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Abstract
Deep Metric Learning (DML) is arguably one of
the most influential lines of research for learn-
ing visual similarities with many proposed ap-
proaches every year. Although the field benefits
from the rapid progress, the divergence in training
protocols, architectures, and parameter choices
make an unbiased comparison difficult. To pro-
vide a consistent reference point, we revisit the
most widely used DML objective functions and
conduct a study of the crucial parameter choices
as well as the commonly neglected mini-batch
sampling process. Under consistent comparison,
DML objectives show much higher saturation
than indicated by literature. Further based on
our analysis, we uncover a correlation between
the embedding space density and compression to
the generalization performance of DML models.
Exploiting these insights, we propose a simple,
yet effective, training regularization to reliably
boost the performance of ranking-based DML
models on various standard benchmark datasets.
Code and a publicly accessible WandB-repo
are available at https://github.com/Confusezius/
Revisiting Deep Metric Learning PyTorch.

1. Introduction
Learning visual similarity is important for a wide range of
vision tasks, such as image clustering (Bouchacourt et al.,
2018), face detection (Schroff et al., 2015) or image retrieval
(Wu et al., 2017). Measuring similarity requires learning
an embedding space which captures images and reasonably
reflects similarities using a defined distance metric. One
of the most adopted classes of algorithms for this task is
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Figure 1. Mean recall performance and standard deviation of vari-
ous DML objectives trained with (green) and without (orange) our
proposed regularization. For all benchmarks, see appendix.

Deep Metric Learning (DML) which leverages deep neural
networks to learn such a distance preserving embedding.
Due to the growing interest in DML, a large corpus of litera-
ture has been proposed contributing to its success. However,
as recent DML approaches explore more diverse research
directions such as architectures (Xuan et al., 2018; Jacob
et al., 2019), objectives functions (Wang et al., 2019b; Yuan
et al., 2019) and additional training tasks (Roth et al., 2019;
Lin et al., 2018), an unbiased comparison of their results
becomes more and more difficult. Further, undisclosed
technical details (s.a. data augmentations or training regu-
larization) pose a challenge to the reproducibility of such
methods, which is of great concern in the machine learn-
ing community in general (Bouthillier et al., 2019). One
goal of this work is to counteract this worrying trend by
providing a comprehensive comparison of important and
current DML baselines under identical training conditions
on standard benchmark datasets (Fig. 1). In addition, we
thoroughly review common design choices of DML models
which strongly influence generalization performance to al-
low for better comparability of current and future work.
On that basis, we extend our analysis to: (i) The process of
data sampling which is well-known to impact the DML op-
timization (Schroff et al., 2015). While previous works only
studied this process in the specific context of triplet min-
ing strategies for ranking-based objectives (Wu et al., 2017;
Harwood et al., 2017), we examine the model-agnostic case
of sampling informative mini-batches. (ii) The generaliza-
tion capabilities of DML models by analyzing the structure
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of their learned embedding spaces. While we are not able
to reliably link typically targeted concepts such as large
inter-class margins (Liu et al., 2017; Deng et al., 2018)
and intra-class variance (Lin et al., 2018) to generalization
performance, we uncover a strong correlation to the com-
pression of the learned representations. Lastly, based on this
observation, we propose a simple, yet effective, regulariza-
tion technique which effectively boosts the performance of
ranking-based approaches on standard benchmark datasets
as also demonstrated in Fig. 1. In summary, our most im-
portant contributions can be described as follows:

• We provide an exhaustive analysis of recent DML ob-
jective functions, their training strategies, the influence
of data-sampling, and model design choices to set a
standard benchmark. To this end, we will make our
code publicly available.

• We provide new insights into DML generalization by
analyzing its correlation to the embedding space com-
pression (as measured by its spectral decay), inter-class
margins and intra-class variance.

• Based on the result above, we propose a simple tech-
nique to regularize the embedding space compression
which we find to boost generalization performance of
ranking-based DML approaches.

This work is structured as follows: After reviewing related
work in §2, we discuss and motivate our analyzed compo-
nents of DML models and their training setup in §3. Finally
in §4 we present the findings of our study, analyze DML
generalization in §5 and close with a conclusion in §6.

