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Abstract

Stochastic shortest path (SSP) is a well-known
problem in planning and control, in which an
agent has to reach a goal state in minimum total
expected cost. In the learning formulation of the
problem, the agent is unaware of the environment
dynamics (i.e., the transition function) and has to
repeatedly play for a given number of episodes,
while learning the problem’s optimal solution. Un-
like other well-studied models in reinforcement
learning (RL), the length of an episode is not
predetermined (or bounded) and is influenced by
the agent’s actions. Recently, Tarbouriech et al.
(2020) studied this problem in the context of re-
gret minimization, and provided an algorithm
whose regret bound is inversely proportional to
the square root of the minimum instantaneous cost.
In this work we remove this dependence on the
minimum cost—we give an algorithm that guar-
antees a regret bound of O(B,|S|/]A|K), where
B, is an upper bound on the expected cost of the
optimal policy, S is the set of states, A is the set of
actions and K is the number of episodes. We ad-
ditionally show that any learning algorithm must
have at least Q(B,+/|S||A|K) regret in the worst
case.

1. Introduction

Stochastic shortest path (SSP) is one of the most basic
models in reinforcement learning (RL). It includes the dis-
counted return model and the finite-horizon model as special
cases. In SSP the goal of the agent is to reach a predefined
goal state in minimum expected cost. This setting captures
a wide variety of realistic scenarios, such as car navigation,
game playing and drone flying; i.e., tasks carried out in
episodes that eventually terminate.
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The focus of this work is on regret minimization in SSP.
It builds on extensive literature on theoretical aspects of
online RL, and in particular on the copious works about
regret minimization in either the average cost model or the
finite-horizon model. A major contribution to this literature
is the UCRL2 algorithm (Jaksch et al., 2010) that gives a
general framework to achieve optimism in face of uncer-
tainty for these settings. The main methodology is to define
a confidence set that includes the true model parameters
with high probability. The algorithm periodically computes
an optimistic policy that minimizes the overall expected
cost simultaneously over all policies and over all parameters
within the confidence set, and proceeds to play this policy.

The only regret minimization algorithm specifically de-
signed for SSP is that of Tarbouriech et al. (2020) that
assumes that all costs are bounded away from zero (i.e.,
there is a ¢y > O such that all costs are in the range
[Cmin, 11).  They show a regret bound that scales as
O(D*”|S|+/|A|K/cmin) where D is the minimum expected
time of reaching the goal state from any state, S is the set of
states, A is the set of actions and K is the number of eRisodes.
In addition, they show that the algorithm’s regret is O(K*?)
when the costs are arbitrary (namely, may be zero).

Here we improve upon the work of Tarbouriech et al. (2020)
in several important aspects. First, we remove the depen-
dency on ¢! and allow for zero costs while maintaining
regret of 5(\/E ). Second, we give a much simpler algo-
rithm in which the computation of the optimistic policy has
a simple solution.! Our main regret term is O(B, |S|\/|A|K),
where B, is an upper bound on the expected cost of the
optimal policy (note that B, < D). We show that this is
almost optimal by giving a lower bound of Q(B4+/|S||A|K).

In our work, we obtain a major improvement in the regret
bound through the use of confidence sets that are based
on Bernstein inequality (Azar et al., 2017), that is highly
sensitive to variance, instead of Hoeffding inequality. In
both our algorithm and the one of Tarbouriech et al. (2020),
the regret scales with the square root of the total variance,

!There is a technical issue with the simpler optimistic policy
computation. To get the regret bounds described in this paper, we
need to compute the optimistic policy similarly to Tarbouriech
et al. (2020) (see Section 3). We keep the simpler computation
method in this paper, in hopes it can be proved to be sufficient.
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ie., 5(\/ total variance), where in variance we refer to the
variance of the cost-to-go function (see Section 2) at a next-
state given some state-action pair visited by the algorithm.
When using Hoeffding-based confidence sets, similarly to
UCRL2, this variance is trivially bounded by B2 at each
step, which leads to a regret of 0(\/ B2T), where T is the
number of time-steps taken by the algorithm. However,
the use of Bernstein inequalities enables us to bound the
total expected variance in a time interval, of roughly B, /cpin
timesteps, by an identical magnitude of O(B2). Therefore,
the regret bound for our algorithm improves upon the regret
of Tarbouriech et al. (2020) by a factor of \/By/Cmin, that is,

O(B,|S|\/|AIK) compared to (D*2|S|+/|A|K/camin).

Our technical contribution is as follows. To better explain
our main Bernstein-based algorithm, we start by assuming
that the costs are lower bounded by cp, and give an algo-
rithm based on Hoeffding inequalities that is simple to ana-
lyze and achieves a regret bound of O(BY?|S|+/|A|K/cmin)-
Note that this bound is comparable to the one of Tarbouriech
et al. (2020), yet our algorithm and its analysis are signifi-
cantly simpler and more intuitive. In addition, its analysis
contains many of the key ideas of the proof of the Bernstein-
based algorithm, and is much easier to follow. We subse-
quently present the Bernstein-based algorithm. This algo-
rithm is simpler than our first one mainly since picking the
parameters of the optimistic model is particularly easy. The
analysis, however, is somewhat more delicate (as mentioned
earlier) — in the main body of the paper, we present only
the main ideas and improvements over the Hoeffding-based
algorithm, and differ the tedious technical details to the sup-
plementary material. Eventually, we achieve our final regret
bound by perturbing the instantaneous costs to be at least
€ > 0. The additional cost due to this perturbation has a
small effect since the dependency of our regret on ¢} is
additive and does not multiply any term depending on K.

