
Supplement to Bayesian Optimisation over Multiple Continuous and
Categorical Inputs

Binxin Ru∗ 1 Ahsan S. Alvi∗ 1 Vu Nguyen 1 Michael A. Osborne 1 Stephen J Roberts 1

A. Notation summary
Please refer to Table 1 for a description of the notations
used in our paper.

B. EXP3
EXP3 is a method proposed in (Auer et al., 2002) to deal
with the non-stochastic, adversarial multi-arm bandit prob-
lem which is a more general setting and can model any
form of non-stationarity (Allesiardo et al., 2017). In such
problem setting, the rewards gt are chosen by an adversary
at each iteration. For a categorical variable h with N cate-
gories and bounded reward (gt ≤ 1), the regret bound for
EXP3 algorithm is

REXP3
T = max

h∗∈{1,...,N}

T∑
t

gt(h
∗)− E

[
T∑
t

gt(h)

]
≤ 2.63

√
TN log(N) (1)

where h∗ is the best single action over all rounds and gt(·)
is the reward function. Please refer to (Auer et al., 2002)
for detailed derivation.

C. Regret bound for EXP3 in CoCaBO
Assume we have c categorical variables h = [h1, . . . , hc]
and each categorical variables hj , determined by an agent,
can take one of N categories. A simplified version of the
cumulative regret of such multi-agent MAB setting after T
iterations can be written as:

c∑
j

RjT =

c∑
j

sup
h\j

{
max

h∗j∈{1,...,N}

T∑
t

gt(h
∗
j ,h\j) (2)

− E

[
T∑
t

gt(hj ,h\j)

]}
(3)

*Equal contribution 1University of Oxford. Correspondence
to: Binxin Ru <robin@robots.ox.ac.uk>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

whereRjT is the cumulative regret of agent j when we con-
sider the decisions by the other agents h\j are controlled
by the adversary. gt(·) is the reward achieved by the joint
decisions of all the agents and is equal to the normalised
(between [0, 1]) objective function value in our case.

We first look at the cumulative regret for a single agent
when when the decision of all the other agents (i.e. the
value of all the other categorical variables) are fixed to h\j :

RjT =sup
h\j

{
max

h∗j∈{1,...,N}

T∑
t

gt(h
∗
j ,h\j) (4)

− E

[
T∑
t

gt(hj ,h\j)

]}
(5)

At iteration t with given continuous inputs, the adversary’s
reward function gt(hj ,h\j) (with fixed h\j) is equivalent
to ĝt(hj) where gt(·) has N c arbitrary outputs while ĝt(·)
has only N arbitrary outputs (Carlucci et al., 2020). By
substituting ĝt(hj) = gt(hj ,h\j) in Equation (6), we re-
duce the setting for a single agent to the EXP3 setting (Auer
et al., 2002):

RjT = sup
h\j

{
max

h∗j∈{1,...,N}

T∑
t

ĝt(h
∗
j)− E

[
T∑
t

ĝt(hj)

]}

= sup
h\j

{
REXP3,j
T

}
≤ sup

h\j

{
2.63

√
TN log(N)

}
(6)

Therefore, the cumulative regret of our multi-agent EXP3
setting after T iterations has the bound:

c∑
j

RjT ≤ 2.63c
√
TN log(N) (7)

which is sub-linear as limT→∞

∑c
j R

j
T

T = 0 and increases
with the number of categorical variables c and the number
of categories for each variable.

Bayesian Optimisation over Multiple Continuous and Categorical Inputs

Table 1: Notation list

Notation Type Meaning

σ2
l , σ

2 scalar
lengthscale for RBF kernel,
noise output variance (or measurement noise)

X ∈ Rd search domain continuous search space where d is the dimension

d scalar dimension of the continuous variable

c scalar dimension of categorical variables

xt vector a continuous selection by BO at iteration t

Nc scalar number of choices for categorical variable c

ht = [ht,1, ..., ht,c] vector vector of categorical variables

zt = [xt,ht] vector
hyperparameter input including continuous and
categorical variables

Dt set observation set Dt = {zi, yi}ti=1

D. Categorical kernel relation with RBF
In this section we discuss the relationship between the cat-
egorical kernel we have proposed and a RBF kernel. Our
categorical kernel is reproduced here for ease of access:

kh(h,h
′) =

σ2

c

c∑
i=1

I(hi − h′i). (8)

