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Abstract
Inter-domain Gaussian processes (GPs) allow for
high flexibility and low computational cost when
performing approximate inference in GP mod-
els. They are particularly suitable for modeling
data exhibiting global structure but are limited to
stationary covariance functions and thus fail to
model non-stationary data effectively. We pro-
pose Inter-domain Deep Gaussian Processes, an
extension of inter-domain shallow GPs that com-
bines the advantages of inter-domain and deep
Gaussian processes (DGPs), and demonstrate how
to leverage existing approximate inference meth-
ods to perform simple and scalable approximate
inference using inter-domain features in DGPs.
We assess the performance of our method on a
range of regression tasks and demonstrate that it
outperforms inter-domain shallow GPs and con-
ventional DGPs on challenging large-scale real-
world datasets exhibiting both global structure as

well as a high-degree of non-stationarity.

1. Introduction
Gaussian processes (GPs) are a powerful tool for function ap-
proximation. They are Bayesian non-parametric models and
as such they are flexible, robust to overfitting, and provide
well-calibrated predictive uncertainty estimates (Rasmussen
& Williams, 2005; Bui et al., 2016). Deep Gaussian pro-
cesses (DGPs) are layer-wise compositions of GPs designed
to model a larger class of functions than shallow GPs.

To scale GP and DGP models to large datasets, a wide array
of approximate inference methods has been developed, with
inducing points-based variational inference being the most
widely used (Snelson & Ghahramani, 2006; Titsias, 2009;
Wilson & Nickisch, 2015). However, conventional inducing
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points-based inference for GPs relies on point evaluations
and thus, by construction, creates local approximations to
the target function. As a result, the approximate posterior
predictive distribution may fail to capture complex global

structure in the data, severely limiting the usefulness and
computational efficiency of local inducing points-based ap-
proximations.

Inter-domain GPs were designed to overcome this limita-
tion. In order to capture global structure in the underlying
data-generating process, inter-domain GPs define inducing
variables as projections of the target function over the en-
tire input space and not as mere point evaluations (Lázaro-
Gredilla & Figueiras-Vidal, 2009; Rahimi & Recht, 2008;
Gal & Turner, 2015). The resulting posterior predictive
distribution is able to represent complex data with global
structure with higher accuracy as local approximations but
at the same computational cost. Unfortunately, inter-domain
projections most suitable for capturing global structure (e.g.,
spectral transforms) are limited by the fact that they can only
be used with stationary covariance functions, making them
ill-suited for modeling non-stationary data and limiting their
usefulness in practice.

We propose Inter-domain Deep Gaussian Processes to over-
come this limitation while retaining the benefits of inter-
domain methods.1 Specifically, we define an augmented
DGP model, in which we replace local inducing variables by
reproducing kernel Hilbert space (RKHS) Fourier features,
and exploit the compositional structure of the variational
distribution in doubly stochastic variational inference (DSVI)
for DGPs. This way, we achieve simple and scalable approx-
imate inference while efficiently capturing global structure
in the underlying data-generating process. The resulting
inter-domain DGP is composed of a composition of inter-
domain GPs, which makes it possible to efficiently model
complex, non-stationary data despite each inter-domain GP
in the hierarchy being restricted to stationary covariance
functions.

We establish that our method performs well on several com-
plex real-world datasets exhibiting global structure and non-
stationarity and demonstrate that inter-domain DGPs are
more computationally efficient than DGPs with local approx-

1For source code and additional results, see https://
bit.ly/inter-domain-dgps.

https://bit.ly/inter-domain-dgps
https://bit.ly/inter-domain-dgps
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(a) Deep GP with global approximations.
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(b) Shallow GP with global approximations.
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(c) Deep GP with local approximations.

Figure 1: Approximate posterior predictive distributions for shallow and deep GP models obtained from 20 inducing points. The blue
lines denote the posterior predictive means of the models, respectively. Each shade of blue corresponds to one posterior standard deviation.

imations when modeling data with global structure. Figure 1
shows approximate posterior predictive distributions of an
inter-domain deep GP (1a), an inter-domain shallow GP (1b),
and a deep GP based on local approximations (1c) on a
dataset with global structure.

To summarize, our main contributions are as follows:

1. We propose Inter-domain Deep Gaussian Processes

and use RKHS Fourier features to incorporate global
structure into the DGP posterior predictive distribution;

2. We present a simple approach for performing approxi-
mate inference in inter-domain DGPs by exploiting the
compositional structure of the variational distribution
in DSVI;

3. We show that inter-domain DGPs significantly outper-
form both inter-domain shallow GPs and state-of-the-
art local approximate inference methods for DGPs on
complex real-world datasets with global structure;

4. We demonstrate that inter-domain DGPs are more com-
putationally efficient than local approximate inference
methods for DGPs when trained on data exhibiting
global structure.