1.1. Related work.

Early work by Bertsekas & Tsitsiklis (1991) studied the
problem of planning in SSPs, that is, computing the optimal
strategy efficiently in a known SSP instance. They estab-
lished that, under certain assumptions, the optimal strategy
is a deterministic stationary policy (a mapping from states
to actions) and can be computed efficiently using standard
planning algorithms, e.g., Value Iteration or Policy Iteration.

The extensive literature about regret minimization in RL
focuses on the average-cost infinite-horizon model (Bartlett
& Tewari, 2009; Jaksch et al., 2010; Zhang & Ji, 2019) and
on the finite-horizon model (Osband et al., 2016; Azar et al.,
2017; Dann et al., 2017; Zanette & Brunskill, 2019; Efroni
et al., 2019). These recent works give algorithms with near-
optimal regret bounds using Bernstein-type concentration
bounds.

Another related model is that of loop-free SSP with adver-
sarial costs (Neu et al., 2010; 2012; Zimin & Neu, 2013;
Rosenberg & Mansour, 2019a;b; Jin & Luo, 2019). This
model eliminates the challenge of avoiding policies that
never terminate, but the adversarial costs pose a different,
unrelated, challenge.

2. Preliminaries and Main Results

An instance of the SSP problem is a Markov decision pro-
cess (MDP) M = (S, A, P, c, sinir) Where S is the state space
and A is the action space. The agent begins at the initial state
Sinit» and ends her interaction with M by arriving at the goal
state g (Where g ¢ S). Whenever she plays action a in state
s, she pays a cost c(s,a) € [0, 1] and the next state s’ € S is
chosen with probability P(s" | s, a). Note that to simplify the
presentation we avoid addressing the goal state g explicitly —
we assume that the probability of reaching the goal state by

playing action a at state sis 1 =, ¢ P(s" | 5, ).

We now review planning in a known SSP instance. Under
certain assumptions that we shall briefly discuss, the optimal
behaviour of the agent, i.e., the policy that minimizes the
expected total cost of reaching the goal state from any state,
is a stationary, deterministic and proper policy. A stationary
and deterministic policy 7 : S — A is a mapping that selects
action 7(s) whenever the agent is at state s. A proper policy
is defined as follows.

Definition 1 (Proper and Improper Policies). A policy 7 is
proper if playing 7 reaches the goal state with probability 1
when starting from any state. A policy is improper if it is
not proper.

Any policy 7 induces a cost-to-go function J™ : S — [0, 00]
defined as J™(s) = limy_ o0 Ex [thl c(spar) | s1 = s] ,
where the expectation is taken w.r.t the random sequence
of states generated by playing according to m when the
initial state is s. For a proper policy 7, since the number of
states |S| is finite, it follows that J7 (s) is finite for all s € S.
However, note that /7 (s) may be finite even if 7 is improper.
We additionally denote by 77 (s) the expected time it takes
for 7 to reach g starting at s; in particular, if 7 is proper then
T7(s) is finite for all s, and if 7 is improper there must exist
some s such that 77 (s) = co. In this work we assume the
following about the SSP model.

Assumption 1. There exists at least one proper policy.

With Assumption 1, we have the following important prop-
erties of proper policies. In particular, the first result shows
that a policy is proper if and only if its cost-to-go function
satisfies the Bellman equations. The second result proves
that a policy is optimal if and only if it satisfies the Bell-
man optimality criterion. Note that they assume that every
improper policy has high cost.
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Lemma 2.1 (Bertsekas & Tsitsiklis, 1991, Lemma 1). Sup-
pose that Assumption 1 holds and that for every improper
policy 7' there exists at least one state s € S such that
J”/(s) = 00. Let 7 be any policy, then

(i) If there exists some J : S +— R such that J(s) >
c(s, 7T(S)) +) ves P(s’ s, W(s))](s’)for alls € S, then
7 is proper. Moreover, it holds that J™(s) < J(s), Vs €
S.

(ii) If m is proper then J™ is the unique solution to the equa-
tions J™(s) = c(s, 7r(s)) + ZS/eSP(S/ | s, W(S))J”(s’)
foralls € S.

Lemma 2.2 (Bertsekas & Tsitsiklis, 1991, Proposition 2).