Apart from the intuitive argument, that this kernel allows us
to model the degree of similarity between two categorical
selections, this kernel can also be derived as a special case
of an RBF kernel. Consider the standard RBF kernel with
unit variance evaluated between two scalar locations a and
a′:

k(a, a′) = exp

(
−1

2

(a− a′)2

l2

)
. (9)

The lengthscale in Eq, 9 allows us to define the similarity
between the two inputs, and, as the lengthscale becomes
smaller, the distance between locations that would be con-
sidered similar (i.e. high covariance) shrinks. The limiting
case l→ 0 states that if two inputs are not exactly the same
as each other, then they provide no information for infer-
ring the GP posterior’s value at each other’s locations. This
causes the kernel to turn into an indicator function as in Eq.
8 above (Kulis & Jordan, 2011):

k(a, a′) =

{
1, if a = a′

0, otherwise.
(10)

By adding one such RBF kernel with l → 0 for each cate-
gorical variable in h and normalising the output we arrive
at the form in Eq. 8.

E. Learning the hyperparameters in the
CoCaBO kernel

We present the derivative for estimating the variable λ in
our CoCaBO kernel.

kz(z, z
′) =(1− λ) (kh(h,h′) + kx(x,x

′))

+ λkh(h,h
′)kx(x,x

′). (11)

The hyperparameters of the kernel are optimised by max-
imising the log marginal likelihood (LML) of the GP sur-
rogate

θ∗ = argmax
θ
L(θ,D), (12)

where we collected the the hyperparameters of both ker-
nels as well as the CoCaBO hyperparameter into θ =
{θh, θx, λ}. The LML and its derivative are defined as
(Rasmussen & Williams, 2006)

L(θ) = −1

2
yᵀK−1y − 1

2
log |K|+ constant (13)

∂L
∂θ

=
1

2

(
yᵀK−1

∂K

∂θ
K−1y − tr

(
K−1

∂K

∂θ

))
, (14)

where y are the function values at sample locations and K
is the kernel matrix of kz(z, z′) evaluated on the training
data.

Optimisation of the LML was performed via multi-started
gradient descent. The gradient in Equation 14 relies on the

Bayesian Optimisation over Multiple Continuous and Categorical Inputs

gradient of the kernel kz w.r.t. each of its parameters:

∂kz
∂θh

= (1− λ)∂kh
∂θh

+ λkx
∂kh
∂θh

(15)

∂kz
∂θx

= (1− λ)∂kx
∂θx

+ λ
∂kx
∂θx

kh (16)

∂kz
∂λ

= −(kh + kx) + khkx, (17)

where we used the shorthand kz = kz(z, z
′), kh =

kh(h,h
′) and kx = kx(x,x

′).

F. Kriging Believer
The Kriging Believer (KB) is a method proposed in (Gins-
bourger et al., 2010) to sequentially select batch points
in the continuous space. In KB, as the name suggested,
we fully trust the predictive posterior and use the poste-
rior mean µ(x

(1)
t) at a selected batch location x

(1)
t as a

proxy for the true function value f(x(1)
t). We then aug-

ment the observation data Dt−1 with this hallucinated data
{x(1)

t , µ(x
(1)
t)} to update the surrogate model as well as

the the acquisition function. The next point in the batch is
then selected by maximising the updated acquisition func-
tion. This process repeats until all b points in the batch are
selected as shown in Algorithm 1.

Algorithm 1 Kriging Believer

1: Input: Observation data Dt−1, batch size b
2: Output: The batch points Bt = {x(1)

t , . . . ,x
(b)
t }

3: D′t−1 = Dt−1
4: for j = 1, . . . , b do
5: x

(j)
t = argmaxα(x|D′t−1)

6: Compute µ(x(j)
t)

7: D′t−1 ← D′t−1 ∪ (xt, µ(x
(j)
t))

8: end for

G. Description of the optimisation problems
G.1. Synthetic test functions

We generated several synthetic test functions: Func-2C,
Func-3C and a Ackley-cC series, whose input spaces com-
prise both continuous variables and multiple categorical
variables. Each of the categorical inputs in all three test
functions have multiple values.

Func-2C is a test problem with 2 continuous inputs
(d = 2) and 2 categorical inputs (c = 2). The categor-
ical inputs decide the linear combinations between three
2-dimensional global optimisation benchmark functions:

beale (bea), six-hump camel (cam) and rosenbrock (ros)1.

Func-3C is similar to Func-2C but with 3 categorical in-
puts (c = 3) which leads to more complicated linear com-
binations among the three functions.