2. Background
We begin by reviewing DGPs and inter-domain GPs. We will
draw on this exposition in subsequent sections.

2.1. Deep Gaussian Processes

DGPs are layer-wise compositions of GPs in which the out-
put of a previous layer is used as the input to the next layer.
Similar to deep neural networks, the hidden layers of a
DGP learn representations of the input data, but unlike neu-
ral networks, they allow for uncertainty to be propagated
through the function compositions. This way, DGPs define

probabilistic predictive distributions over the target vari-
ables and—unlike for shallow GPs—any finite collection of
random variables distributed according to a DGP posterior
predictive distribution does not need to be jointly Gaussian,
allowing DGP models to represent a larger class of distribu-
tions over functions than shallow GPs.

Consider a set of N noisy target observations y 2 RN at
corresponding input points X = [x1, ...,xN ]> 2 RN⇥D. A
DGP is defined by the composition

y = f (L) +✏
def
= f (L)(f (L�1)(...f (1)(X))...) + ✏, (1)

where L is the number of layers, and f (`) = f (`)(f (`�1)) in
the composition denotes the `th-layer GP, f (`)(·), evaluated
at f (`�1). We follow previous work and absorb the noise be-
tween layers, which is assumed to be i.i.d. Gaussian, into the
kernel so that knoisy(xi,xj) = k(xi,xj) + �(`)2�ij , where
�ij is the Kronecker delta and �(`)2 is the noise variance
between layers (Salimbeni & Deisenroth, 2017).

A DGP with likelihood p(y | f (L)) has the joint distribution

p(y, {f (`)}L
`=1) =

NY

n=1

p(y
i
| f (L)

i
)

LY

`=1

p(f (`) | f (`�1)),

with f0
def
= X. Unlike shallow GPs, exact inference in DGPs

is not analytically tractable due to the nonlinear transforma-
tions at every layer of the composition in Equation (1).

To make posterior inference tractable, a number of approx-
imate inference techniques for DGPs have been developed
with the aim of improving performance, scalability, stabil-
ity, and ease of optimization (Dai et al., 2015; Hensman &
Lawrence, 2014; Bui et al., 2016; Salimbeni & Deisenroth,
2017; Cutajar et al., 2017; Mattos et al., 2015; Havasi et al.,
2018; Salimbeni et al., 2019).
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2.2. Inter-domain Gaussian Processes

Inter-domain GPs are centered around the idea of finding a
possibly more compact representative set of input features
in a domain different from the input data domain. This
way, it is possible to incorporate prior knowledge about
relevant characteristics of data—such as the presence of
global structure—into the inducing variables.

Consider a real-valued GP f(x) with x 2 RD and some
deterministic function g(x,Z), with M inducing points
Z 2 RM⇥H . We define the following transformation:

u(Z) =

Z

RD

f(x)g(x,Z) dx. (2)

Since u(Z) is obtained through an affine transformation
of f(x), u(Z) is also a GP, but may lie in a different do-
main than f(x) (Lázaro-Gredilla & Figueiras-Vidal, 2009).
Inter-domain GPs arise when f(x) and u(Z) are considered
jointly as a single, augmented GP, as is the case for local
inducing points-based approximate inference. The feature
extraction function g(x,Z) used in the integral then defines
the transformed domain in which the inducing dataset lies.
The inducing variables obtained this way can be seen as
projections of the target function f(x) on the feature extrac-
tion function over the entire input space (Lázaro-Gredilla
& Figueiras-Vidal, 2009). As such, each of the inducing
variables is constructed to contain information about the
structure of f(x) everywhere in the input space, making
them more informative of the stochastic process than local
approximations. (Hensman et al., 2018; Lázaro-Gredilla &
Figueiras-Vidal, 2009).

In general, the usefulness of inducing variables mostly relies
on their covariance with the remainder of the process, which,
for inducing points-based approximate inference, is encoded
in the vector-valued function

ku(x) = [k(z1,x), k(z2,x), ..., k(zM ,x)].

The matrix Kuu
def
= K(Z,Z) and the vector-valued func-

tion ku(x) are central to inducing points-based approximate
inference for GPs where they are used to construct an ap-
proximate posterior distribution.