Under the conditions of Lemma 2.1 the optimal policy 7 is

stationary, deterministic, and proper. Moreover, a policy

is optimal if and only if it satisfies the Bellman optimality

equations for all s € S:

J(s) =

m1n C

)+ > P(s' | 5,0) (s, (1)

s'es
ZP ’\sa.l’r(s)

s'eS

m(s) € arg mlnc s, a
acA

In this work we are not interested in approximating the
optimal policy overall, but rather the best proper policy.
In this case the second requirement in the lemmas above,
that for every improper policy 7 there exists some state
s € S such that J™(s) = oo, can be circumvented in the
following way (Bertsekas & Yu, 2013). First, note that this
requirement is trivially satisfied when all instantaneous costs
are strictly positive. Then, one can perturb the instantaneous
costs by adding a small positive cost € € [0, 1], i.e., the
new cost function is c¢.(s,a) = max{c(s,a), e}. After this
perturbation, all proper policies remain proper, and every
improper policy has infinite cost-to-go from some state (as
all costs are positive). In the modified MDP, we apply
Lemma 2.2 and obtain an optimal policy 7} that is stationary,
deterministic and proper and has a cost-to-go function J ;.
Taking the limit as ¢ — 0, we have that 77 — 7* and
J* — J™, where 7* is the optimal proper policy in the
original model that is also stationary and deterministic, and
J™" denotes its cost-to-go function. We use this observation
to obtain Corollaries 2.5 and 2.6 below that only require
Assumption 1 to hold.

Learning formulation. We assume that the costs are de-
terministic and known to the learner, and the transition prob-
abilities P are fixed but unknown to the learner. The learner
interacts with the model in episodes: each episode starts at
the initial state s;,;;, and ends when the learner reaches the
goal state g (note that she might never reach the goal state).
Success is measured by the learner’s regret over K such
episodes, that is the difference between her total cost over
the K episodes and the total expected cost of the optimal

proper policy:

RK—ZZC(Sz’ak) K- min J© (smlt)

PE—— 7€ Hproper

where I* is the time it takes the learner to complete episode
k (which may be infinite), IIqper is the set of all station-
ary, deterministic and proper policies (that is not empty by
Assumption 1), and (s¥, @¥) is the i-th state-action pair at
episode k. In the case that I* is infinite for some k, we define
RK =00

We denote the optimal proper policy by 7*, i.e., J™ (s) =
arg minﬂermper J™(s) for all s € S. Moreover, let B, > 0 be
an upper bound on the values of J™~ and let T, > 0 be an
upper bound on the times T”*, i.e., B, > maxyeg J (s) and
T, > max,es T (s).

2.1. Summary of our results

In Section 3 we present our Hoeffding-based algorithms
(Algorithms 1 and 3) and their analysis. While they achieve
similar regret bounds to Tarbouriech et al. (2020), their
presentation is important in order to lay the foundations
for our Bernstein-based algorithm (Algorithm 2) and its
improved regret bound shown in Section 4. Finally, in
Section 5 we give a lower bound on the learner’s regret
showing that Algorithm 2 is near-optimal.

The learner must reach the goal state otherwise she has
infinite regret. Therefore, she has to trade-off two objectives,
one is to reach the goal state and the other is to minimize the
cost. Under the following assumption, the two objectives
essentially coincide.

Assumption 2. All costs are positive, i.e., there exists
Cmin > 0 such that c(s, @) > cmin for every (s,a) € S x A.

This assumption allows us to upper bound the running time
of the algorithm by its total cost up to a factor of ¢,.,. In
particular, it guarantees that any policy that does not reach
the goal state has infinite cost, so any bounded regret al-
gorithm has to reach the goal state. We eventually relax
Assumption 2 by a technique similar to that of Bertsekas
& Yu (2013). We add a small positive perturbation to the
instantaneous costs and run our algorithms on the model
with the perturbed costs. This provides a regret bound that

scales with the expected running time of the optimal policy.

We now summarize our results. For ease of comparison,
we first present our regret bounds for both the Hoeffd-
ing and Bernstein-based algorithms when Assumption 2
holds, and subsequently show the regret bounds of both
algorithms for the general case. In order to simplify the
presentation of our results, we assume that |S| > 2, |A| > 2
and K > |S]*|A| throughout. In addition, we denote
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L = 10g(KB,|S||A|/dcmin). The complete proofs of all state-
ments is found in the supplementary material.

Positive costs. The following results hold when Assump-
tion 2 holds (recall that we always assume Assumption 1).
In particular, when this assumption holds the optimal pol-
icy overall is proper (Lemma 2.2) hence the regret bounds
below are with respect to the best overall policy.

Theorem 2.3. Suppose that Assumption 2 holds. With prob-
ability at least 1 — § the regret of Algorithm 3 is bounded as
follows:

B3|S|2|A|K . B3|S]*A
RK:O( |BYSPIAIK AJIIE)’
Cmin Coin

The main issue with the regret bound in Theorem 2.3 is that
it scales with \/K/cpin which cannot be avoided regardless
of how large K is with respect to ¢,.. This problem is
alleviated in Algorithm 2 that uses the tighter Bernstein-
based confidence bounds.

Theorem 2.4. Assume that Assumption 2 holds. With prob-
ability at least 1 — § the regret of Algorithm 2 is bounded as
follows:

| B3|S|*|A2
Rg = O(B*S| |AIKL + *|||L2>.
Crmin

Note that when K >> B, |S|?|A|/cmin, the regret bound above
scales as O(B,|S|+/|A|K) thus obtaining a near-optimal rate.