2. Related Works
Deep Metric Learning: Deep Metric Learning (DML)
has become increasingly important for applications ranging
from image retrieval (Movshovitz-Attias et al., 2017; Roth
et al., 2019; Wu et al., 2017; Lin et al., 2018) to zero-shot
classification (Schroff et al., 2015; Sanakoyeu et al., 2019)
and face verification (Hu et al., 2014; Liu et al., 2017). Many
approaches use ranking-based objectives based on tuples of
samples such as pairs (Hadsell et al., 2006), triplets (Wu
et al., 2017; Yu et al., 2018), quadruplets(Chen et al., 2017)
or higher-order variants like N-Pairs(Sohn, 2016), lifted
structure losses (Oh Song et al., 2016; Yu et al., 2018) or
NCA-based criteria(Movshovitz-Attias et al., 2017). Fur-
ther, classification-based methods adjusted to DML (Deng
et al., 2018; Zhai & Wu, 2018) have proven to be effec-
tive for learning distance preserving embedding spaces. To
address the computational complexity of tuple-based meth-
ods1, different sampling strategies have been introduced

1As an example, the number of triplets scales with O(N3),
where N is the dataset size.

(Schroff et al., 2015; Wu et al., 2017; Ge, 2018; Roth et al.,
2020). Moreover, proxy-based approaches address this issue
by approximating class distributions using only few virtual
representatives (Movshovitz-Attias et al., 2017; Qian et al.,
2019).
Additionally, more involved research extending above ob-
jectives has been proposed: Sanakoyeu et al. (2019) follow
a divide-and-conquer strategy by splitting and subsequently
merging both the data and embedding space; Opitz et al.
(2018); Xuan et al. (2018) employ an ensemble of special-
ized learners and Roth et al. (2019); Milbich et al. (2020a;b)
combine DML with feature mining or self-supervised learn-
ing. Moreover, Lin et al. (2018) and Zheng et al. (2019)
generate artificial samples to effectively augment the train-
ing data, thus learning more complex ranking relations. The
majority of these methods are trained using the essential
objective functions and, further, hinge on the training param-
eters discussed in our study, thus directly benefiting from
our findings. Moreover, we propose an effective regulariza-
tion technique to improve ranking-based objectives.
Mini-batch selection: The benefits of large mini-batches
for training are well studied (Smith et al., 2017; Goyal et al.,
2017; Keskar et al., 2016). However, there has been limited
research examining effective strategies for the creation of
mini-batches. Research into mini-batch creation has been
done to improve convergence in optimization methods for
classification tasks(Mirzasoleiman et al., 2020; Johnson &
Guestrin, 2018) or to construct informative mini-batches us-
ing core-set selection to optimize generative models (Sinha
et al., 2019). Similarly, we analyze mining strategies maxi-
mizing data diversity and compare their impact to standard
heuristics employed in DML (Wu et al., 2017; Roth et al.,
2019; Sanakoyeu et al., 2019)).
Generalization in DML: Generalization capabilities of rep-
resentations (Achille & Soatto, 2016; Shwartz-Ziv & Tishby,
2017) and, in particular, of discriminative models has been
well studied (Jiang* et al., 2020; Belghazi et al., 2018; Goyal
et al., 2017), e.g. in the light of compression (Tishby &
Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017) which is
covered by strong experimental support (Goyal et al., 2019;
Belghazi et al., 2018; Alemi et al., 2016). Verma et al. (2018)
link compression to a ’flattening’ of a representation in the
context of classification. We apply this concept to analyze
generalization in DML and find that strong compression
actually hurts DML generalization. Existing works on gen-
eralization in metric learning focus on robustness of linear
or kernel-based distance metrics (Bellet & Habrard, 2015;
Bellet, 2013) and examine bounds on the generalization
error (Huai et al., 2019). In contrast, we examine the corre-
lation between generalization and structural characteristics
of the learned embedding space.
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3. Training a Deep Metric Learning Model
In this section, we briefly summarize key components for
training a DML model and motivate the main aspects of
our study. We first introduce the common categories of
training objectives which we consider for comparison in
Sec. 3.1. Next, in Sec. 3.2 we examine the data sampling
process and present strategies for sampling informative mini-
batches. Finally, in Sec. 3.3, we discuss components of a
DML model which impact its performance and exhibit an
increased divergence in the field, thus impairing objective
comparisons.

