
Predicting Choice with Set-Dependent Aggregation

A. Inductive Bias
A.1. Generalizing known choice models

As stated in Claim 1, the model in Eq. 5 generalizes many
models that have been proposed in the discrete choice litera-
ture. Table 2 summarizes the specific instantiations of w, r
and µ for these models, partitioning according to whether
they incorporate set dependent weights, set dependent rep-
resentations, or both.

A.2. Illustrative example of aggregation principles

Section 2.1 described four principles from behavioral choice
theory that have guided our model design choices. Here we
give a short illustrative example with ` = 2 of how these
principles come into play. Consider a user choosing an item
from a set of alternatives. The first principle states that item
values are considered along multiple dimensions. These
could correspond to explicit item features (e.g., price, size),
but in many cases are latent, and in our framework, learning
the fi amounts to inferring these latent dimensions. For
our example, assume the model has learned two such di-
mensions with f1 and f2, and that for example’s sake, these
correspond to notions of perceived “cost” and “quality”,
respectively.

The second principle states that within each dimension,
value is relative, and is considered in relation to a set-
dependent reference point. In our example, this would mean
that users value the cost of an item not by it’s absolute value
under f1, but rather, by it’s value under f1 relative to a refer-
ence point r(s̃1) (and similarly for f2). For example, if r is
set to the average cost (i.e., average value of f1) for the set,
then cost is perceived relative to this baseline via x̃i− r(s̃i).

Given the above, note that items valued higher than the
reference value are perceived as “gains”, and items valued
lower are perceived as “losses”. The third principle (central
to prospect theory) states that the perception of losses and
gains follows an a-symmetric s-shaped curve, meaning that
losses loom greater (negatively) than gains do (positively).
In our model, this role is played by µ. In our example, this
would mean that items with below-average quality would
be perceived as “losses”, items with above-average quality
would be perceived as “gains”, and that low quality “hurts”
value more than high quality “helps” it.

The forth and final principle states the degree to which each
valuation dimension contributes to the overall perceived
value is also set-dependent, or in other words, the choice set
also determines which valuation dimensions are important.
In our example, this could mean that if perhaps the items
are similar in terms of cost, then the importance of quality
would be amplified, and vice versa.

B. Approximation Error
In this section we provide the proof for Theorem 1. Before
giving the proof, we highlight some definitions and results
from Ambrus & Rozen (2015) that we will use, and define
the base class we consider.

B.1. Results from Ambrus & Rozen (2015)

Ambrus & Rozen (2015) study aggregation from a different
perspective than ours, but provide a theoretical foundation
for reasoning about aggregators that we will use in our proof.
The setting and tasks considered in Ambrus & Rozen (2015)
are quite different from ours. Specifically, they focus on
a realizable, worst-case, non-parametric setting: there is a
fixed and finite grand set of (non-featurized) items, choices
are set by a deterministic choice function y = c(s), items
are scored by item-wise utility functions mapping items to
arbitrary values (i.e., there is no notion of function class
structure or complexity), and the goal is to fully reconstruct
c (i.e., matching its predictions on all possible choice sets)
by aggregating utility functions. The main results in their
paper quantify the number of utility functions necessary for
full reconstruction under certain conditions and as a function
of the “number of violations” of IIA (which they define).
In contrast, we consider aggregation from a statistical per-
spective, focusing on a setting that is typical in machine
learning: items are featurized, choice sets and choices are
drawn i.i.d. from an unknown joint distribution, score func-
tions are parametric, and the goal is to learn a predictor with
high expected accuracy.

Since Ambrus & Rozen (2015) work with a finite set of N
items, item utilities (which in our case would be modeled
using item-wise functions) are expressed as vectors u ∈ RN
with entries corresponding to the utilities of items. For a
collection of utilities u = {u1, . . . , uν} where each ui ∈
RN , we slightly abuse notation and use gu to denote an
aggregator with item-wise score functions corresponding to
the utilities in u.