Arbitrary costs. Recall that in this case we can no longer as-
sume that the optimal policy is proper. Therefore, the regret
bounds below are with comparison to the best proper policy.
Assumption 2 can be easily alleviated by adding a small
fixed cost to the cost of all state-action pairs. Following
the perturbation of the costs, we obtain regret bounds from
Theorems 2.3 and 2.4 with ¢, < € and B, <+ B, + €T,
and the learner also suffers an additional cost of €T, K due to
the misspecification of the model caused by the perturbation.
By picking € to balance these terms we get the following
corollaries (letting L = 1og(KB, T, |S||A]/9)).

Corollary 2.5. Running Algorithm 3 using costs c.(s,a) =
max{c(s,a), e} for e = (|S]*|A|/K)'" gives the following
regret bound with probability at least 1 - §:

Rk =0 <T23|2’3 A3 KL + TfS|2|A|Z2>.
Corollary 2.6. Running Algorithm 2 using costs c.(s,a) =

max{c(s, a), €} for e = |S|>|A|/K gives the following regret
bound with probability at least 1 - 9.

Rg=0 <B1/2|S|\/|AKZ + T2/25|2|A|Z2>.

Moreover, when the algorithm knows B, and K >> |S|*|A|T?,
then choosing € = B, |S|?|A|/IK gives a near-optimal regret

bound of O(B,|S|+/|AIK).

Lower bound. In Section 5 we show that Corollary 2.6 is
nearly-tight using the following theorem.

Theorem 2.7. There exists an SSP problem instance M =
(S,A, P, c,siny) in which J (s) < B, foralls €S, |S| > 2,
|A| > 16, B, > 2, K > |S||A|, and c(s,a) = 1 for all
s € S,a € A, such the expected regret of any learner after
K episodes satisfies

1
E[Rk] > ——— B,

> B /IIATK.

3. Hoeffding-type Confidence Bounds

We start with a simpler case in which B, is known to the
learner. In Section 3.2 we alleviate this assumption with a
penalty of an additional log-factor in the regret bound. For
now, we prove the following bound on the learner’s regret.

Theorem 3.1. Suppose that Assumption 2 holds. With prob-
ability at least 1 — § the regret of Algorithm 1 is bounded as
follows:

B3|S2|AIK . B3|S|*A
RK:O( ASPIAIK AJ||EQ)
Crmin Cinin

Our algorithm follows the known concept of optimism in
face of uncertainty. That is, it maintains confidence sets that
contain the true transition function with high probability and
picks an optimistic optimal policy—a policy that minimizes
the expected cost over all policies and all transition func-
tions in the current confidence set. The computation of the
optimistic optimal policy can be done efficiently as shown
by Tarbouriech et al. (2020). Construct an augmented MDP
whose states are S and its action set consists of tuples (a, P)
where a € A and P is any transition function such that

|P(-|s, @) - P(-

2

sa), <5 |S|1og(|S||A|N+(s, a)/d)
= N, (s,a)

where P is the empirical estimate of P. It can be shown
that the optimistic policy and the optimistic model, i.e.,
those that minimize the expected total cost over all policies
and feasible transition functions, correspond to the optimal
policy of the augmented MDP.

To ensure that the algorithm reaches the goal state in every

episode, we define a state-action pair (s, a) as known if the
500082 |S| log BxISUAl
7 0g

number of visits to this pair is at least

Cmin

and as unknown otherwise. We show with lr;ii“gh probability
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Algorithm 1 HOEFFDING-TYPE CONFIDENCE BOUNDS
AND KNOWN B,
input: state space S, action space A, bound on cost-to-go
of optimal policy By, confidence parameter .
initialization: V(s,a,s’) € S x A x S : N(s,a,s’) «
0,N(s,a) < 0, an arbitrary policy 7, t + 1.
fork=1,2,...do
set sy < Sinit-
while s; = g do
follow optimistic optimal policy: a; < 7(s;).
observe next state s.1 ~ P(- | sy, a;).
update: N(s;, a;,Si1) <  N(Sp,ap,Sm1) + 1,
N(ss,ar) < N(sq,a0) + 1.
if Nsiar. 7(si)) < 2001 jog BBl oy, =
then
# start new interval
compute empirical transition function P as
P(s'|s,a) = N(s,a,s")IN.(s,a) where N,(s,a) =
max{N(s,a), 1}.
compute optimistic policy 7 by minimizing ex-
pected cost over transition functions P that sat-
isfy Eq. (2).
end if
setr<t+1.
end while
end for

the optimistic policy chosen by the algorithm will be proper
once all state-action pairs are known. However, when some
pairs are still unknown, our chosen policies may be im-
proper. This implies that the strategy of keeping the policy
fixed throughout an episode, as done usually in episodic RL,
will fail. Consequently, our algorithm changes policies at
the start of every episode and also every time we reach an
unknown state-action pair.

Formally, we split the time into intervals. The first interval
begins at the first time step, and every interval ends by
reaching the goal state or a state s such that (s, 7(s)) is
unknown (where 7 is the current policy followed by the
learner). Recall that once all state-action pairs are known,
the optimistic policy will eventually reach the goal state.
Therefore, recomputing the optimistic policy at the end of
every interval ensures that the algorithm will eventually
reach the goal state with high probability. Note that the total
number of intervals is at most the number of visits to an
unknown state-action pair plus the number of episodes.