3.1. The objective function

In Deep Metric Learning we learn an embedding function
φ : X 7→ Φ ⊆ RD mapping datapoints x ∈ X into an
embedding space Φ, which allows to measure the similar-
ity between xi, xj as dφ(xi, xj) := d(φ(xi), φ(xj)) with
d(., .) being a predefined distance function. For that, let
φ := φθ be a deep neural network parametrised by θ with
its output typically normalized to the real hypersphere SD
for regularization purposes (Wu et al., 2017; Huai et al.,
2019). In order to train φθ to reflect the semantic similarity
defined by given labels y ∈ Y , many objective functions
have been proposed based on different concepts which we
now briefly summarize.
Ranking-based: The most popular family are ranking-
based loss functions operating on pairs (Hadsell et al., 2006),
triplets (Schroff et al., 2015; Wu et al., 2017) or larger sets
of datapoints (Sohn, 2016; Oh Song et al., 2016; Chen et al.,
2017; Wang et al., 2019b). Learning φθ is defined as an
ordering task, such that the distances dφ(xa, xp) between
an anchor xa and positive xp of the same class, ya = yp, is
minimized and the distances dφ(xa, xn) of to negative sam-
ples xn with different class labels, ya 6= yn, is maximized.
For example, triplet-based formulations typically optimize
their relative distances as long as a margin γ is violated, i.e.
as long as dφ(xa, xn)− dφ(xa, xp) < γ. Further, ranking-
based objectives are also extended to histogram matching,
as proposed in (Ustinova & Lempitsky, 2016).
Classification-based: As DML is essentially solving a dis-
criminative task, some approaches (Zhai & Wu, 2018; Deng
et al., 2018; Liu et al., 2017) can be derived from softmax-
logits li = WT

j φ(xi) + bj . For example, Deng et al. (2018)
exploit the regularization to the real hypersphere SD and the
equality WT

j xi =
∥∥WT

j

∥∥ ‖φ(xi)‖ cosϕj to maximize the
margin between classes by direct optimization over angles
ϕj . Further, also standard cross-entropy optimization proves
to be effective under normalization (Zhai & Wu, 2018).
Proxy-based: These methods approximate the distributions
for the full class by one (Movshovitz-Attias et al., 2017) or
more (Qian et al., 2019) learned representatives. By con-
sidering the class representatives for computing the training

loss, individual samples are directly compared to an entire
class. Additionally, proxy-based methods help to alleviate
the issue of tuple mining which is encountered in ranking-
based loss functions.

3.2. Data sampling

The synergy between tuple mining strategies and ranking
losses has been widely studied (Wu et al., 2017; Schroff
et al., 2015; Ge, 2018). To analyze the impact of data-
sampling on performance in the scope of our study, we
consider the process of mining informative mini-batches B.
This process is independent of the specific training objective
and so far has been commonly neglected in DML research.
Following we present batch mining strategies operating on
both labels and the data itself: label samplers, which are
sampling heuristics that follow selection rules based on label
information only, and embedded samplers, which operate on
data embeddings themselves to create batches B of diverse
data statistics.
Label Samplers: To control the class distribution within B,
we examine two different heuristics based on the number, n,
of ’Samples Per Class’ (SPC-n) heuristic:
SPC-2/4/8: Given batch-size b, we randomly select b/n
unique classes from which we select n samples randomly.
SPC-R: We randomly select b− 1 samples from the dataset
and choose the last sample to have the same label as one of
the other b− 1 samples to ensure that at least one triplet can
be mined from B. Thus, we effectively vary the number of
unique classes within mini-batches.
Embedded Samplers: Increasing the batch-size b has
proven to be beneficial for stabilizing optimization due to an
effectively larger data diversity and richer training informa-
tion (Mirzasoleiman et al., 2020; Brock et al., 2018; Sinha
et al., 2019). As the DML training is commonly performed
on a single GPU (limited especially due to tuple mining
process on the mini-batch), the batch-size b is bounded by
memory. Nevertheless, in order to ‘virtually’ maximize the
data diversity, we distill the information content of a large
set of samples B∗, b∗ = |B∗| > b into a mini-batch B by
matching the statistics of B and B∗ under the embedding
φ. To avoid computational overhead, we sample B∗ from a
continuously updated memory bankM of embedded train-
ing samples. Similar to Misra & van der Maaten (2019),M
is generated by iteratively updating its elements based on
the steady stream of training batches B. UsingM, we mine
mini-batches by first randomly sampling B∗ fromM with
b∗ = 1024 and subsequently find a mini-batch B to match
its data statistics by using one of the following criteria:
Greedy Coreset Distillation (GC): Greedy Coreset (Agar-
wal et al., 2005) finds a batch B by iteratively adding
samples x∗ ∈ B∗ which maximize the distance from
the samples that have already been selected x ∈ B,
thereby maximizing the covered space within Φ by solv-
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ing minB:|B|=b maxx∗∈B∗ minx∈B dφ(x, x∗).
Matching of distance distributions (DDM): DDM aims to
preserve the distance distribution of B∗. We randomly se-
lect m candidate mini-batches and choose the batch B with
smallest Wasserstein distance between normalized distance
histograms of B and B∗ (Rubner et al., 2000).
FRD-Score Matching (FRD): Similar to the recent GAN
evaluation setting, we compute the frechet distance (Heusel
et al., 2017)) between B and B∗ to measure the simi-
larity between their distributions using FRD(B,B∗) =

‖µB − µB∗‖22+Tr(ΣB+ΣB∗−2(ΣBΣB∗)
1/2), with µ•,Σ•

being the mean and covariance of the embedded set of sam-
ples. Like in DDM, we select the closest batch B to B∗
among m randomly sampled candidates.