Ackley-cC comprises c = {2, 3, 4, 5} categorical inputs
and 1 continous input (d = 1). Here, we convert c di-
mensions of the c+1-dimensional Ackley function into 17
categories each.

The value range for both continuous and categorical inputs
of these functions are summarised in Table 2.

G.2. Real-world problems

We defined three real-world tasks of tuning the hyperpa-
rameters for ML algorithms: SVM-Boston, XG-MNIST,
NAS-CIFAR10 and NN-Yacht .

SVM-Boston outputs the negative mean square error of
support vector machine (SVM) for regression on the test set
of Boston housing dataset. We use the Nu Support Vector
regression algorithm in the scikit-learn package (Pedregosa
et al., 2011) and use a train/test split of 7 : 3.

XG-MNIST returns classification accuracy of a XGBoost
algorithm (Chen & Guestrin, 2016) on the testing set of the
MNIST dataset. We use the xgboost package and adopt a
stratified train/test split of 7 : 3.

NAS-CIFAR10 performs the architecture search on con-
volutional neural network topology for CIFAR10 classifi-
cation. We use the public architecture dataset, NAS-Bench-
101 (Ying et al., 2019) 2, which contains the precom-
puted training, validation, and test accuracies of 423, 624
unique neural networks on CIFAR10 after training for 108
epochs. All these networks are exhaustively generated
from a graph-based search space. The search space com-
prises a 7-node directed acyclic graph(DAG) with the first
node being the input and the last node being the output.
The 5 intermediate nodes can perform one of the follow-
ing 3 operations: 3x3 convolution, 1x1 convolution, and
3x3 max-pooling (i.e. 5 categorical variables, each with
3 categorical choices). There are 21 possible edges in
the DAG but any valid architecture is limited to a maxi-
mum of 9 edges. We follow the encoding scheme in (Ying
et al., 2019), which defines a probability value xi ∈ [0, 1]
for each possible edge i and defines an integer parameter
x22 ∈ [0, 9]. An architecture is generated by activating

1The analytic forms of these functions are available at
https://www.sfu.ca/~ssurjano/optimization.
html

2Code and data are available at https://github.com/
google-research/nasbench

https://www.sfu.ca/~ssurjano/optimization.html
https://www.sfu.ca/~ssurjano/optimization.html
https://github.com/google-research/nasbench
https://github.com/google-research/nasbench

Bayesian Optimisation over Multiple Continuous and Categorical Inputs

Table 2: Continuous and categorical input range of the synthetic test functions

Function f Inputs z = [h,x] Input values

Func-2C
(d = 2, c = 2)

h1 {ros(x), cam(x), bea(x)}
h2 {+ros(x),+cam(x),+bea(x),+bea(x),+bea(x)}
x [−1, 1]2

Func-3C
(d = 2, c = 3)

h1 {ros(x), cam(x), bea(x)}
h2 {+ros(x),+cam(x),+bea(x),+bea(x),+bea(x)}
h3 {+5× cam(x),+2× ros(x),+2× bea(x),+3× bea(x)}
x [−1, 1]2

Ackley-cC for
c = {2, 3, 4, 5}

(d = 1, Ni = 17)

hi for {zi = −1 + 0.125× (j − 1), for j = 1, 2, . . . , 17}
i = 1, 2, . . . , 5
x [−1, 1]

Table 3: Continuous and categorical input ranges of the real-world problems

Problems Inputs z = [h,x] Input values

SVM-Boston
(d = 3, c = 3)

kernel type h1 {linear, poly, RBF, sigmoid}
kernel coefficient h2 {scale, auto }
shrinking h3 {shrinking on, shrinking off}
penalty parameter x1 [0, 10]

tolerance for stopping x2 10[10
−6,1]

lower bound of the fraction
of support vector x3

[0, 1]

XG-MNIST
(d = 5, c = 3)

booster type h1 {gbtree, dart}
grow policies h2 {depthwise, loss}
training objective h3 {softmax, softprob}
learning rate x1 [0, 1]
maximum dept x2 [1, 2, . . . , 10]
minimum split loss x3 [0, 10]
subsample x4 [0.001, 1]
regularisation x5 [0, 5]

NAS-CIFAR10
(d = 22, c = 5)

operations for the 5 intermediate
nodes in the DAG h1, . . . , h5 {3x3 conv, 1x1 conv, and 3x3 max-pool}
probability values for the 21 possible
edges in the DAG x1, . . . , x21 [0, 1]
Number of edges present in the DAG x22 [0, 9]