3. Inter-domain Deep Gaussian Processes
In this section, we will introduce inter-domain DGPs. First,
we will present a general inter-domain DGP framework.
Next, we will explain why constructing inter-domain deep
GPs is more challenging than constructing inter-domain
shallow GPs and how we can leverage the compositional
structure of the layer-wise approximate posterior predic-
tive distributions in doubly stochastic variational inference
(Salimbeni & Deisenroth, 2017) to obtain simple and scal-
able inter-domain DGPs. Finally, we will draw on prior

work (Hensman et al., 2018) to explicitly incorporate global
structure into the inter-domain transformation.

3.1. The Augmented Inter-domain Deep Gaussian
Process Model

In inducing points-based approximate inference, the GP
model is augmented by a set of inducing variables, u(Z).
Unlike conventional inducing points-based approximations,
inter-domain approaches do not constrain inducing points
to lie in the same domain as the input data.

To distinguish between inducing points that lie in the same
domain as the input data and inter-domain inducing points,
we diverge from the notation in the previous section and
from now on define inter-domain inducing points across
DGP layers as {⌦(`)}L�1

`=0 with corresponding inducing vari-
ables u(`) def

= u(⌦(`�1)) for ` = 1, ..., L, where L is the
number of DGP layers.

We can then express the augmented DGP joint distribution
by

p(y, {f (`),u(`)}L
`=1) =

NY

n=1

p(y
n

| f (L)
n

)

·
LY

`=1

p(f (`) |u(`); f (`�1),⌦(`�1))

· p(u(`); f (`�1),⌦(`�1)).
(3)

Importantly, each p(u(`); f (`�1),⌦(`�1)) is being evaluated
at a set of inter-domain inducing points ⌦(`�1) but also
includes information about f (`�1) via the inter-domain pro-
jections. For a graphical representation, see Figure 2b. To
avoid overloading notation, we will assume that each GP
layer has the same mean and covariance functions m(·) and
k(·, ·).

For each DGP layer we thus have a transformed-domain
instance of the mean function,

m(⌦(`�1)) = E[u(⌦(`�1))]

=

Z

RD

E[f (`)(f (`�1))] g(f (`�1),⌦(`�1)) df (`�1)

=

Z

RD

m(f (`�1)) g(f (`�1),⌦(`�1)) df (`�1)

def
= m�

u` , (4)

and a transformed-domain instance of the covariance func-
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(a) Graphical model representation of a DGP model with local in-
ducing inputs, inducing variables, and two hidden layers, f (1) and
f (2), for n = 1, ..., N .
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u(1) u(2)
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n = 1, ..., N

(b) Graphical model representation of an inter-domain DGP model
with inducing frequencies, RKHS Fourier feature inducing variables,
and two hidden layers, f (1) and f (2), for n = 1, ..., N .

Figure 2: Graphical model representations of local inducing-points DGPs (Figure 2a) and inter-domain DGPs (Figure 2b). Greyed-out
nodes denote observed data and non-greyed out nodes denote unobserved data.

tion with

k(f (`�1),⌦(`�1))

=E[f (`)(f (`�1))u(⌦(`�1))]

=E

f (`)(f (`�1))

Z

RD

f (`)(f (`�1)) g(f (`�1),⌦(`�1)) df (`�1)

�

=

Z

RD

k(f (`�1), f (`�1)0) g(f (`�1)0 ,⌦(`�1)) df (`�1)0

def
=K�

u` u`

(5)

and

k(⌦(`�1),⌦(`�1)0)

=E[u(⌦(`�1))u(⌦(`�1)0)]

=E
 Z

RD

f (`)(f (`�1)) g(f (`�1),⌦(`�1)) df (`�1)

·
Z

RD

f (`)(f (`�1)0) g(f (`�1)0 ,⌦(`�1)0) df (`�1)0
�

=

Z

RD

Z

RD

k(f (`�1), f (`�1)0) g(f (`�1),⌦(`�1))

· g(f (`�1)0),⌦(`�1)0) df (`�1)0

def
= K�

u` u` ,
(6)

where we use the superscript � to indicate that the basis
functions have the form of the inter-domain instance of
the covariance function (Lázaro-Gredilla & Figueiras-Vidal,
2009). Mean and covariance functions at each layer are
therefore defined both by the values and domains of their
arguments. We can now express the joint distribution in
Equation (3) in terms of the layer-wise covariance functions
given above and perform inference across domains.