A key insight of Ambrus & Rozen (2015) is that to reason
about aggregation with N items, it suffices to consider the
behavior of an aggregator on an arbitrary set of three items
x1, x2, x3. The following definition of a triple basis (TB)
constitutes the main building block of Ambrus & Rozen
(2015).

Definition 3 (Triple basis, Ambrus & Rozen (2015)). Let
x1, x2, x3 ∈ X . Let ν ∈ N, and let u = {u1, . . . , uν},ui ∈
R3. Then u is a triple basis for x1, x2, x3 under the aggre-
gation mechanism ψ if:

1. x1 is strongly preferred to x2 from the choice set s =
{x1, x2}, i.e., there exists δ > 0 such that

gu(x1|{x1, x2};ψ) > gu(x2|{x1, x2};ψ) + δ
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Set dependence Extends w r µ

None (IIA) MNL (McFadden et al. (1973)) one zero identity

Weights

Tversky (1969) (max-min)ρ zero identity
McFadden (1978) linear log

∑
exp log

Kalai et al. (2002) softmax zero identity
Orhun (2009) linear w. average kinked lin.

Representations
Kaneko & Nakamura (1979) sum min log
Kivetz et al. (2004) (LAM) sum (max+min)/2 kinked lin.
Kivetz et al. (2004) (CCM) sum min power(ρ)

Both Kivetz et al. (2004) (NCCM) max-min min norm. pow(ρ)
SDA (ours) set-nn set-nn kinked tanh

Table 2: Discrete choice models as set-aggregation models.

2. otherwise g is indifferent, i.e., for all other choice sets
s ⊆ {x1, x2, x3} with s 6= {x1, x2} and for all x ∈ s,

gu(x|s;ψ) = cs

for some constant cs.

In terms of prediction, this means that gu predicts x1 out
of {x1, x2}, and is otherwise indifferent. Triple bases are
useful in that claims regarding large collections of items can
be established by reasoning about a single arbitrary triple of
items (there are no restrictions on x1, x2, x3).

The results of Ambrus & Rozen (2015) apply to aggrega-
tion mechanisms satisfying five properties that are standard
in choice theory, and we will assume these hold for the
mechanisms we consider as well. For some results, Ambrus
& Rozen (2015) also require the mechanisms to be scale
invariant (SI):

Definition 4 (Scale invariance, Ambrus & Rozen (2015)).
An aggregation mechanism ψ is scale invariant if there
exists an odd and invertible function ξ such that

∀α ∈ R, gαf (x|s;ψ) = ξ(α)gf (x|s;ψ)

where αf = {αf}f∈f , i.e., functions in f are scaled by α.

Scale invariance states that the scale (or units) in which util-
ity is stated does not change the predictive behavior of the
aggregator. As conveyed in Ambrus & Rozen (2015), scale
invariance is a useful property which holds for many known
aggregators, and we focus on these here. The following
result of Ambrus & Rozen (2015)—an excerpt from their
main proof presented here as a lemma—is key to our proof:

Lemma 1. (Ambrus & Rozen, 2015) For all scale-invariant
aggregation mechanisms ψ there exist a triple basis u with
ν = 5.

Note that our results also apply to some aggregators that are
not scale invariant, albeit with a possibly larger ν.

B.2. Base class

As noted in the main text, our proof requires that G be
defined over a base class of functions that is slightly more
expressive than F . We denote this class F and define it here
concretely. In general terms, each function f̄ ∈ F can be
thought of as composed of a pair of functions f, f ′ ∈ F
whose outputs are combined using simple operations. We
will think of these operations as a small neural network a(·)
with input of size 2 (taking in f(x) and f ′(x)) and having
two hidden layers with two units each and with sigmoidal
activations, and a final 2-to-1 linear layer (see Figure 5). We
denote this class of auxiliary functions by A, and use it to
define the base class:

F = {f̄(x; f, f ′, a) = a(f(x), f ′(x)) : f, f ′ ∈ F , a ∈ A}

B.3. Proof of Theorem 1

We are now ready to give the proof for Theorem 1, revised
and detailed below:

Theorem 1 (Approximation error, revised). Let k ≥ 0,
and let G be an aggregator class of dimension ` = 5k + 1
over base class F and with a scale-invariant aggregation
mechanism ψ satisfying properties 1-5 of Ambrus & Rozen
(2015). Then:

min
g∈G

ε(g) ≤ min
f ′1,...,f

′
k∈F

k∑
i=0

pi min
fi∈F

ε(fi|Ci)

where pi = PD[s ∈ Ci], and C0, . . . , Ck is the appropriate
partition of S corresponding to f ′1, . . . , f

′
k, i.e.,

Ci = {s : ∀x ∈ s f ′i(x) > 0} \ Ci+1 ∪ · · · ∪ Ck

for i = 1, . . . , k, and C0 = S \ C1 ∪ · · · ∪ Ck.

At a high level, the proof consists of constructing an aggre-
gator g from two given collections of item score functions
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f = (f0, . . . , f`) and f ′ = (f ′1, . . . , f
′
`) such that for all

i = 0, . . . , k, g will be as accurate as fi on Ci (induced by
f ′i ). The optimal aggregator will then be at least as accurate
as g for the optimal f ,f ′. The core of the proof lies in
designing small aggregation “modules” that implement a
triple basis for various choice sets, and the final g is a linear
combination of these modules with coefficients chosen to
resolve any conflicts across modules.

Proof. Since ψ is scale invariant Lemma 1 states that there
exists u = {u1, . . . , u5}, ui ∈ R3 that is a triple basis for it,
with corresponding δ (see Definition 3) and ξ (see Definition
4). As ψ is given (and is scale invariant), we fix throughout
the proof u, δ, and ξ. When clear from context we will drop
the notational dependence of g on ψ.

Our first step is to provide a sufficient condition under which
u can be approximated by score functions.

Definition 5. Let f = (f̄1, . . . , f̄5), f̄ i ∈ F , then f is an
ε-approximation of u if

max
i,j
|f̄ i(xj)− uij | ≤ ε

Lemma 2. Let f, f ′ ∈ F , and let x1, x2, x3 ∈ X on which
u is defined. If the following conditions hold:

1. f(x1) > f(x2)

2. f ′(x1), f ′(x2) > 0 ≥ f ′(x3)

then u can be approximated by functions in F to arbitrary
precision, i.e., for all ε > 0 exists f ∈ F (5)

that is an
ε-approximation of u.

Proof. We first describe a general recipe for constructing
a function f̄ ∈ F from f, f ′ ∈ F capable of approximat-
ing any vector u ∈ R3 when applied to (and with entries
corresponding to) x1, x2, x3, and then present the specific
construction of f for u.

Let u ∈ R3 and fix ε > 0. We now construct f̄ ∈ F
that approximates u on x1, x2, x3. Functions in F are of
the form f̄(x|f, f, a), and so to make f̄ concrete, we must

Figure 5: A function a(·) from the auxiliary class A. Each unit ri
is an affine transformation ri(z) = 〈αi, z〉 = βi with parameters
αi ∈ R2, βi ∈ R, and σ is a sigmoidal activation.

determine the parameters of a. Recall that each unit r takes
in an input z ∈ R2, and applies an affine transformation:

r(z;α, β) = 〈α, z〉+ β, α ∈ R2, β ∈ R

We begin by determining the parameters α, β of each of
the hidden units ri, i = 1, . . . , 4, and then proceed to the
final unit r5 (see Figure 5). For hidden units, the affine
transformation is followed by a sigmoidal activation, which
we assume w.l.o.g. to be scaled to [0, 1]. We will use ≈ to
mean approximate to within an additive ε.