3.3. Training parameters, regularization and
architecture

Network GN IBN R50
CUB200, R@1 45.41 48.78 43.77
CARS196, R@1 35.31 43.36 36.39
SOP, R@1 44.28 49.05 48.65

Table 1. Recall performance of commonly used network architec-
tures after ImageNet pretraining. Final linear layer is randomly
initialized and normalized.

Next to the objectives and data sampling process, success-
ful learning hinges on a reasonable choice of the training
environment. While there is a multitude of parameters to be
set, we identify several factors which both influence perfor-
mance and exhibit an divergence in lately proposed works.
Architectures: In recent DML literature predominantly three
basis network architectures are used: GoogLeNet (Szegedy
et al., 2015) (GN, typically with embedding dimensionality
512), Inception-BN (Ioffe & Szegedy, 2015) (IBN, 512)
and ResNet50 (He et al., 2016) (R50, 128) (with optionally
frozen Batch-Normalization layers for improved conver-
gence and stability across varying batch sizes2, see e.g. Roth
et al. (2019); Cakir et al. (2019)). Due to the varying number
of parameters and configuration of layers, each architecture
exhibits a different starting point for learning, based on its
initialization by ImageNet pretraining (Deng et al., 2009).
Table 1 compares their initial DML performance measured
in Recall@1 (R@1). The reference to differences in archi-
tecture is one of the main arguments used by individual
works not compare themselves to competing approaches.
Disconcertingly, even when reporting additional results us-
ing adjusted networks is feasible, typically only results using
a single architecture are reported. Consequently, a fair com-
parison between approaches is heavily impaired.
Weight Decay: Commonly, network optimization is regular-

2Note that Batch-Normalization is still performed, but no pa-
rameters are learned.

ized using weight decay/L2-regularization (Krogh & Hertz,
1992). In DML, particularly on small datasets its careful ad-
justment is crucial to maximize generalization performance.
Nevertheless, many works do not report this.
Embedding dimensionality: Choosing a dimensionality D
of the embedding space Φ influences the learned manifold
and consequently generalization performance. While each
architecture typically uses an individual, standardized di-
mensionality D in DML, recent works differ without re-
porting proper baselines using an adjusted dimensionality.
Again, comparison to existing works and the assessment of
the actual contribution is impaired.
Data Preprocessing: Preprocessing training images typi-
cally significantly influences both the learned features and
model regularization. Thus, as recent approaches vary in
their applied augmentation protocols, results are not nec-
essarily comparable. This includes the trend for increased
training and test image sizes.
Batchsize: Batchsize determines the nature of the gradient
updates to the network, e.g. datasets with many classes
benefit from large batchsizes due to better approximations
of the training distribution. However, it is commonly not
taken into account as a influential factor of variation.
Advanced DML methodologies There are many extensions
to objective functions, architectures and the training setup
discussed so far. However, although extensions are highly
individual, they still rely on these components and thus ben-
efit from findings in the following experiments, evaluations
and analysis.

4. Analyzing DML training strategies
Datasets As benchmarking datasets, we use:
CUB200-2011: Contains 11,788 images in 200 classes of
birds. Train/Test sets are made up of the first/last 100 classes
(5,864/5,924 images respectively) (Wah et al., 2011). Sam-
ples are distributed evenly across classes.
CARS196: Has 16,185 images/196 car classes with even
sample distribution. Train/Test sets use the first/last 98
classes (8054/8131 images) (Krause et al., 2013).
Stanford Online Products (SOP): Contains 120,053 prod-
uct images divided into 22,634 classes. Train/Test sets are
provided, contain 11,318 classes/59,551 images in the Train
and 11,316 classes/60,502 images in the Test set (Oh Song
et al., 2016). In SOP, unlike the other benchmarks, most
classes have few instances, leading to significantly different
data distribution compared to CUB200-2011 and CARS196.

