It is possible, however, to calculate the
probability of false negatives (probability that similar data
points are assigned different hash codes) for our hashing
algorithm analytically on the circle in the limit � ! 1.
Assuming hash length k = 1 and a given cosine similarity
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Table 12. Training time for the best variant of BioHash, and the
next best method for MNIST.

Hash Length (k)
Method 2 4 8 16 32
BioHash ⇠1.7 s ⇠1.7s ⇠1.7 s ⇠3.4 s ⇠ 5 s

BioConvHash ⇠3.5 m ⇠3.5 m ⇠3.5 m ⇠5 m ⇠5 m

Table 13. Training time for the best variant of BioHash and
the next best method for CIFAR-10. Both models are based on
VGG16.

Hash Length (k)
CIFAR-10 2 4 8 16 32
BioHash ⇠ 4.2 s ⇠7.6 s ⇠11.5 s ⇠22 s ⇠35 s

GreedyHash ⇠1.2 hrs ⇠1.2 hrs ⇠1.3 hrs ⇠1.4 hrs ⇠1.45 hrs

between two data points ✓ = arccos(x, y), the probability
that they have different hash codes is equal to

P =

(
m✓

2⇡ , for ✓ � 2⇡
m

1, for ✓ >
2⇡
m

.

11. Training time
Here we report the training times for the best performing
(having the highest corresponding mAP@R) variant of our
algorithm: BioHash, BioConvHash, or BioHash on
top of VGG16 representations. For the case of MNIST, the
best performing variant is BioConvHash, and for CIFAR-
10 it is BioHash on top of VGG16 representations. We
also report the training time of the next best method for
each dataset. This is GreedyHash in the case of CIFAR-
10, and BioHash in the case of MNIST. In the case of
MNIST, the best method that is not a variant of BioHash
is UH-BNN. Training time for UH-BNN is unavailable, since
it is not reported in literature. All experiments were run on
a single V100 GPU to make a fair comparison.