NN-Yacht
(d = 3, c = 3)

activation type h1 {ReLU, tanh, sigmoid}
optimiser type h2 {SGD, Adam, RMSprop, AdaGrad}
suggested dropout value h3 {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}
learning rate x1 10[−5,−1]

number of neurons x2 2[4,7]

aleatoric variance x3 [0.2, 0.8]

Bayesian Optimisation over Multiple Continuous and Categorical Inputs

the x22 edges with the highest probability. The design of
the search space turns the neural architecture search into an
optimisation problem involving multiple categorical vari-
ables and continuous variables. This dataset enables us to
quickly evaluate the architectures proposed by BO algo-
rithms by looking up the dataset and compare the search
strategies without the need for huge computing resources.

NN-Yacht returns the negative log likelihood of a one-
hidden-layer neural network regressor on the test set of
Yacht hydrodynamics dataset. We follow the MC Dropout
implementation and the random train/test split on the
dataset proposed in (Gal & Ghahramani, 2016)3. The sim-
ple neural network is trained on mean squared error objec-
tive for 20 epochs with a batch size of 128. We run 100
stochastic forward passes in the testing stage to approxi-
mate the predictive mean and variance. The results of Co-
CaBO against other methods in the batch setting (b = 4)
for this task is shown in Figure 2 and against, CoCaBOs
outperform other methods.

The hyperparameters over which we optimise for each
above-mentioned ML task are summarised in Table 3. One
point to note is that we present the unnormalised range for
the continuous inputs in Table 3 but normalise all contin-
uous inputs to [−1, 1] for optimisation in our experiments.
All the remaining hyperparameters are set to their default
values.

3Code and data are available at https://github.com/
yaringal/DropoutUncertaintyExps

H. Additional experimental results

Figure 1: Performance of CoCaBOs against existing meth-
ods on NN-Yacht in the batch setting (b = 4)

I. Wall-clock time overhead of CoCaBO

Figure 2: The mean wall-clock time overheads of different
methods for each BO iterations on the same machine. Such
an overhead (0.2s/itr) is negligible compared to the func-
tion evaluation time in real practice (for NAS it can take
2500s to train a query architecture even with TPUs).

https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/DropoutUncertaintyExps

Bayesian Optimisation over Multiple Continuous and Categorical Inputs

References
Allesiardo, Robin, Féraud, Raphaël, and Maillard, Odalric-

Ambrym. The non-stationary stochastic multi-armed
bandit problem. International Journal of Data Science
and Analytics, 3(4):267–283, 2017.

Auer, Peter, Cesa-Bianchi, Nicolo, Freund, Yoav, and
Schapire, Robert E. The nonstochastic multiarmed ban-
dit problem. SIAM journal on computing, 32(1):48–77,
2002.

Carlucci, Fabio Maria, Esperança, Pedro M, Singh, Marco,
Gabillon, Victor, Yang, Antoine, Xu, Hang, Chen,
Zewei, and Wang, Jun. {MANAS}: Multi-agent neural
architecture search, 2020.

Chen, Tianqi and Guestrin, Carlos. XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pp. 785–794. ACM, 2016.

Gal, Yarin and Ghahramani, Zoubin. Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. In Proceedings of the 33rd Inter-
national Conference on Machine Learning (ICML-16),
2016.

Ginsbourger, David, Le Riche, Rodolphe, and Carraro,
Laurent. Kriging is well-suited to parallelize optimiza-
tion. In Computational Intelligence in Expensive Opti-
mization Problems, pp. 131–162. Springer, 2010.

Kulis, Brian and Jordan, Michael I. Revisiting k-means:
New algorithms via Bayesian nonparametrics. arXiv
preprint arXiv:1111.0352, 2011.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Rasmussen, C E and Williams, C K I. Gaussian processes
for machine learning. 2006.

Ying, Chris, Klein, Aaron, Real, Esteban, Christiansen,
Eric, Murphy, Kevin, and Hutter, Frank. Nas-bench-101:
Towards reproducible neural architecture search. arXiv
preprint arXiv:1902.09635, 2019.

	Notation summary
	EXP3
	Regret bound for EXP3 in CoCaBO
	Categorical kernel relation with RBF
	Learning the hyperparameters in the CoCaBO kernel
	Kriging Believer
	Description of the optimisation problems
	Synthetic test functions
	Real-world problems

	Additional experimental results
	Wall-clock time overhead of CoCaBO