3.2. Simple and Scalable Approximate Inference in
Inter-domain Deep Gaussian Processes

Since exact inference in DGPs is intractable, we need approx-
imate inference methods. Unfortunately, most approximate
inference methods for DGPs require computing convolutions
between Ku`f` and the distributions of the latent functions,
that is,

Z
Ku`f`N (f (`) |mf` ,Sf`) df (`), (7)

where N (f (`) |mf` ,Sf`) represents the variational distribu-
tion of layer ` with mean mf` and variance Sf` (see, for
example, pages 50-51 in Damianou (2015) or Damianou &
Lawrence (2013), Dai et al. (2014), Bui et al. (2016)). While
these convolutions are easy to compute in closed form for
conventional inducing points-based approximations where
the covariance matrix is computed from the DGP’s input-
domain covariance function, they are non-trivial to compute
analytically for inter-domain covariance functions (Hens-
man et al., 2018).

To perform approximate inference in inter-domain DGPs,
we exploit the fact that—in contrast to previous inducing
points-based variational inference methods for DGPs—the
layer-wise marginalization over each f (`) in doubly stochas-
tic variational inference (DSVI) (Salimbeni & Deisenroth,
2017) does not require computing convolutions that explic-
itly depend on the specific type of cross-covariance function
k�

u(`)(f
`). Instead, the functional form of the posterior pre-

dictive distribution q(f (L)) and the use of the reparameteri-
zation trick make marginalizing out the latent GP functions
across layers straightforward and result in simple, composi-
tional posterior predictive mean and covariance functions
at each DGP layer. For further details on DSVI, see Ap-
pendix D.

This property allow us to simply use the inter-domain op-
erators K�

u`f` as off-the-shelf replacements for the conven-
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tional inducing-point operators Ku`f` without having to
analytically convolve K�

u`f` with the distribution over func-
tions at the `th layer, yielding the variational distribution

q({f (`)}L
`=1) =

LY

`=1

q(f (`) |µ(`),⌃(`); f (`�1),⌦(`�1))

=
LY

`=1

N (f (`) | emf` , eSf`)

with

emf`
def
= mf` � K�

f`u`K
�
�1

u`u`(µ
(`) � m�

u`),

eSf`
def
= Kf`f` � K�

f`u`K
�
�1

u`u`(K
�

u`u` � ⌃(`))K�
�1

u`u`K
�

u`f` ,
(8)

where mf`
def
= m(f (`�1)) and mu`

def
= m(⌦(`�1)), and µ(`)

and ⌃(`) are variational parameters. Since DSVI uses the
reparameterization trick to sample functions at each layer,
the inter-domain operators can be used directly to com-
pute the posterior mean and variance for each layer, which
allows for simple and scalable approximate inference in
inter-domain DGPs.

3.3. RKHS Fourier Features for Approximate
Inference in Gaussian Processes

In the previous section, we showed how to perform approxi-
mate inference in inter-domain DGPs with any inter-domain
operators k�

u(x) and K�

uu. Next, we will introduce RKHS
Fourier features (Hensman et al., 2018)—an inter-domain
approach able to capture global structure in data—and show
how to incorporate them into inter-domain DGPs.

RKHS Fourier features use RKHS theory to construct inter-
domain alternatives to the covariance matrices Kuu and
ku(x) used in conventional inducing points-based approxi-
mate inference methods. They are constructed by projecting
the target function f onto the truncated Fourier basis

�(x) =[1, cos(!1(x � a)), ..., cos(!M (x � a)),

sin(!1(x � a)), ..., sin(!M (x � a))]>,
(9)

where x is a single, one-dimensional input, and [!1, ...,!M ]
denote inducing frequencies defined by !m = 2⇡m

b�a
for some

interval [a, b]. From this truncated Fourier basis, we can
construct inducing variables as inter-domain projections
by defining um

def
= P�m(f), which can be shown to yield

transformed-domain instances of the covariance function
given by

cov(um, f(x)) = �m(x), cov(um, um0) = h�m,�m0iH,

for both of which there are closed-form expressions if the GP
prior covariance function is given by a half-integer member

of the Matérn family of kernels (Durrande et al., 2016). For
further details, see Hensman et al. (2018). The resulting
inter-domain operators

k�

u(x) = �m(x), K�

uu = h�m,�m0iH,

represent inter-domain alternatives to the ku(x) and Kuu

operators used in local inducing points-based approxima-
tions. By constructing linear combinations of the values
of the data-generating process as projections instead of
simple function evaluations, the resulting inducing vari-
ables become more informative of the underlying process
and have more capacity to represent complex functions
(Hensman et al., 2018; Lázaro-Gredilla & Figueiras-Vidal,
2009). Analogous to the way in which local inducing points-
based approaches approximate the DGP posterior distribu-
tion through kernel functions, RKHS Fourier features ap-
proximate the posterior through sinusoids (Hensman et al.,
2018). The structure imposed by the frequency domain
makes RKHS Fourier features particularly well-suited to cap-
ture global structure in data. For further details on RKHS
Fourier features, see Appendix C.