Observation 3.2. The total number of intervals, M, is

5Cmin

B2|S|2|A B,|S||A
0<K+ LISPIAL 811 |>‘

min

3.1. Analysis

The proof of Theorem 3.1 begins by defining the “good
event” in which our confidence sets contain the true transi-
tion function and the total cost in every interval is bounded.
This in turn implies that all episodes end in finite time. We
prove that the good event holds with high probability.

Then, independently, we give a high-probability bound on
the regret of the algorithm when the good event holds. To
do so, recall that at the beginning of every interval m, the
learner computes an optimistic policy by minimizing over all
policies and over all transition functions within the current
confidence set. We denote the chosen policy by 7 and let
P,, be the minimizing transition function (i.e., the optimistic
model). A key observation is that by the definition of our
confidence sets, P, is such that there is always some positive
probability to transition to the goal state directly from any
state-action. This implies that all policies are proper in
the optimistic model and that the cost-to-go function of 7"
defined with respect to P,,, and denoted by J™, is finite. By
Lemma 2.1, the following Bellman optimality equations
hold for all s € S,

J"(s) = min c(s, @) + Ze; Pu(s' | s,a)J"(s").  (3)

High probability events. For every interval m, we let 2"
denote the event that the confidence set for interval m con-
tains the true transition function P. Formally, let P,, denote
the empirical estimate of the transition function at the begin-
ning of interval m, let N,,(s, @) denote the number of visits to
state-action pair (s, @) up to interval m (not including), and
let n,,(s, @) be the number of visits to (s, @) during interval
m. Then we say that ™ holds if for all (s,a) € S x A, we
have (N"'(s, a) = max{1,N,(s,a)})

) S| og (|S||A|N2 (s a)/)
|1PC|s,a) = Pp(-|s, @)|]1 < 5\/ N(s, a) .
4

In the following lemma we show that, with high probability,
the events 2" hold and that the total cost in each interval is
bounded. Combining this with Observation 3.2 we get that
all episodes terminate within a finite number of steps, with
high probability.

Lemma 3.3. With probability at least 1 — /2, for all in-
tervals m simultaneously, we have that Q¥ holds and that
Zthml c(sy,ay) < 24B, log %’", where H™ denotes the length
of interval m, s} is the observed state at time h of interval

m and a;) = 7"(s}") is the chosen action. This implies that
the total number of steps of the algorithm is

KB, B3|SP’|A
T=0(L+ *|3|L2).

Cmin Conin
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Proof sketch. The events 2" hold with high probability due
to standard concentration inequalities, and thus it remains to
address the high probability bound on the total cost within
each interval.

This proof consists of three parts. In the ﬁrst we show that
when ™ occurs we have that J"(s) < J (s) < By for
all s € S due to the optimistic nature of the computation
of 7. In the second part, we postulate that had all state-
action pairs been known, then having 2 hold implies that
J"(s) < 2B, for all s € S. That is, when all state-action
pairs are known, not only 7" is proper in the true model,
but its expected cumulative cost is at most 2B,.

The third part of the proof deals with the general case when
not all state-action pairs are known. Fix some interval m.
Since the interval ends when we reach an unknown state-
action, it must be that all but the first state-action pair visited
during the interval are known. For this unknown first state-
action pair, it follows from the Bellman equations (Eq. (3))
and from J™"(s) < B, for all s € S that 7™ never picks an
action whose instantaneous cost is larger than B,.. Therefore,
the cost of this first unknown state-action pair is at most B,,
and we focus on bounding the total cost in the remaining
time steps with high probability.

To that end, we define the following modified MDP M™% =
(Sknow A, PKnov ¢ i) in which every state s € S such that
(s, 7™(s)) is unknown is contracted to the goal state. Let
PKnov he the transition function induced in MX"oW by P,

and let JI" . be the cost-to-go of 7™ in M"Y w.r.t PK1ov,

Similarly, define ﬁk""w as the transition function induced
in M "% by P,,, and J™ __ as the cost-to-go of 7™ in M¥™¥

know
w.r.t Pk“‘)w It is clear that Jl'(ﬁow(s) < Jm (s) forevery s € S
from whence J{" (s) < B,. Moreover, since all states
s € § for which (s, 7™(s)) is unknown were contracted to
the goal state, in M ™% all remaining states-action pairs
are known. Therefore, by the second part of the proof,
Jirow(s) < 2B, for all s € S. Note that reaching the goal
state in M"Y is equivalent to reaching either the goal state
or an unknown state-action pair in the true model hence the
latter argument shows that the total expected cost in doing
so is at most 2B,. We further obtain the high probability
bound by a probabilistic amplification argument using the
Markov property of the MDP. O

Regret analysis. In what follows, instead of bounding R,
we bound Rx = S S (s, aI{Q"} — K - T (sinit),
where [ is the indicator function. Note that according to
Lemma 3.3, we have that R = Rg with high probability.

The definition of Rx allows the analysis to disentangle two
dependent probabilistic events. The first is the intersection
of the events 2" which is dealt with in Lemma 3.3. The sec-
ond holds when, for a fixed policy, the costs suffered by the

learner do not deviate significantly from their expectation.
In the following lemma we bound Rg.

