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Abstract

Although group convolutional networks are able

to learn powerful representations based on sym-

metry patterns, they lack explicit means to learn

meaningful relationships among them (e.g., rela-

tive positions and poses). In this paper, we present

attentive group equivariant convolutions, a gen-

eralization of the group convolution, in which

attention is applied during the course of convo-

lution to accentuate meaningful symmetry com-

binations and suppress non-plausible, mislead-

ing ones. We indicate that prior work on visual

attention can be described as special cases of

our proposed framework and show empirically

that our attentive group equivariant convolutional

networks consistently outperform conventional

group convolutional networks on benchmark im-

age datasets. Simultaneously, we provide inter-

pretability to the learned concepts through the

visualization of equivariant attention maps.

1. Introduction

Convolutional Neural Networks (CNNs) (LeCun et al.,

1989) have shown impressive performance in a wide va-

riety of domains. The developments of CNNs as well as of

many other machine learning approaches have been fueled

by intuitions and insights into the composition and modus

operandi of multiple biological systems (Wertheimer, 1938;

Biederman, 1987; Delahunt & Kutz, 2019; Blake & Lee,

2005; Zhaoping, 2014; Delahunt & Kutz, 2019). Though

CNNs have achieved remarkable performance increases on

several benchmark problems, their training efficiency as

well as generalization capabilities are still open for improve-

ment. One concept being exploited for this purpose is that of

equivariance, again drawing inspiration from human beings.

Humans are able to identify familiar objects despite modifi-
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Figure 1. Meaningful relationships among object symmetries.

Though every figure is composed by the same elements, only

the outermost examples resemble faces. The relative positions,

orientations and scales of elements in the innermost examples do

not match any meaningful face composition and hence, should not

be labelled as such. Built upon Fig. 1 from Schwarzer (2000).

cations in location, size, viewpoint, lighting conditions and

background (Bruce & Humphreys, 1994). In addition, we

do not just recognize them but are able to describe in detail

the type and amount of modification applied to them as well

(von Helmholtz, 1868; Cassirer, 1944; Schmidt et al., 2016).

Equivariance is strongly related to the idea of symmetricity.

As these modifications do not modify the essence of the

underlying object, they should be treated (and learned) as

a single concept. Recently, several approaches have em-

braced these ideas to preserve symmetries including transla-

tions (LeCun et al., 1989), planar rotations (Dieleman et al.,

2016; Marcos et al., 2017; Worrall et al., 2017; Weiler et al.,

2018b; Li et al., 2018; Cheng et al., 2018; Hoogeboom et al.,

2018; Bekkers et al., 2018; Veeling et al., 2018; Lenssen

et al., 2018; Smets et al., 2020), spherical rotations (Cohen

et al., 2018; Worrall & Brostow, 2018; Weiler et al., 2018a;

Thomas et al., 2018; Cohen et al., 2019b), scaling (Mar-

cos et al., 2018; Worrall & Welling, 2019; Sosnovik et al.,

2020) and general symmetry groups (Cohen & Welling,

2016a; Kondor & Trivedi, 2018; Weiler & Cesa, 2019; Co-

hen et al., 2019a; Bekkers, 2020; Romero & Hoogendoorn,

2020; Venkataraman et al., 2020).

While group convolutional networks are able to learn pow-

erful representations based on symmetry patterns, they lack

any explicit means to learn meaningful relationships among

them, e.g., relative positions, orientations and scales (Fig. 1).

In this paper, we draw inspiration from another promising

development in the machine learning domain driven by neu-

roscience and psychology (e.g., Pashler (2016)), attention,

to learn such relationships. The notion of attention is related

to the idea that not all components of an input signal are per

se equally relevant for a particular task. As a consequence,
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given a task and a particular input signal, task-relevant com-

ponents of the input should be focused during its analysis

while irrelevant, possibly misleading ones should be sup-

pressed. Attention has been broadly applied to fields ranging

from natural language processing (Bahdanau et al., 2014;

Cheng et al., 2016; Vaswani et al., 2017) to visual under-

standing (Xu et al., 2015; Ilse et al., 2018; Park et al., 2018;

Woo et al., 2018; Ramachandran et al., 2019; Diaconu &

Worrall, 2019; Romero & Hoogendoorn, 2020) and graph

analysis (Veličković et al., 2017; Zhang et al., 2020).