3.4. Inter-domain Deep Gaussian Processes with
RKHS Fourier Features

To construct inter-domain DGPs that leverage global struc-
ture in data, we use approximate posterior predictive dis-
tributions based on RKHS Fourier Features at every layer.
For layers ` = 1, ..., L with input dimensions D(`�1), let
!m = 2⇡m

b�a
for m = 1, ...,M , and let

⌦(`�1) def
= [!(`�1)

1 , ...,!(`�1)
M

]>

be the matrix of M ⇥ D(`�1) inducing frequencies produc-
ing a set of D(`�1) truncated Fourier bases �(`)(f (`�1)),
as defined in Equation (9). Each �(`)(f (`�1)) then maps
f (`) into Fourier space by applying the RKHS inner product
h·, ·iH given by

u(`)
m

def
= P

�
(`)
m
(f (`)) = h�(`)

m
, f (`)iH,

for Fourier basis entries �(`)
m (f (`�1)) with m = 1, ...,M 0

and M 0 = 2M+1 (as in the shallow GP case), thus creating
the M 0 ⇥ D(`)-dimensional matrix

u(`) = [P
�
(`)
1
(f), ...,P

�
(`)

M0
(f)]>.

We thus obtain inter-domain operators k�

u`(f
(`�1)) and

K�

u`u` for DGP layers ` = 1, ..., L.

Using the variational distribution in Equation (8), we then
get a final-layer posterior predictive distribution

q(f (L)
n

) =

Z L�1Y

`=1

q(f (`)
n

|µ(`),⌃(`); f (`�1)
n

,⌦(`�1)) df (`)
n

,
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where f (`)
n

is the nth row of f (`). This quantity is easy to
compute using the reparameterization trick, which allows for
sampling from the nth instance of the variational posteriors
across layers by defining

f̂
(`)

n
= em

⇣
f̂
(`�1)

n

⌘
+ ✏(`)

n
�
r

eS
⇣
f̂
(`�1)

n
, f̂

(`�1)

n

⌘
(10)

and sampling from ✏(`)n ⇠ N (0, ID(`)) (Kingma & Welling,
2014; Salimbeni & Deisenroth, 2017).

Prediction To make predictions, we sample from the ap-
proximate posterior predictive distribution of the final layer
the same way as in DSVI. For a test input x⇤, we draw S
samples from the posterior predictive distribution

q(f (L)
⇤ ) ⇡ 1

S

SX

s=1

q(f (L)
⇤

|µ(L),⌃(L); f (s)⇤

(L�1)
,⌦(L�1))

(11)

where q(f (L)
⇤ ) is the DGPs marginal distribution at x⇤ and

f (s)⇤

(L�1)
are draws from the penultimate layer (and thus

indirectly from all previous layers) obtained via reparame-
terization of each layer as shown in Equation (10).

Evidence Lower Bound The evidence lower bound
(ELBO) is the same as in DSVI, apart from the fact that
it is computed from the inter-domain posterior predictive
distributions at each DGP layer. It is given by

L =
NX

n=1

E
q(f (L)

n )

⇥
log p(y

n
| f (L)

n
)
⇤

�
LX

`=1

KL(q(u(`)) || p(u(`))),

(12)

which can be optimized variationally using gradient-based
stochastic optimization. We include a derivation of this
bound in Appendix E. To estimate the expected log-
likelihood, we generate predictions at the input locations
by drawing Monte Carlo samples from q(f (L)

n
) as shown in

Equation (11).

3.5. Further Model Details

In our implementation, we let

!(`�1)
m,i

= !(`�1)
m,j

8i, j  D(`�1)

!(`)
m

=!(`0)
m

8`, `0 2 {1, ..., L} 8m 2 {1, ...,M 0},
(13)

which means that we use the same inducing frequencies at
every DGP layer, but this assumption can be relaxed easily.
Moreover, we use additive kernels to apply RKHS Fourier

features to multidimensional inputs. For for each layer, we
define

f (`)(f (`�1)) =
D

`X

d=1

f (`)
d

(f (`�1)
d

)

f (`)
d

⇠ GP
✓
0, k(`)

d

✓
f (`�1)
d

, f (`�1)
d

0

◆◆
,

(14)

where f (`�1)
d

is the dth element of the multi-dimensional
single input f (`�1)