4.1. Experimental Protocol

Our training protocol follows parts of Wu et al. (2017),
which utilize a ResNet50 architecture with frozen Batch-
Normalization layers and embedding dim. 128 to be com-
parable with already proposed results with this architec-
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Figure 2. Evaluation of DML pipeline parameters and architec-
tures on all benchmark datasets and their influence on relative
improvement across different training criteria.

ture. While both GoogLeNet (Szegedy et al., 2015) and
Inception-BN (Ioffe & Szegedy, 2015) are also often em-
ployed in DML literature, we choose ResNet50 due to its
success in recent state-of-the-art approaches (Roth et al.,
2019; Sanakoyeu et al., 2019). In line with standard prac-
tices we randomly resize and crop images to 224 × 224
for training and center crop to the same size for evaluation.
During training, random horizontal flipping (p = 0.5) is
used. Optimization is performed using Adam (Kingma &
Ba, 2015) with learning rate fixed to 10−5 and no learning
rate scheduling for unbiased comparison. Weight decay
is set to a constant value of 4 · 10−4, as motivated in sec-
tion 4.2. We implemented all models in PyTorch (Paszke
et al., 2017), and experiments are performed on individual
Nvidia Titan X, V100 and T4 GPUs with memory usage
limited to 12GB. Each training is run over 150 epochs for
CUB200-2011/CARS196 and 100 epochs for Stanford On-
line Products, if not stated otherwise. For batch sampling
we utilize the the SPC-2 strategy, as motivated in section
4.3. Finally, each result is averaged over multiple seeds to
avoid seed-based performance fluctuations. All loss-specific
hyperparameters are discussed in the supplementary mate-
rial, along with their original implementation details. For
our study, we examine the following evaluation metrics (de-
scribed further in the supplementary): Recall at 1 and 2
(Jegou et al., 2011), Normalized Mutual Information (NMI)
(Manning et al., 2010), F1 score (Sohn, 2016), mean aver-
age precision measured on recall of the number of samples
per class (mAP@C) and mean average precision measured
on the recall of 1000 samples (mAP@1000). Please see the
supplementary (supp. A.3) for more information.

4.2. Studying DML parameters and architectures

Now we study the influence of parameters & architectures
discussed in Sec. 3.3 using five different objectives. For
each experiment, all metrics noted in Sec. 4.1 are measured.
For each loss, every metric is normalized by the maximum
across the evaluated value range. This enables an aggregated
summary of performance across all metrics, where differ-
ences correspond to relative improvement. Fig. 2 analyzes

each factor by evaluating a range of potential setups with the
other parameters fixed to values from Sec. 4.1: Increasing
the batchsize generally improves results with gains varying
among criteria, with particularly high relevance on the SOP
dataset. For weight decay, we observe loss and dataset de-
pendent behavior up to a relative performance change of 5%.
Varying the data preprocessing protocol, e.g. augmentations
and input image size, leads to large performance differences
as well. Base follows our protocol described in Sec. 4.1.
Red. refers to resizing of the smallest image side to 256
and cropping to 224x224 with horizontal flipping. Big uses
Base but crops images to 256x256. Finally, we extend Base
to Adv. with color jittering, changes in brightness and hue.
We find that larger images provide better performance re-
gardless of objective or dataset. Using the Adv. processing
on the other hand is dependent on the dataset. Finally, we
show that random resized cropping is a generally stronger
operation than basic resizing and cropping.
All these factors underline the importance of a complete
declaration of the training protocol to facilitate reproducibil-
ity and comparability. Similar results are observed for the
choice of architecture and embedding dimensionality D. At
the example of R50, our analysis shows that training objec-
tives perform differently for a given D but seem to converge
at D = 512. However, for R50 D is typically fixed to
128, thus disadvantaging some training objectives over oth-
ers. Finally, comparing common DML architectures reveals
their strong impact on performance with varying variance
between loss functions. Highest consistencies seem to be
achievable with R50 and IBN-based setups.
Implications: In order to warrant unbiased comparability,
equal and transparent training protocols and model archi-
tectures are essential, as even small deviations can result in
large deviations in performance.

4.3. Batch sampling impacts DML training

We now analyze how the data sampling process for mini-
batches impacts the performance of DML models using the
sampling strategies presented in Sec. 3.2. To conduct an
unbiased study, we experiment with six conceptually differ-
ent objective functions: Marginloss with Distance-Weighted
Sampling, Triplet Loss with Random Sampling, ProxyNCA,
Multi-Similarity Loss, Histogram loss and Normalized Soft-
max loss. To aggregate our evaluation metrics (cf. 4.1),
we utilize the same normalization procedure discussed in
Sec. 4.2. Fig. 3 summarizes the results for each sampling
strategy by reporting the distributions of normalized scores
of all pairwise combinations of training loss and evaluation
metrics. Our analysis reveals that the batch sampling pro-
cess indeed effects DML training with a difference in mean
performance up to 1.5%. While there is no clear winner
across all datasets, we observe that the SPC-2 and FRD
samplers perform very well and, in particular, consistently
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(a) CUB200-2011 (b) CARS196 (c) SOP

Figure 3. Comparison of mini-batch mining strategies on three different datasets. Performance measures Recall@1 and 2, NMI, mAP and
F1 are normalized across metrics and loss function. We plot the distributions of relative performances for each strategy.