• The input of r1 is z = (f(x), f ′(x)). From condition
2, there exist α, β such that σ(r1(z;α, β)) ≈ 1 for
x = x1, x2 and ≈ 0 for x = x3. This is because σ
is sigmoidal and hence α and β can shift and scale
the inputs to σ such that the higher-valued x1, x2 are
“pushed” towards values arbitrarily close to 1, and the
lower-valued x3 towards values arbitrarily close to 0.

• The input of r2 is also z = (f(x), f ′(x)). From condi-
tion 1, there exist α, β such that σ(r2(z;α, β)) ≈ 1 for
x = x1 and to ≈ 0 for x = x2. Note that this gives no
guarantees as to the output for x = x3, but due to σ it
is in [0, 1].

• The input of r3 is z = (r1(x), r2(x)). There exist α, β
such that σ(r3(z);α, β)) ≈ 1 for x = x1 and ≈ 0 for
x = x2, x3. This is because r1 and r2 contribute≈ 1 to
x1, while x2 and x3 get at most one value that is near 1
from either r1 or r2.

• The input of r4 is also z = (r1(x), r2(x)). Because
σ is sigmoidal, there exist α with α2 = 0 such that
with small enough α1 and with β = 0, r4 can ap-
proximate the identity function on the first input, i.e.,
σ(r4(z;α, β)) ≈ z1 = r1(x).7

When f̄ is applied to x1, x2, x3, the outputs of r3 are ap-
proximately 1, 0, and 0, respectively, and the outputs of
r4 are approximately 1, 1, and 0, respectively. With slight
abuse of notation we can think of the ri as vector mappings
(from X 3 to R3) and write:

r3

x1

x2

x3

 ≈
1

0
0

 , r4

x1

x2

x3

 ≈
1

1
0

 (12)

As r3, r4 are the inputs of r5, we can also think of r5 as a
vector mapping whose bias term β acts on the unit vector:

r5

x1

x2

x3

 ≈ α1

1
0
0

+ α2

1
1
0

+ β

1
1
1


7 Alternatively, functions in A can be defined with only one

unit in the second layer, i.e., r4 and its nonlinearity are removed,
and instead r5 takes as input the outputs of r2 and r3.
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Thus, with this construction of r1, . . . , r4 and for the items
x1, x2, x3, r5 can be thought computing a linear combina-
tion of a linear basis of R3. Hence, by setting its parameters,
any vector u ∈ R3 can be approximated.

Given the above, for each i = 1, . . . , 5, we construct f̄ i
to approximate ui by setting the parameters of its r5 to
α1 = ui1, α2 = ui2, β = ui3. Together, the resulting
f = (f̄1, . . . , f̄5) approximates u.

Since Lemma 3 allows for arbitrary approximations, we can
choose ε for which:

ε < ξ−1(δ/2k+2) (13)

Since functions in F can approximate triple bases, the prop-
erties of triple bases carry to aggregators.

Corollary 1. Let f be as in Lemma 2, then:

1. gf (x1|{x1, x2}) > gf (x2|{x1, x2}) + δ(1− 1
2k+1 )

2. On all other sets s ⊆ {x1, x2, x3}, s 6= {x1, x2} there
is approximate indifference, i.e., for all such s and for
all x, x′ ∈ s,

|gf (x|s)− gf (x′|s)| < δ

2k+1

The above follows from the definition of triple bases
(Lemma 1), from scale invariance, and from Eq. (13). Note
that scale invariance ensures that an error of at ε in the ap-
proximation of u results in a “propagated” error of at most
ξ(ε) when passed through an aggregator.

Next, we move away from choice sets of size three, and con-
sider how functional approximations of triple bases operate
on general choice sets.

Definition 6. Let f ′ ∈ F . The collection of choice sets that
are separated by f ′ is:

Ωf ′ = {s ∈ S : f ′(s) > 0}

As before, f ′(s) > 0 holds if f ′(x) > 0 for all x ∈ s.