Lemma 3.4. With probability at least 1 — 012, we have

B,4/Tlo Z
min Crin . & g
/|S|1 |SHA|TZZ (s, a) )
\/N™(s, a)

s,a m=1

BLISPIAl | B.ISIIA]
* 5 l g

TeK§0<

()]

Here we only explain how to interpret the resulting bound.
The term (1) bounds the total cost spent in intervals that
ended in unknown state-action pairs (it does not depend on
K). The term (2) is at most O(+/|S||A|T) when Lemma 3.3
holds, and then the dominant term in Lemma 3.4 becomes
O(B|S|+/|A|T). Theorem 3.1 is finally obtained by applying
a union bound on Lemmas 3.3 and 3.4 and using Lemma 3.3
to bound 7.

3.2. Unknown Cost Bound

In this section we relax the assumption that B, is known to
the learner. Instead, we keep an estimate B that is initial-
ized to ¢y, and doubles every time the cost in interval m
(denoted as C,,) reaches 24B log %’”. By Lemma 3.3, with
high probability, B < 2B,. We end an interval as before
(once the goal state is reached or an unknown state-action
pair is reached), but also when B is doubled. The algorithm
for this case is presented in the supplementary material (Al-
gorithm 3). Since B changes, every state-action pair can
become known once for every different value of B.

Observation 3.5. When B, is unknown to the learner, the
number of times a state-action pair can become known is at
most log,(B,/cmin). The number of intervals M is

B2|S]2|A
0(K+ 2SIl

2

min 5CH11H

o2 BelSliAl )

Lemma 3.6. When B, is unknown, with probability at least
1 =972, for all intervals m simultaneously, we have that Q™
holds and that 2;111:1 c(sy,ay) < 24B, log . This implies
that the total number of steps of the algorlthm is

KB, B3 S*|A
T= 0( *|JL3>.

Crmin Crnin
The analysis follows that of Algorithm 1. In particular,
Lemma 3.4 still holds (with 2B, instead of B,), and jointly
with Lemma 3.6 imply Theorem 2.3.
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4. Bernstein-type Confidence Bounds

Algorithm 1 has two drawbacks. The first one is the use
of Hoeffding-style confidence bounds which we improve
with Bernstein-style confidence bounds. The second is the
number of times the optimistic optimal policy is computed.
In this section we propose to compute it in a way similar to
UCRL2, i.e., once the number of visits to some state-action
pair is doubled. Note that this change also eliminates the
need to know or to estimate B,.

The algorithm is presented in Algorithm 2. It consists of
epochs. The first epoch starts at the first time step, and each
epoch ends once the number of visits to some state-action
pair is doubled. An optimistic policy is computed at the
end of every epoch using (empirical) Bernstein confidence
bounds. In contrast to Algorithm 1, Algorithm 2 defines
a confidence range for each state, action, and next state,
separately, around its empirical estimate (i.e., we use an
oo “ball” rather than an L; “ball” around the empirical
estimates). This allows us to disentangle the computation of
the optimistic policy from the computation of the optimistic
model. Indeed, the computation of the optimistic model be-
comes very easy: one simply has to maximize the probabil-
ity of transition directly to the goal state at every state-action
pair which means minimizing the probability of transition
to all other states and setting them at the lowest possible
value of their confidence range. This results in the following
formula for P(s’ | s, a) for every (s,a,s’) € S X A X S:

max{P(s'|s, a) — 28A(s, a) — 41/ P(s'|s, a)A(s, a), 0},

where A(s,a) = log(|S||A|N,(s,a)/0)/N,(s,a) and the re-
maining probability mass goes to P(g | s,a).> The opti-
mistic policy is then the optimal policy in the SSP model
defined by the transition function P.

4.1. Analysis

In this section we prove Theorem 2.4. We start by showing
that our new confidence sets contain P with high probability
which implies that each episode ends in finite time with high
probability. Consequently, we are able to bound the regret
through summation of our confidence bounds.

We once again distinguish between known and unknown
state-action pairs similarly to Algorithm 1. A state-action
pair (s, a) becomes known at the end of an epoch if the total
number of visits to (s, @) has passed « - B.1s| log B LS‘ AL at
some time step during the epoch (for some “constant a> 0).
Note that at the end of the epoch, the visit count of (s, a) may
be strictly larger than « - B* B.IS % but at most twice

as much by the deﬁnltlon of our algorithm. Furthermore,

*The technical issue with this method is that the difference
betwe

Algorithm 2 BERNSTEIN-TYPE CONFIDENCE BOUNDS
input: state space S, action space A and confidence pa-
rameter 0.
initialization: i + 1, r < 1, arbitrary policy 7 ,
V(s,a,s') €S xAxS: Ni(s,a,s") < 0,Ni(s,a) < 0,
ni(s,a,s") < 0, ni(s,a) < 0.
fork=1,2,...do

set s, < Sinit-

while s; = g do
follow optimistic optimal policy: a, <— 7;(s;).
observe next state s, ~ P(- | 57, ay).
set: ni(s,,a;) < ni(sp,ar) + 1, ni(ss, ar, Spe1) 4=
(e, @, Sie1) + 1
if 7 (541, Ti(s101)) < Ni(S41, Ti(5141)) then

set t < t+ 1 and continue.