Specifically, we present attentive group convolutions, a gen-

eralization of the group convolution, in which attention is

applied during convolution to accentuate meaningful sym-

metry combinations and suppress non-plausible, possibly

misleading ones. We indicate that prior work on visual at-

tention can be described as special cases of our proposed

framework and show empirically that our attentive group

equivariant group convolutional networks consistently out-

perform conventional group equivariant ones on rot-MNIST

and CIFAR-10 for the SE(2) and E(2) groups. In addition,

we provide means to interpret the learned concepts trough

the visualization of the predicted equivariant attention maps.

Contributions:

• We propose a general group theoretical framework for

equivariant visual attention, the attentive group convolu-

tion, and show that prior works on visual attention are

special cases of our framework.

• We introduce a specific type of network referred to as

attentive group convolutional networks as an instance of

this theoretical framework.

• We show that our attentive group convolutional networks

consistently outperform plain group equivariant ones.

• We provide means to interpret the learned concepts via

visualization of the predicted equivariant attention maps.

2. Preliminaries

Before describing our approach, we first define crucial prior

concepts: (group) convolutions and attention mechanisms.

2.1. Spatial Convolution and Translation Equivariance

Let f , ψ : Rd → R
Nc̃ be a vector valued signal and filter on

R
d, such that f = {fc̃}

Nc̃

c̃=1
and ψ = {ψc̃}

Nc̃

c̃=1
. The spatial

convolution (⋆Rd ) is defined as:

[f ⋆Rd ψ](y) =

Nc̃
∑

c̃=1

∫

Rd

fc̃(x)ψc̃(x− y) dx (1)

Intuitively, Eq. 1 resembles a collection of Rd inner products

between the input signal f and y-translated versions of ψ.

Since the continuous integration in Eq. 1 is usually per-

formed on signals and filters captured in a discrete grid Z
d,

the integral on R
d is reduced to a sum on Z

d. In our deriva-

tions, however, we stick to the continuous case as to guaran-

tee the validity of our theory for techniques defined on con-

tinuous spaces, e.g., steerable and Lie group convolutions

(Cohen & Welling, 2016b; Worrall et al., 2017; Bekkers

et al., 2018; Weiler et al., 2018b;a; Thomas et al., 2018;

Weiler & Cesa, 2019; Bekkers, 2020; Sosnovik et al., 2020).

To study (and generalize) the properties of the convolution,

we rewrite Eq. 1 using the translation operator Ly:

[f ⋆Rd ψ](y) =

Nc̃
∑

c̃=1

∫

Rd

fc̃(x)Ly[ψc̃](x) dx (2)

where Ly[ψc̃](x) = ψc̃(x − y). Note that the translation

operator Ly is indexed by an amount of translation y. Re-

sultantly, we actually consider a set of operators {Ly}y∈Rd

that indexes the set of all possible translations y ∈ R
d.

A fundamental property of the convolution is that it com-

mutes with translations:

Ly[f ⋆Rd ψ](x) =
[

Ly[f ] ⋆Rd ψ
]

(x), x, y ∈ R
d. (3)

In other words, convolving a y-translated signal Ly[f ] with

a filter is equivalent to first convolving the original signal

f with the filter ψ, and y-translating the obtained response

next. This property is referred to as translation equivariance

and, in fact, convolution (and reparametrizations thereof) is

the only linear translation equivariant mapping (Kondor &

Trivedi, 2018; Cohen et al., 2019a; Bekkers, 2020).

2.2. Group Convolution and Group Equivariance

The convolution operation can be extended to general

transformations by utilizing a larger set of transformations

{Lg}g∈G, s.t. {Ly}y∈Rd ⊆ {Lg}g∈G. However, in order to

preserve equivariance, we must restrict the class of transfor-

mations allowed in {Lg}g∈G. To formalize this intuition,

we first present some important concepts from group theory.