Lemma 3. Let f, f ′ ∈ F and let f ∈ F (5)
be as in Lemma

2. Let s ∈ S, and denote x∗ = argmaxx∈s f(x). Then if
s ∈ Ωf ′ , it holds that:

∀x ∈ s, x 6= x∗, gf (x∗|s) > gf (x|s) + δ(1− 1

2k+1
)

Otherwise, if s /∈ Ωf ′ , then:

∀x, x′ ∈ s, |gf (x|s)− gf (x′|s)| < δ

2k+1

Proof. Consider first the triple basis u. As noted in Ambrus
& Rozen (2015), triple bases can be applied to a set s by
associating (i.e., assigning the utility of) the predicted item
ŷ ∈ s with x1, associating the other alternatives x ∈ s with
x2, and associating all other items X \ s with x3. In this
way, gu will predict ŷ out of any s′ ⊂ s for which ŷ ∈ s′,
and be indifferent otherwise.

When aggregation is applied to score functions rather than
utility vetors via gf , associations are determined by f and
f ′: f ′ determines which items are associated with x1 or x2

and which with x3, and f determines the item associated
with x1. By construction, f ′ associates with x3 exactly those
items x ∈ X for which f ′(x) ≤ 0, and so gf is indifferent
to all s /∈ Ωf ′ . Meanwhile, for all s ∈ Ωf ′ , f ′(s) > 0 and
so gf is not indifferent, and predictions are determined by
f through its association of items with x1.

The conclusion from Lemma 3 is that, by approximating a
triple basis on sets, f agrees with f on all sets separated by
f ′, and is (approximately) indifferent otherwise.

We are now ready to construct the final aggregator g. The
aggregator will be composed of a collection of “modules”—
small aggregators g(i), i = 0, . . . , k, each targeting a differ-
ent element of the partition.

Let f0, . . . , f` ∈ F , f ′1, . . . , f
′
` ∈ F . For each i = 1, . . . , k,

consider f i ∈ F
(5)

constructed from fi, f
′
i as in Lemma

2. For i = 0, let f0 include a single function f̄0 ∈ F for
which f̄0(x) = f0(x).8

The modules are defined by:

g(i) = gf i
(14)

and the aggregator by:

g(x|s) =

k∑
i=0

αig
(i)(x|s) (15)

where coefficients are set by:

αi = 1/2k−i+1, i = 0, . . . , k (16)

Note that g is indeed an aggregator due to the following
closure properties of aggregators:

• Since ψ is scale-invariant, and since F is closed un-
der scalar multiplication, G is also closed under scalar
multiplication, i.e., if g ∈ G, then also αg ∈ G for any
α ∈ R.

8This can be achieved by setting the parameters of r2, r4 to 0,
setting r1, r3 to approximate the identity function (as r4 in Lemma
2), and r5 to match (0, 1, 0).
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• Aggregator classes are closed under addition in the
following sense: denote by g ∈ G(n) a class of aggrega-
tors of dimension n, then if g ∈ G(n) and g′ ∈ G(n′), it
holds that g + g′ ∈ G(n+n′).

The following lemma establishes how g operates on each
region Ci of the partition C0, . . . , Ck. In particular, it shows
how the coefficients αi determine an order of precedence
over the modules g(i) that prevents collisions: if a choice set
s is separated by more than one module, then the coefficients
ensure that it will be taken into account only in the Ci for
which αi is largest.

Lemma 4. The aggregator g from Eq. (15) agrees on each
Ci with the corresponding g(i), i.e., if s ∈ Ci, then

argmax
x∈s

g(x|s) = argmax
x∈s

g(i)(x|s)

Proof. Consider some s ∈ S. Let i be the maximal index
such that s ∈ Ωf ′i , and note that this implies s ∈ Ci. Denote
x∗ = argmaxx∈s g

(i)(s) = argmaxx∈s fi(s). We would
like to show that also x∗ = argmaxx∈s g(x|s). To do this,
we will consider the contribution of each module g(j) to
each item x ∈ s, and show that the cumulative contribution
to x∗ (and hence its relative value under g) is larger than
that of any other item.