n
, and k(`)p (·, ·) is a kernel defined on a

scalar input space (Hensman et al., 2018). This way, we
obtain the DGP layer

f (`) ⇠ GP

0

@0,
D

`X

d=1

k(`)
d

✓
f (`�1)
d

, f (`�1)
d

0

◆1

A (15)

for which we are then able to construct a matrix of features
with elements u(`)

m,d
= P�m(f (`)

d
), resulting in a total of

2MD(`) + 1 inducing variables, independent across dimen-
sions, i.e., cov(u(`)

m,d
, u(`)

m,d0) = 0. With the corresponding
variational parameters estimated via gradient-based opti-
mization, the cost per iteration when computing the pos-
terior mean for an additive kernel is O(NM2D). Using
an additive kernel at each DGP layer then results in a time
complexity of O(NM2(D(1) +D(2) + ...+D(L))) per it-
eration, which is identical to that of DSVI. In practice, how-
ever, we find that inter-domain DGPs require fewer inducing
points and fewer gradient steps to achieve a given level of
predictive accuracy compared to DGPs with DSVI, making
them more computationally efficient.

Unlike DGPs that use conventional inducing-points based
approximate inference, inter-domain DGPs have an addi-
tional hyperparameter; the frequency interval [a, b]. To
avoid undesirable edge effects in the DGP posterior predic-
tive distributions, we normalize all input data dimensions to
lie in the interval [0, 1] and define the RKHS over the interval
[a, b] = [�2, 3]. We repeat this normalization at each DGP
layer before feeding the samples into the next GP. To avoid
pathologies in DGP models investigated in prior work (Duve-
naud et al., 2014), we follow Salimbeni & Deisenroth (2017)
and use a linear mean function m(`)(f (`�1)) = f (`�1) w(`),
where w(`) is a vector of weights, for all but the final-layer
GP, for which we use a zero mean function. We used a
Matérn- 32 kernel for all experiments.

4. Related Work
Inducing points-based approximate inference has allowed
GPs models to scale to large numbers of input points (Snel-
son & Ghahramani, 2006; Titsias, 2009; Hensman et al.,
2013; Bui & Turner, 2014; Hensman et al., 2015). Our work
directly builds on Hensman et al. (2018) and Salimbeni &



Inter-domain Deep Gaussian Processes

�2

�1

1
O

ut
pu

t
L
ay

er

0.0 0.2 0.4 0.6 0.8 1.0
�1

0

1

In
te

rm
ed

ia
te

L
ay

er

(a) Inter-domain DGP with DSVI (two lay-
ers). Top: DGP posterior predictive distri-
bution. Bottom: Predictive distribution at
intermediate layer.
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(b) Conventional DGP with DSVI (two lay-
ers). Top: DGP posterior predictive distri-
bution. Bottom: Predictive distribution at
intermediate layer.
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(c) GP with RKHS Fourier features (single
layer). Posterior predictive distribution.

Figure 3: Comparison of posterior predictive distributions of different GP models on synthetic non-stationary data. The models are
trained using 20 inducing frequencies and 20 inducing points, respectively. In each plot, training points are shown in red. Each shade of
blue represents one standard deviation in the posterior predictive distribution. For enlarged plots, see Appendix B.

Deisenroth (2017) and adds to the literature on sparse spec-
trum approximations (Lázaro-Gredilla & Figueiras-Vidal,
2009; Lázaro-Gredilla et al., 2010; Gal & Turner, 2015;
Wilson & Nickisch, 2015). Specifically, we extend Hens-
man et al. (2018) to compositions GP models by leveraging
the compositional structure of the approximate posterior of
Salimbeni & Deisenroth (2017). In contrast to Wilson &
Nickisch (2015), Lázaro-Gredilla & Figueiras-Vidal (2009),
and Gal & Turner (2015), Hensman et al. (2018) (and, by
extension, our approach) combines inter-domain operators
with SVI (Hensman et al., 2013) and is amenable to stochas-
tic optimization on minibatches, which makes it possible to
apply it to large datasets without facing memory constraints.
Similar to our approach, random feature expansions for
DGPs (Cutajar et al., 2017) use projections of each DGP
layer’s predictive distribution onto the spectral domain to
perform approximate inference, but unlike our approach, it
is not based on inducing points.

5. Empirical Evaluation
To demonstrate that inter-domain DGPs improve upon inter-
domain shallow GPs in their ability to model complex, non-
stationary data and to show that inter-domain DGPs improve
upon local inducing points-based approximate inference
methods for DGPs, we will present results from several
experiments that showcase the types of prediction problems
for which inter-domain DGPs are particularly well-suited.
We are particularly interested in modeling complex data-
generating processes which exhibit global structure as well
as non-stationarity, since the former is challenging for DGPs
that use local approximations, such as DSVI for DGPs, and
the latter is challenging for shallow GPs with stationary
covariance functions.