2.2.1. PRELIMINARIES FROM GROUP THEORY

Groups. A group is a tuple (G, ·) consisting of a set G,

g ∈ G, and a binary operation · : G×G→ G, referred to

as the group product, that satisfies the following axioms:

• Closure: For all h, g ∈ G, h · g ∈ G.

• Identity: There exists an e ∈ G, such that e ·g = g ·e = g.

• Inverse: For all g ∈ G, there exists an element g−1 ∈ G,

such that g · g−1 = g−1 · g = e.

• Associativity: For all g, h, k ∈ G, (g · h) · k = g · (h · k).

Group actions. Let G and X be a group and a set, respec-

tively. The (left) group action of G on X is a function

⊙ : G×X → X that satisfies the following axioms:

• Identity: If e is the identity of G, then, for any x ∈ X ,

e⊙ x = x.
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• Compatibility: For all g, h ∈ G, x ∈ X , g ⊙ (h⊙ x) =
(g · h)⊙ x.

In other words, the action of G on X describes how the

elements x ∈ X are transformed by g ∈ G. For brevity, we

omit the operations · and ⊙ and refer to the set G as a group,

to elements g · h as gh and to actions (g ⊙ x) as gx.

Semi-direct product and affine groups. In practice, one

is mainly interested in the analysis of data (and hence con-

volutions) defined on R
d. Consequently, groups of the form

G = R
d
⋊H , resulting from the semi-direct product (⋊) be-

tween the translation group R
d and an arbitrary (Lie) group

H that acts on R
d (e.g., rotation, scaling, mirroring), are of

main interest. This family of groups is referred to as affine

groups and their group product is defined as:

g1g2 = (x1, h1)(x2, h2) = (x1 + h1x2, h1h2) (4)

where g1 = (x1, h1), g2 = (x2, h2) ∈ G, x1, x2 ∈ R
d and

h1, h2 ∈ H . Some important affine groups are the roto-

translation (SE(d) = R
d
⋊ SO(d)), the scale-translation

(Rd
⋊R

+) and the euclidean (E(d) = R
d
⋊O(d)) groups.

Group representations. Let G be a group and L2(X) be

a space of functions defined on some vector space X . The

(left) regular group representation of G on functions f ∈
L2(X) is a transformation L : G × L2(X) → L2(X),
(g, f) 7→ Lg[f ], such that it shares the group structure via:

LgLh[f ](x) = Lgh[f ](x) (5)

Lg[f ](x) := f(g−1x) (6)

for any g, h ∈ G, f ∈ L2(X), x ∈ X . That is, concatenat-

ing two such transformations, parametrized by g and h, is

equivalent to one transformation parametrized by gh ∈ G.

Intuitively, the representation ofG on a function f ∈ L2(X)
describes how the function as a whole, i.e., f(x), ∀ x ∈ X ,

is transformed by the effect of group elements g ∈ G.

If the group G is affine, i.e., G = R
d
⋊H , the (left) group

representation Lg can be split as:

Lg[f ](x) = LyLh[f ](x) (7)

with g = (y, h) ∈ G, y ∈ R
d and h ∈ H . This property is

key for the efficient implementation of functions on groups.

2.2.2. THE GROUP CONVOLUTION

Let f , ψ : G → R
Nc̃ be a vector valued signal and kernel

on G. The group convolution (⋆G) is defined as:

[f ⋆G ψ](g) =

Nc̃
∑

c̃=1

∫

G

fc̃(g̃)ψc̃(g
−1g̃) dg̃ (8)

=

Nc̃
∑

c̃=1

∫

G

fc̃(g̃)Lg[ψc̃](g̃) dg̃ (9)

Figure 2. Group convolution on the roto-translation group SE(2)
for discrete rotations by 90 degrees (also called the p4 group). The

p4 group is defined as H = {e, h, h2, h3}, with h depicting a 90◦

rotation. The group convolution corresponds to |H| = 4 convo-

lutions between the input f and h-transformations of the filter ψ,

Lh[ψ], ∀ h ∈ H . Each of these convolutions is equal to the sum

over group elements h̃ ∈ H and channels c̃ ∈ [Nc̃] of the spatial

channel-wise convolutions
[

fc̃ ⋆R2 Lh[ψc̃]
]

among f and Lh[ψ].