For module i, because s ∈ Ωf ′i , from Lemma 3 we have that
g(i) scores x∗ higher than any other x ∈ s by a margin of
at least δ(1− 1/2k+1) = δ(1− α0). Hence, the weighted
contribution of module i to x∗ is higher than its contribution
to all other items by at least:

δαi(1− α0) (17)

Consider the maximal contribution of other modules to some
x 6= x∗. For any module j < i, from Lemma 3 we have that
the contribution of g(j) to x is either δ(1− α0) (if s ∈ Ωf ′j )
or δα0 (if s /∈ Ωf ′j ), and so in any case is at most δ. Hence,
the combined weighted contributions of all j < i is at most:∑

j<i

αjg
(j)(x|s) = δ

∑
j<i

αj ≤ δ(αi − α0)

Meanwhile, for any module j > i, since i is maximal,
from Lemma 3 we have that the contribution of g(j) to x
is at most δ/2k+1 = δα0. Hence, the combined weighted
contributions of all j > i is at most:∑

j>i

αjg
(j)(x|s) ≤ δα0

∑
j>i

αj ≤ δα0(1− 2αi)

Overall, the combined weighted contributions of all modules
j 6= i to any x 6= x∗ sum to at most

δαi(1− 2α0) (18)

which is strictly less then the contribution of g(i) to x∗ (Eq.
(17)), and so argmaxx∈s g(x|s) = x∗.

For the last step, let each fi be locally optimal for Ci, i.e.,
fi = argminf∈F ε(f |Ci). Hence, for g(i) defined w.r.t.
this fi,

ε(g(i)|Ci) ≤ min
f∈F

ε(f |Ci)

Since C0, . . . , Ck form a partition, from Lemma 4 and from
the optimality of g∗ we have that:

ε(g∗) ≤ ε(g) ≤
k∑
i=1

pi min
f∈F

ε(f |Ci) (19)

Finally, considering the optimal f ′1, . . . , f
′
` for the partition

C0, . . . , Ck entails that Eq. (19) holds for all appropriate
partitions, thus concluding the proof.

C. Estimation Error
We begin with Theorem 2 which considers set-dependent
weight aggregators of the form g(x|s) = 〈w(s),φ(x)〉
where:

φ(x) = (x̃1, . . . , x̃`)

w(s) = (w1(s), . . . , w`(s))

where wi(s) = w(s̃i) and x̃i = fi(x) = 〈θi, x〉.

We can write φ(x) = x>Θ where Θi· = θi are rows, and
denote columns by θ̄j = Θ·j . Note that:

g(x|s) =
∑̀
i=1

wi(s)〈θi, x〉

=

d∑
k=1

∑̀
i=1

Θikwi(s)xk

=

d∑
k=1

〈θ̄k,
(I)︷ ︸︸ ︷

w(s)·xk〉︸ ︷︷ ︸
(II)

We now bound the Rademacher complexity of each compo-
nent. Most inequalities follow from the decomposition rules
in Shalev-Shwartz & Ben-David (2014) (specific lemmas
therein referenced in brackets).

Rf ≤ X∞

√
2 log 2d

m
(Lemma 26.11)

Rw ≤ λ(ρ)
w Rf (Lemma 26.9)

R(I) ≤ max
x
‖x‖∞Rw (Lemma 26.6)

R(II) ≤ 2 max
θ̄
‖θ̄‖1·R(I) = 2‖Θ‖1R(I)
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where the last inequality follows from Sec. 4 in Sridharan
(2014). Assuming ‖Θ‖1 ≤ 1, combining the above gives:

Rg ≤ 2X2
∞λ

ρ
w

√
2 log 2d

m

Using standard Rademacher-based generalization bounds
(e.g., Bartlett & Mendelson (2002)) concludes the proof:

ε(G) ≤ εT (G) + 2Rg +O

(√
log(1/δ)

m

)
(20)