To illustrate the advantage of inter-domain deep GPs over

inter-domain shallow GPs in modeling non-stationary data,
we present a suite of qualitative and quantitative empirical
evaluations on datasets that exhibit global structure and
non-stationarity.

First, we present a simple, synthetic data experiment de-
signed to demonstrate that our method is well-suited for
modeling data from generating processes that exhibit both
non-stationarity and global structure. Next, we illustrate that
inter-domain deep GPs provide a significant gain in compu-
tational efficiency when modeling data that exhibits global
structure. In particular, we compare the number of inducing
frequencies and inducing points needed to attain a certain
predictive accuracy when using inter-domain DGPs and lo-
cal inducing points-based DGPs on a challenging real-world
audio sub-band reconstruction task. Lastly, we demonstrate
that our method outperforms existing state-of-the-art shal-
low GPs with local approximate inference, shallow GPs with
global approximate inference, and deep GPs with local ap-
proximate inference on a series of challenging real-world
benchmark prediction tasks. For additional experiments and
more experimental details, see Appendix B.

5.1. Highly Non-Stationary Data with Global Structure

The multi-step function in Figure 3 is designed to exhibit
both global structure as well as non-stationarity, provid-
ing an optimal test case to assess the performance of inter-
domain DGPs vis-à-vis related methods on a simple and
easily interpretable prediction task.

The plot shows the posterior predictive distributions of inter-
domain DGPs, DGPs with DSVI, and inter-domain shallow
GPs with RKHS Fourier features. As can be seen in the plots,
inter-domain DGPs are the only method that is able to model
the step locations well and to infer the global structure—that
is, that the function is constant within certain intervals—
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Figure 4: Comparison of average standardized root mean squared errors for varying numbers of inducing inputs on three datasets of
increasing global structure and complexity. On complex datasets (center and right panel), Inter-domain deep GPs with DSVI require
fewer inducing inputs than conventional DGPs with DSVI. Standardized root mean squared errors were evaluated on a test set of 40% of
datapoints in each subset over 10 random seeds each.

with high accuracy and good predictive uncertainty–despite
having a stationary covariance function (see Figure 3a).
Inter-domain shallow GPs, in contrast, are unable to capture
either the step transitions nor the global structure, reflecting
their limited expressiveness (see Figure 3c). While DGPs
benefit from increased expressivity, they, too, fail to fully
capture the global structure and the non-stationarity (see
Figure 3b). This is due to the inherently local nature of local
inducing points-based inference, which requires large num-
bers of inducing inputs to accurately approximate complex
posterior distributions. The experiment illustrates that inter-
domain DGPs are in fact able to overcome key limitations of
both shallow GP inter-domain approaches and outperform
state-of-the-art local DGP inference methods.

Figure 3 presents another interesting insight into differences
between conventional and inter-domain DGPs. In particu-
lar, the bottom plots in Figure 3a and Figure 3b, show the
output of the DGP intermediate layers and are markedly
different from one another. While it appears that the con-
ventional DGP seeks to model the target function directly
in intermediate-layer space, the inter-domain DGP appears
to cluster datapoints from the original input space in a way
such that the changes in the step function in output space
become associated with smooth transitions in intermediate-
layer space.

5.2. Modeling Complex Data Efficiently via Global
Structure

Next, we quantitatively assess the predictive accuracy and
computational efficiency of inter-domain DGPs. To do so,
we use a smoothed sub-band of a speech signal taken from

the TIMIT database and previously used in Bui & Turner
(2014). The dataset exhibits complex global structure which
is difficult to model using local approximation methods.
To assess how well inter-domain DGPs are able to cap-
ture global structure in the data, we compare it to a doubly
stochastic variational inference for DGPs, a state-of-the-art
approximate inference method for DGPs based on local in-
ducing points. To assess how well different approximate
inference methods are able to capture the complex global
structure, we look at three subset of the data: the first 352
datapoints, the first 3,526 datapoints, and the first 35,267
datapoints.