Figure 4. Metrics Correlation matrix for standard (Recall, NMI)
and underreported retrieval metrics. mAP denotes mAP@C. Please
refer to the supplementary for more information.

outperform the SPC-4 strategy which is commonly reported
to be used in literature (Wu et al., 2017; Schroff et al., 2015).
Implications: Our study indicates that DML benefits from
data diversity in mini-batches, independent of the chosen
training objective. This coincides with the general benefit
of larger batchsizes as noted in section 4.2. While complex
mining strategies may perform better, simple heuristics like
SPC-2 are sufficient.

4.4. Comparing DML models

Based on our training parameter and batch-sampling eval-
uations we compare a large selection of 14 different DML
objectives and 4 mining methods under fixed training condi-
tions (see 4.1 & 4.2), most of which claim state-of-the-art
by a notable margin. For ranking-based models, we employ
distance-based tuple mining (D) (Wu et al., 2017) which
proved most effective. We also include random, semihard
sampling (Schroff et al., 2015) and a soft version of hard
sampling (Roth & Brattoli, 2019) for our tuple mining study
using the classic triplet loss. Loss-specific hyperparame-
ters are determined via small cross-validation gridsearches
around originally proposed values to adjust for our training
setup. Exact parameters and method details are listed in
supp. A.1. Table 2 summarizes our evaluation results on all
benchmarks (with other metric rankings s.a. mAP@C or
mAP@1000 in the supplementary (supp. I)), while Fig. 4
measures correlations between all evaluation metrics. Par-

ticularly on CUB200-2011 and CARS196 we find a higher
performance saturation between methods as compared to
SOP due to strong differences in data distribution. Gen-
erally, performance between criteria is much more similar
than literature indicates, (see also concurrent work by Mus-
grave et al. (2020)). We find that representatives of ranking-
based objectives outperform their classification/NCE-based
counterparts, though not significantly. On average, margin
loss (Wu et al., 2017) and multisimilarity loss (Wang et al.,
2019a) offer the best performance across datasets, though
not by a notable margin. Remarkably, under our carefully
chosen training setting, a multitude of losses compete or
even outperform more involved state-of-the-art DML ap-
proaches on the SOP dataset. For a detailed comparison to
the state-of-the-art, we refer to the supplementary (supp. F).
Implications: Under the same setup, performance saturates
across methods, contrasting results reported in literature.
Taking into account standard deviations, usually left un-
reported, improvements become even less significant. In
addition, carefully trained baseline models are able to out-
perform state-of-the-art approaches which use considerable
stronger architectures. Thus, to evaluate the true benefit of
proposed contributions, baseline models need to be compet-
itive and implemented under comparable settings.

5. Generalization in Deep Metric Learning
The previous section showed how different model and train-
ing parameter choices result in vastly different performances.
However, how such differences can be explained best on
basis of the learned embedding space is an open question
and, for instance, studied under the concept of compres-
sion (Tishby & Zaslavsky, 2015). Recent work (Verma
et al., 2018) links compression to class-conditioned flatten-
ing of representation, indicated by an increased decay of
singular values obtained by Singular Value Decomposition
(SVD) on the data representations. Thus, class representa-
tions occupy a more compact volume, thereby reducing the
number of directions with significant variance. The subse-
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Benchmarks→ CUB200-2011 CARS196 SOP