We next turn to Theorem 3 which considers set-dependent
embedding aggregators of the form g(x|s) = 〈v,φ(x|s)〉
where v ∈ R` and φ(x|s) = µ(x̃− r(s̃)) where:

r(s) = (r1(s), . . . , r`(s)), ri(s) = r(s̃i)

Inequalities again follow Shalev-Shwartz & Ben-David
(2014). The Rademacher complexity of each component is:

Rµ ≤ λµ(Rf +Rr) (Lemma 26.6)

Rr ≤ λ(ρ)
r (Lemma 26.6)

Rg ≤ 2W1Rµ (Lemma 26.7)

and Rf is as before. Together, this gives:

Rg ≤ 2W1Rµ ≤ 2W1λµ(1 + λρr)X∞

√
2 log 2d

m

Applying the generalization bound in Eq. (20) concludes
our proof.

D. Experiments
D.1. Datasets

1. Amadeus: Each item is a flight itinerary, and choice
sets include a collection of recommended itineraries.
Choice corresponds to clicking on an item, and ex-
amples include choice sets having exactly one click.
Features include for example flight origin/destination,
price, and number of transfers (for a full list see Mottini
& Acuna-Agost (2017)). User features are excluded
from the original dataset due to privacy concerns.

2. Expedia: Each item is a recommended hotel, and
choice sets include items corresponding to a search re-
sult. We use the non-randomized portion of the dataset
(see original data description for details). Choice cor-
responds to clicking on an item, and examples include
choice sets having exactly one click. Features include
for example hotel price, rating, length of stay, booking
window, user’s average past ratings, and visitor’s loca-
tion. We applied the following standard preprocessing
steps for different variable types:

• Continuous: for some features, a log or square-root
transform.

• Ordinal: One-hot encoding.
• Date/time: use week and month to capture season-

ality of hotel pricing.
• Categorical: One-hot encoding. For features with

a large number of categories, top categories where
encoded directly, while the rest were binned into a
single variable.

• Additional features: popularity score.9.

3. Outbrain: Each item is a news article, and choice sets
include a collection of recommended items. Choice
corresponds to clicking on an item, and examples in-
clude choice sets having exactly one click. Recom-
mendations are given to user within the context of a
currently viewed news article, and so features describe
both current and recommended articles. Features in-
clude for example article category, advertiser ID, and
geo-location of the views. We applied several prepro-
cessing steps.10.

Table 3 includes summary statistics for each dataset:

Table 3: Dataset description

Dataset m |X | max(n) avg(n) d

Amadeus 34K 1.0M 50 32.1 17
Expedia 199K 129K 38 25 8
Outbrain 16.8M 478K 12 5.2 10

Code for preprocessing the Expedia and Outbrain datasets
as in our experiments can be found in our online code repos-
itory. For the Amadeus data, please see Mottini & Acuna-
Agost (2017).

D.2. Baselines

• MNL: Our implementation.

• SVMRank: Open-source code with minor modifica-
tions.11

• RankNet: Learning2rank library.12

• MixedMNL: Our implementation.

• AdaRank: Open-source code.13.

9https://ajourneyintodatascience.quora.com/Learning-to-
Rank-Personalize-Expedia-Hotel-Searches-ICDM-2013-Feature-
Engineering

10We followed steps 1-5 https://github.com/alexeygrigorev/outbrain-
click-prediction-kaggle

11https://gist.github.com/coreylynch/4150976/
12https://github.com/shiba24/learning2rank
13https://github.com/rueycheng/AdaRank

https://gist.github.com/coreylynch/4150976/
https://github.com/shiba24/learning2rank
https://github.com/rueycheng/AdaRank
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• DeepSets: Source code provided by the authors.14

Number of parameters. For neural network based mod-
els SDA, RankNet, Deep Sets, the number of parameters
are 816 + 784d, 525312 + 1024d, 196864 + 256d, respec-
tively, where d is the number of features in a dataset. For
a reasonable range of d, the number of SDA parameters is
significantly lower than that of other models. This further
illustrates how SDA reduces model complexity by incorpo-
rating inductive bias in clever ways. Table 4 includes the
number of parameters per dataset.