The smallest subset of only 352 datapoints does not exhibit
much global structure and is small enough to be modeled
with few (local) approximations, which is reflected by the
left panel in Figure 4, where inter-domain DGPs and con-
ventional DGPs perform equally well, and increasing the
number of inducing frequencies/points does not lead to an
improvement in performance. As we increase the size of the
dataset to 3,526 datapoints, however, the global structure–
measurable by a high degree of autocorrelation in the data–
becomes readily apparent. As can be seen in the top row,
inter-domain DGPs require relatively fewer inducing fre-
quencies compared to conventional DGPs to achieve a test
error close to zero. The difference in the number of inducing
points required to model the data is most significant for the
largest subset, shown in the right panel of Figure 4. As can
be seen in the plot, the covariance of the process varies sig-
nificantly. While this subset of the audio sub-band dataset
is highly non-stationary, it does exhibit global structure in
the shape of repeating patterns in output space. As a result,
inter-domain deep GPs are able to attain a test error close
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Figure 5: Average test log-likelihood (higher is better) and standard errors (over 10 random seeds) on a set of real-world datasets with
global structure. All models were trained with 50 inducing points. The inter-domain DGP with DSVI has two layers and the conventional
DGP with DSVI has four layers. The performance of the inter-domain DGP did not increase as additional layers were added.

to zero with fewer than half the number of inducing points
needed for conventional DGPs to achieve the same level of
accuracy.

Since the time complexity of DSVI scales quadratically in
the number of inducing points and inter-domain and conven-
tional DGPs have the same time complexity (that is, a single
gradient step takes approximately equally long for the same
number of inducing frequencies/points), inter-domain DGPs
are more computationally efficient in practice when mod-
eling data exhibiting global structure. Additionally, in Fig-
ure 1, we also show that for 20 inducing frequencies/points,
inter-domain DGPs have better-calibrated posterior predic-
tive uncertainty estimates than conventional DGPs.

5.3. Global Structure in Real-World Data

To quantitatively assess the predictive performance of inter-
domain DGPs, we evaluate them on a range of real-world
dataset, which exhibit global structure—usually in the form
of a temporal component that induces a high autocorrelation.
The experiments include medium-sized datasets (‘parking’,
‘air’, ‘traffic’), two very large datasets with over two and five
million datapoints each (‘power’ and ‘airline’), and a high-
dimensional dataset with 27 input dimensions (‘appliances’).
As can be seen in Figure 5, inter-domain DGPs consistently
outperform conventional DGPs (DGPs with DSVI) as well as
inter-domain shallow GPs (GPs with VFF) and significantly
outperform conventional shallow GPs (SVI), suggesting that
combining the increased expressivity of DGP models with
the ability of inter-domain approaches to capture global
structure leads to the best predictive performance. See Ap-
pendix B for a plot of the test standardized RMSEs for
the experiments in Figure 5 and for additional results on
datasets that do not exhibit global structure (and on which
our method performs on par with existing methods).

To assess the predictive performance of inter-domain DGPs
on extremely complex, non-stationary data, we test our
method on the U.S. flight delay prediction problem, a
large-scale regression problem that has reached a status
of a standard test in GP regression due to its massive size

of 5, 929, 413 observations and its non-stationary nature,
which makes it challenging for GPs with stationary covari-
ance functions (Hensman et al., 2018). The data set consists
of flight arrival and departure times for every commercial
flight in the United States for the year 2008. We predict
the delay of the aircraft at landing (in minutes) from eight
covariates: the age of the aircraft (number of years since
deployment), route distance, airtime, departure time, arrival
time, day of the week, day of the month, and month. The
non-stationarity in the data is likely due to the recurring
daily, weekly, and monthly fluctuations in occupancy. In our
evaluation, we find that the predictive performance of inter-
domain DGPs is superior to closely-related state-of-the-art
shallow and deep GPs as shown in Table 1 and Figure 5.

Table 1: Average standardized root mean squared errors and stan-
dard errors (over 10 random seeds) on the U.S. flight delay predic-
tion task.

N 1,000,000 5,929,413
Method RMSE ± SE RMSE ± SE
GP with SVI (local) 0.946 ± 0.008 0.941 ± 0.005
GP with VFF (global) 0.925 ± 0.007 0.923 ± 0.006
DGP with DSVI (local) 0.932 ± 0.004 0.930 ± 0.003
DGP with DSVI (global) 0.906 ± 0.006 0.903 ± 0.002

6. Conclusion
We proposed Inter-domain Deep Gaussian Processes as
a deep extension of inter-domain GPs that combines the
advantages of inter-domain and deep GPs and allows us
to model data exhibiting non-stationarity and global struc-
ture with high predictive accuracy and low computational
overhead. We showed how to leverage the compositional
nature of the approximate posterior in DSVI to perform
simple and scalable approximate inference and established
that inter-domain DGPs can be more computationally effi-
cient than conventional DGPs. Finally, we demonstrated
that our method significantly and consistency outperforms
inter-domain shallow GPs and conventional DGPs on data
exhibiting non-stationarity and global structure.