end if
# start new epoch
set: Nygi(s,a,s') < Ni(s,a,s') + nis,a,s),
Niyi(s,a) < Ni(s,a) + ni(s,a), ny(s,a) < 0,
nic1(s,a,s") < O forall (s,a,s’) € S x A x S.
compute empirical transition function P as P(s’ |
s,a) = N(s,a,s")IN(s,a) for every (s,a,s’) € § x
A x S where N, (s,a) = max{N(s,a), 1}.
compute optimistic transition function P using
Eq. (). B
compute optimal policy 7 w.r.t P.
i<—i+1,tt+1.

end while

end for

we split each epoch into intervals similar to what did in
Section 3. The first interval starts at the first time step and
each interval ends once (1) the total cost in the interval
accumulates to at least B, ; (2) an unknown state-action pair
is reached; (3) the current episode ends; or (4) the current
epoch ends. We have the following observation.

Observation 4.1. Let C); denote the cost of the learner
after M intervals. Observe that the total cost in each interval
is at least B, unless the interval ends in the goal state, in an
unknown state-action pair or the epoch ends. Thus the total
number of intervals satisfies

M< @+2\S||A\ log T+K+0(

BISPIAL B Sl

Cmin OCmin
and the total time satisfies T < Cy/Cmin.

Recall that in the analysis of Algorithm 1 we show that
once all state-action pairs are known, the optimistic policies
generated by the algorithm are proper in the true MDP. The
same holds true for Algorithm 2, yet we never prove this
directly. Instead, our proof goes as follows.> We prove

3We neglect low order terms here.
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that Cy, the cost accumulated by the learner during the
first M intervals, is at most K - J™ (Sinit) + B,v/M with high
probability as long as no more than K episodes have been
completed during these M intervals. We notice that once all
state-action pairs are known, the total cost in each interval
is at least B, (ignoring intervals that end with the end of an
epoch or an episode), which implies that the total number
of intervals M is bounded by Cy,/B,. This allows us to get a
bound on C), that is independent of the number of intervals
by solving the inequality Cyy < K - J™ (Sinit) + Ba VM <K-
J”*(smi[)h/B* - Cy. From this, and since the instantaneous
costs are strictly positive (by Assumption 2), it must be that
the learner eventually completes all K episodes; i.e., there
must be a time from which Algorithm 2 generates only
proper policies.

Notation. The epoch that interval m belongs to is denoted
by i(m), other notations are as in Section 3.1. Note that since
the optimistic policy is computed at the end of an epoch and
not at the end of an interval, it follows that 7" = 7" and
J" = J  The trajectory visited in interval m is denoted by
Uum = (st al',...,Sgm, Ggn, Sin,;), where aj' is the action
taken in s}, and H™ is the length of the interval. In addition,
the concatenation of the trajectories of the intervals up to
and including interval m is denoted by U™, that is U™ =
un,_ U™

High probability events. Throughout the analysis we de-
note S* = S U {g}. For every interval m we let Q" de-
note the event that the confidence set for epoch i = i(m)
contains the actual transition function P. Formally, if 2"
holds then for all (s, a,s’) € § x A x S, we have (denote
N(s,a) = max{1, N"(s,a)}, A} = A(s}", a}))

|P(s'|s, @) — Ppu(s'|s, a)| < 28A) + 41/ P,u(s'|s, @)AT. (6)

In the following lemma we show that the events Q2" hold
with high probability.

Lemma 4.2. With probability at least 1 — 612, Q™ holds for
all intervals m simultaneously.

Regret analysis. In the following section, instead of
bounding Ry, we bound Ry = szl Zf:l c(sy, alI{Q"} -
KJ™ (sinie) for any number of intervals M. This implies The-
orem 2.4 by the following argument. Lemma 4.2 implies
that Ry, = Ry with high probability for any number of inter-
vals M (Ry; is the true regret within the first M intervals). In
particular, when M is the number of intervals in which the
first K episodes elapse, this implies Theorem 2.4 (we show
that the learner indeed completes these K episodes).

To bound EM, we use the next lemma to decompose INQM into
two terms which we bound independently.

Lemma 4.3. It holds that Ru=S" R, +>Y R -K-
J™ (Sinit), where

Ry, = (J"(s7) = " (shpm ) I{X"},  and

m
H™

Ry = (7~ P 57776 )

h=1 s’'es

The lemma breaks down kM into two terms. The first
term accounts for the number of times in which the learner
changes her policy in the middle of an episode which is
at most the number of epochs. The second term sums the
errors between the cost-to-go of the observed next state and
its estimated expectation.

Indeed, Zfrf: 1 E}n is related to the total number of epochs
which is at most |S||A|log, T due to the following lemma.
Lemma 4.4. It holds that S-_ R!, < 2B,|S||A|log T +
KJ™ (sini).

The next lemma shows that Z%:l

M E[R?, | U] significantly.
Lemma 4.5. With probability at least 1 — 6/4,

N N~ 8M
lR?n <Y E[R, | U] +3B*\/AE,

m= m=1

R, does not deviate from

The key property of the lemma is that the deviations between
Z%=1 R2 and its corresponding expectation is of order /M
and do not scale with 7.