Table 4: Number of parameters

Dataset SDA RankNet Deep Sets

Amadeus 14,144 542,720 201,216
Expedia 7,088 533,504 198,912
Outbrain 8,656 535,552 199,424

D.3. Experimental setup

Implementation. SDA was implemented in Python and
using Tensorflow15. Our code is open source and publicly
available, please refer to to the author’s website for an up-
dated link to the repository.

Hyperparameters. For all methods, we tuned regulariza-
tion, dropout, and learning rate (when applicable) using
Bayesian optimization using the open source library Op-
tuna16. Hyperparameters were tuned on a held-out valida-
tion set for 100 trials of Bayesian optimization. Sampling
ranges include:

• Learning rate: [10−5, 10−3] (log-uniform sampling)

• Weight decay: [10−10, 10−3] (log-uniform sampling)

• Dropout rate: [0.5, 1] (uniform sampling)

We used exponential decay with decay rate of 0.95 with
decay step of 10 for all models. All models were trained
with a batch size of 128, and early stopping was done based
on the validation accuracy with an early stop window of 25
epochs. All tuning and training was done on CPUs.

D.4. SDA+

Most of the literature on choice models considers scalar
score functions, scalar reference points, and comparison via
negation. We experiment with a broader notion of compari-
son that differs in two ways. First, values and references are

14https://github.com/manzilzaheer/DeepSets
15https://www.tensorflow.org/
16https://optuna.org/

multi-dimensional. Here, we use vector-valued score func-
tions F : X → Rk and vector-valued reference functions
r : 2R

k → Rk for some k. Second, value-reference compar-
isons within each dimension of aggregation i ∈ [`] are done
using an inner product 〈x̃, r(s̃)〉, with multi-dimensional
embedded “dimensions” x̃i ∈ Rk and reference points
r(s̃i) ∈ R`×k, s̃i = {x̃i}x∈s. We denote this model by
SDA+ and use it in the following sections.

D.5. Additional choice set sizes

Results in the main paper correspond to item sets with at
most 10 items for Amadeus and Expedia and 12 for out-
brain. We further experimented with choice sets of larger
maximum sizes:

1. Amadeus: 10, 20, 30, 40, 50 (max)

2. Expedia: 10, 20, 30, 38 (max)

3. Outbrain: 12 (max)

Result are given in Table 6. We report top-1 accuracy, top-5
accuracy, and mean rank.

D.6. Ablation Study

We performed an extensive ablation study, demonstrating
the contribution of each component of SDA in an abla-
tion study and justifying our modeling decisions. Table 5
includes the configurations of all ablated models. Of partic-
ular interest are models that, in line with Sec. 2.2, have only
set dependent weights (SDW) or representations (SDR):

SDW: gf (x|s;w) =
∑̀
i=1

w(s̃i)x̃i

SDR: gf (x|s; v, r, µ) =
∑̀
i=1

viµ (〈x̃i, r(s̃i)〉) .

where v ∈ R`.

Table 7 shows results for all ablated models and on all choice
set sizes. The experimental setup follows that of Sec. 4.

Table 5: Specification of all ablated models

` w φ r µ

SDA+ 24 Set NN 〈x̃, r(s̃)〉 Set NN c-tanh
SDA+, µ = tanh 24 Set NN 〈x̃, r(s̃)〉 Set NN tanh
SDA+, no µ 24 Set NN 〈x̃, r(s̃)〉 Set NN -
SDR 24 ∈ R` 〈x̃, r(s̃)〉 Set NN c-tanh
SDW 24 Set NN x̃ - -
SDW, single f 1 Set NN x̃ - -
MNL 1 = 1 x̃ - -

https://github.com/manzilzaheer/DeepSets
https://www.tensorflow.org/
https://optuna.org/
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