Approaches ↓ R@1 NMI R@1 NMI R@1 NMI

Imagenet (Deng et al., 2009) 43.77 57.56 36.39 37.96 48.65 58.64

Angular (Wang et al., 2017) 62.10± 0.27 67.59± 0.26 78.00± 0.32 66.48± 0.44 73.22± 0.07 89.53± 0.01
ArcFace (Deng et al., 2018) 62.67± 0.67 67.66± 0.38 79.16± 0.97 66.99± 1.08 77.71± 0.15 90.09± 0.03
Contrastive (Hadsell et al., 2006) (D) 61.50± 0.17 66.45± 0.27 75.78± 0.39 64.04± 0.13 73.21± 0.04 89.78± 0.02
GenLifted (Hermans et al., 2017) 59.59± 0.60 65.63± 0.14 72.17± 0.38 63.75± 0.35 75.21± 0.12 89.84± 0.01
Hist. (Ustinova & Lempitsky, 2016) 60.55± 0.26 65.26± 0.23 76.47± 0.38 64.15± 0.36 71.30± 0.10 88.93± 0.02
Margin (D, β = 0.6) (Wu et al., 2017) 62.50± 0.24 67.02± 0.37 77.70± 0.32 65.29± 0.32 77.38± 0.11 90.45± 0.03
Margin (D, β = 1.2) (Wu et al., 2017) 63.09± 0.46 68.21± 0.33 79.86± 0.33 67.36± 0.34 78.43± 0.07 90.40± 0.03
Multisimilarity (Wang et al., 2019a) 62.80± 0.70 68.55± 0.38 81.68± 0.19 69.43± 0.38 77.99± 0.09 90.00± 0.02
Npair (Sohn, 2016) 61.63± 0.58 67.64± 0.37 77.48± 0.28 66.55± 0.19 75.86± 0.08 89.79± 0.03
Pnca (Movshovitz-Attias et al., 2017) 62.80± 0.48 66.93± 0.38 78.48± 0.58 65.76± 0.22 − −
Quadruplet (D) (Chen et al., 2017) 61.71± 0.63 66.60± 0.41 76.34± 0.27 64.79± 0.50 76.95± 0.10 90.14± 0.02
SNR (D) (Yuan et al., 2019) 62.88± 0.18 67.16± 0.25 78.69± 0.19 65.84± 0.52 77.61± 0.34 90.10± 0.08
SoftTriple (Qian et al., 2019) 60.83± 0.47 64.27± 0.36 75.66± 0.46 62.66± 0.16 − −
Softmax (Zhai & Wu, 2018) 61.66± 0.33 66.77± 0.36 78.91± 0.27 66.35± 0.30 76.92± 0.64 89.82± 0.15

Triplet (D) (Wu et al., 2017) 62.87± 0.35 67.53± 0.14 79.13± 0.27 65.90± 0.18 77.39± 0.15 90.06± 0.02
Triplet (H) (Roth & Brattoli, 2019) 61.61± 0.21 65.98± 0.41 77.60± 0.33 65.37± 0.26 73.50± 0.09 89.25± 0.03
Triplet (R) (Schroff et al., 2015) 58.48± 0.31 63.84± 0.30 70.63± 0.43 61.09± 0.27 67.86± 0.14 88.35± 0.04
Triplet (S) (Schroff et al., 2015) 60.09± 0.49 65.59± 0.29 72.51± 0.47 62.84± 0.41 73.61± 0.14 89.35± 0.02

R-Contrastive (D) 63.57± 0.66 67.63± 0.31 81.06± 0.41 67.27± 0.46 74.36± 0.11 89.94± 0.02
R-Margin (D, β = 0.6) 64.93± 0.42 68.36± 0.32 82.37± 0.13 68.66± 0.47 77.58± 0.11 90.42± 0.03
R-Margin (D, β = 1.2) 63.32± 0.33 67.91± 0.66 81.11± 0.49 67.72± 0.79 78.52± 0.10 90.33± 0.02
R-SNR (D) 62.97± 0.32 68.04± 0.34 80.38± 0.35 67.60± 0.20 77.69± 0.25 90.02± 0.06
R-Triplet (D) 63.28± 0.18 67.86± 0.51 81.17± 0.11 67.79± 0.23 77.33± 0.14 89.98± 0.04

Table 2. Comparison of Recall@1 and NMI performances for all objectives averaged over 5 runs. Each model is trained using the
same training setting over 150 epochs for CUB/CARS and 100 epochs for SOP. ’R-’ denotes model trained with ρ-regularization. Bold
denotes best results excluding regularization. Boldblue marks overall best results. Please note that a ranking on all other metrics (s.a.
mAP@C, mAP@1000) as well as a visual summary can be found in the supplementary (supp. I, supp. C)!

quent strong focus on the most discriminative directions is
shown to be beneficial for classic classification scenarios
with i.i.d. train and test distributions. However, this overly
discards features which could capture data characteristics
outside the training distribution. Hence, generalization in
transfer problems like DML is hindered due to the shift in
training and testing distribution (Bellet & Habrard, 2015).
We thus hypothesize that actually retaining a considerable
amount of directions of significant variance (DoV) is crucial
to learn a well generalizing embedding function φ.
To verify this assumption, we analyze the spectral decay
of the embedded training data ΦX := {φ(x)|x ∈ X} via
SVD. We then normalize the sorted spectrum of singular
values (SV) SΦX

3 and compute the KL-divergence to a
D-dim. discrete uniform distribution UD, i.e. ρ(Φ) =
KL(UD || SΦX )4. We don’t consider individual training
class representations, as testing and training distribution are
shifted5. Lower values of ρ(Φ) indicate more directions
of significant variance. Using this measure, we analyze a
large selection of DML objectives in Fig. 5 (rightmost) on

3Excluding highest SV which can obfuscate remaining DoVs.
4For simplicity we use the notation ρ(Φ) instead of ρ(ΦX ).
5For completeness, class-conditioned singular value spectra as

Verma et al. (2018) are examined in supp. H.