To prove the lemma, we recall that an interval ends at
most at the first time step in which the accumulated cost
in the interval surpasses B,. We show in our analysis that
J"(s) < J”*(s) < B, for all s € S due to the optimistic
computation of 7. Therefore, 7" never picks an action
whose instantaneous cost is more than B,. This implies that
the total cost within each interval is at most 2B,.. Then, we
use the Bellman equations to bound R?, by order of the total
cost in the interval, and the lemma follows by an application
of Azuma’s concentration inequality.

Lemma 4.6 below bounds E [R2, | U] for every interval
m by a sum of the confidence bounds used in Algorithm 2.
Lemma 4.6. For every interval m,

H"

E[R? | U™'] < 16E {ZM|SVZA;’]H{Q’"} ‘ U'"-l]
h=1

o
+272FE {Z B, |S|AMT{Q"} ’ U"“], (7)
h=1

where V' is the empirical variance defined as Vj =
~ 2
Ses PG | spay (@)= ) and i = Y5 PS' |

s ahJ™(s).
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The next step is the part of our proof in which our anal-
ysis departs from that of Algorithm 1. Note that when
Q™ holds, V" < B2. Using this bound for each time step
separately will result in a bound similar to that of Theo-
rem 2.3. However, this bound is loose due to the following
intuitive argument. Suppose that we replace J™ with the
true cost-to-go function of 7™, J™, in the definition of V.
Note that from the Bellman equations (Eq. (1)) we have
J"(sph) > J™(s),) in expectation on consecutive time steps
hand i + 1 hence we surmise that in expectation V}' would
also decrease on consecutive time steps. A similar argu-
ment holds when in reality we use J™ because all-but-one
of the state-action pairs in the interval are known, and J™
is a “close enough” approximation of J” on known state-
action pairs since they have been sampled sufficiently many
times. Indeed, in Lemma 4.7 we use the technique of Azar
et al. (2017) to show that (up to a constant) Bi bounds the
expected sum of the variances over the time steps of an
interval.

Lemma 4.7. E[S77 vrI{Q"} | U] < 44B2.

Armed with Lemma 4.7, we upper bound 3 E[R?,
U™'] by applying some algebraic manipulation on Eq. (7),
and summing over all intervals which gives the next lemma.

Lemma 4.8. With probability at least 1 — 6/4,

M
I T|S||A
> E[R, 0] < 614B*\/M|S|2A| log? %
m=1
2 TIS|IA]

+8160B,|S|*|A| log

J

Theorem 2.4 is obtained by first applying a union bound
on Lemmas 4.2, 4.5 and 4.8, plugging in the bounds of
Lemmas 4.4, 4.5 and 4.8 into Lemma 4.3, and bounding T
and M using Observation 4.1. This results in a quadratic
inequality in v/Cy; and solving it yields the theorem.

5. Lower Bound

In this section we give an overview of the proof for Theo-
rem 2.7. For clarity we restate the theorem.

Theorem (restatement of Theorem 2.7). There exists an
SSP problem instance M = (S,A,P,c,Sini;) in which
J™(s) < B, foralls € S, |S| > 2, |A] > 16, B, > 2,
K > |S||A|, and c(s,a) = 1 forall s € S,a € A, such the
expected regret of any learner after K episodes satisfies

1
ER¢] > 1o72B.V/IS|AK.

The proof of our lower bound takes similar steps to the one
in Jaksch et al. (2010). Note that one cannot simply use
a reduction to the average-cost setting in our case because

the number of steps taken by the algorithm is potentially
unbounded, and not the same as the number of steps taken
by the optimal policy.

Still, our lower bound matches the one for finite-horizon
MDPs of 2(y/H|S||A|T), where H is the horizon and T is
the total number of time steps. Since the length of each
episode is H, we have that T = HK and the lower bound
takes the form of Q(H+/|S||A|K). In our case, B, replaces
the horizon H as an upper bound on the expected cost of the
optimal policy, and we get the same linear dependence in
this parameter.

Before constructing an instance for which we can prove the
general lower bound, we consider a simpler instance that
consists of only the initial state si,; and the goal state g.
The actions are all the same, except for one optimal action
a* which is chosen uniformly at random. While all actions
(including a*) suffer a cost of 1, a* has a better probability of
transitioning to the goal state, that is, P(g | Sinit, a*) = 1/B4
compared to P(g | sinit, @) = (1 — €)/B, for all other actions

a#a*.

Notice that the optimal policy 7* chooses a* and has an
expected cost of exactly B,. Therefore, the job of the learner
is simply to identify a*. In the supplementary material we
show that the regret of the learner in this case must be

Q(B,\/]AIK).

Subsequently, we build our general hard instance by taking
|S| copies of the aforementioned simple MDP and picking
the initial state in every episode uniformly at random. Since
the copies are not connected in any way, the lower bound
applies to each of them separately. Notice that every state
will be visited K/|S| times in expectation, so the expected
regret will be

Q (ZB* |A||1§> = Q(B./IS||A[K).

seS
Interestingly enough, although playing proper policies was
a major concern in the construction of our algorithms, the
hard instance we have built does not have any improper
polices at all.
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