CUB200-2011, CARS196 and SOP6. Comparing R@1 and
ρ(Φ) reveals significant inverse correlation (≤ −0.63) be-
tween generalization and the spectral decay of embedding
spaces Φ, which highlights the benefit of more directions of
variance in the presence of train-test distribution shifts.
We now compare our finding to commonly exploited
concepts for training such as (i) larger margins between
classes (Deng et al., 2018; Liu et al., 2017), i.e. an
increase in average inter-class distances πinter(Φ) =

1
Zinter

∑
yl,yk,l 6=k d(µ(Φyl), µ(Φyk)) ; (ii) explicitly introduc-

ing intra-class variance (Lin et al., 2018), which is indicated
by an increase in average intra-class distance πintra(Φ) =

1
Zintra

∑
yl∈Y

∑
φi,φj∈Φyl

,i6=j d(φi, φj). We also investi-
gate (iii) their relation by using the ratio πratio(Φ) =
πintra(Φ)/πinter(Φ), which can be regarded as an embed-
ding space density. Here, Φyl = {φi := φθ(xi)|xi ∈
X , yi = yl} denotes the set of embedded samples of a class
yl, µ(Φyl) their mean embedding andZinter, Zintra normaliza-
tion constants. Fig. 5 compares these measures with ρ(Φ).
It is evident that neither of the distance related measures
π•(Φ) consistently exhibits significant correlation with gen-
eralization performance when taking all three datasets into

6A detailed comparison can be found in supp. I.
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Figure 5. Correlation between generalization and structural prop-
erties derived from ΦX using different DML objectives on each
dataset. Left-to-Right: Mean intra-class distances πintra & inter-
class distances πinter, the ratio πintra/πinter and spectral decay ρ.

Figure 6. Toy example illustrating the effect of ρ-regularization.
(Leftmost) training and test data. (Mid-left) A small, normal-
ized two-layer fully-connected network trained with standard con-
trastive loss fails to separate all test classes due to excessive com-
pression of the learned embedding. (Mid-right) The regularized
embedding successfully separates the test classes by introducing
a lower spectral decay. (Rightmost) Singular value spectra of
training embeddings learned with and without regularization.

account. For CUB200-2011 and CARS196, we however
find that an increased embedding space density (πratio) is
linked to stronger generalisation. For SOP, its estimate is
likely too noisy due to the strong imbalance between dataset
size and amount of samples per class.
Implications: Generalization in DML exhibits strong in-
verse correlation to the SV spectrum decay of learned repre-
sentations, as well as a weaker correlation to the embedding
space density. This indicates that representation learning
under considerable shifts between training and testing dis-
tribution is hurt by excessive feature compression, but may
benefit from a more densely populated embedding space.

5.1. ρ-regularization for improved generalization

We now exploit our findings to propose a simple ρ-
regularization for ranking-based approaches by counteract-
ing the compression of representations. We randomly alter
tuples by switching negative samples xn with the positive

Figure 7. Sing. Value Spectrum for models trained with (red) and
without (blue) ρ-regularization for various ranking-based criteria.

xp in a given ranking-loss formulation (cf. Sec. 3.1) with
probability pswitch. This pushes samples of the same class
apart, enabling a DML model to capture extra non-label-
discriminative features while dampening the compression
induced by strong discriminative training signals.
Fig. 6 depicts a 2D toy example (details supp. G) illustrating
the effect of our proposed regularization while highlighting
the issue of overly compressed data representations. Even
though the training distribution exhibits features needed to
separate all test classes, these features are disregarded by
the strong discriminative training signal. Regularizing the
compression by attenuating the spectral decay ρ(Φ) enables
the model to capture more information and exhibit stronger
generalization to the unseen test classes. In addition, Fig. 7
verifies that the ρ-regularization also leads to a decreased
spectral decay on DML benchmark datasets, resulting in
improved recall performance (cf. Tab. 2 (bottom)), while
being reasonably robust to changes in pswitch (see supp. B).
In contrast, in the appendix we also see that encouraging
higher compression seems to be detrimental to performance.
Implications: Implicitly regularizing the number of direc-
tions of significant variance can improve generalization.

6. Conclusion
In this work, we counteract the worrying trend of diverging
training protocols in Deep Metric Learning (DML). We con-
duct a large, comprehensive study of important training com-
ponents and objectives in DML to contribute to improved
comparability of recent and future approaches. On this basis,
we study generalization in DML and uncover a strong corre-
lation to the level of compression and embedding density of
learned data representation. Our findings reveal that highly
compressed representations disregard helpful features for
capturing data characteristics that transfer to unknown test
distributions. To this end, we propose a simple technique
for ranking-based methods to regularize the compression
of the learned embedding space, which results in boosted
performance across all benchmark datasets.
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