Differently to Eq. 2, the domain of the signal f , the filter ψ

and the group convolution itself [f ⋆Gψ] are now defined on

the group G.1 Intuitively, the group convolution resembles a

collection of inner products between the input signal f and

g-transformed versions of ψ. A key property of the group

convolution is that it generalizes equivariance (Eq. 3) to

arbitrary groups, i.e., it commutes with g-transformations:

Lḡ[f ⋆G ψ](g) =
[

Lḡ[f ] ⋆G ψ
]

(g), g, ḡ ∈ G. (10)

In other words, group convolving a ḡ-transformed signal

Lḡ[f ] with a filter ψ is equivalent to first convolving the

original signal f with the filter ψ, and ḡ-transforming the

obtained response next. This property is referred to as group

equivariance and, just as for spatial convolutions, the group

convolution (or reparametrizations thereof) is the only linear

G-equivariant map (Kondor & Trivedi, 2018; Cohen et al.,

2019a; Bekkers, 2020).

1Note that Eq. 2 matches Eq. 9 with the substitution G = R
d.

It follows that Lg[f ](x) = f(g−1x) = f(x − y), where g−1 =
−y is the inverse of g in the translation group (Rd,+) for g = y.
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Group convolution on affine groups. For affine groups,

the group convolution (Eq. 9) can be decomposed, without

modifying its properties, by taking advantage of the group

structure and the representation decomposition (Eq. 7) as:

[f ⋆G ψ](g) =

Nc̃
∑

c̃=1

∫

H

∫

R2

fc̃(x̃, h̃)Lg[ψc̃](x̃, h̃) dx̃ dh̃ (11)

=

Nc̃
∑

c̃=1

∫

H

∫

R2

fc̃(x̃, h̃)LxLh[ψc̃](x̃, h̃) dx̃ dh̃ (12)

where g = (x, h), g̃ = (x̃, h̃) ∈ G, x, x̃ ∈ R
d and h,

h̃ ∈ H . By doing so, the group convolution can be separated

into |H| spatial convolutions of the input signal f for each

h-transformed filter Lh[ψ] (Fig. 2):

[f ⋆G ψ](x, h) =

Nc̃
∑

c̃=1

∫

H

[

fc̃ ⋆R2 Lh[ψc̃]
]

(x, h̃) dh̃ (13)

Resultantly, the computational cost of a group convolution

is roughly equivalent to that of a spatial convolution with

a filter bank of size Nc̃ × |H| (Cohen & Welling, 2016a;

Worrall & Welling, 2019; Cohen et al., 2019b).

2.3. Attention, Self-Attention and Visual Attention

Attention mechanisms find their roots in recurrent neural

network (RNN) based machine translation. Let ϕ(·) be

an arbitrary non-linear mapping (e.g., a neural network),

y = {yj}
m
j=1 be a sequence of target vectors yi, and

x = {xi}
n
i=1 be a source sequence, whose elements in-

fluence the prediction of each value yj ∈ y. In early models

(e.g., Kalchbrenner & Blunsom (2013); Cho et al. (2014)),

features in the input sequence are aggregated into a context

vector c =
∑

i ϕ(xi) which is used to augment the hidden

state in RNN layers. These models assume that source ele-

ments xi contribute equally to every target element yj and

hence, that the same context vector c can be utilized for all

target positions yj , which does not generally hold (Fig. 3).

Bahdanau et al. (2014) proposed the inclusion of attention

coefficients αi = {αi,j}, [n] = {1, ..., n}, i ∈ [n], j ∈ [m],
∑

i αi,j = 1, to modulate the contributions of the source

elements xi as a function of the current target element yj
by means of an adaptive context vector cj =

∑

i αi,jϕ(xi).
Thereby, they obtained large improvements both in perfor-

mance and interpretability. Recently, attention has been ex-

tended to several other machine learning tasks (e.g., Vaswani

et al. (2017); Veličković et al. (2017); Park et al. (2018)).

The main development behind these extensions was self-

attention (Cheng et al., 2016), where, in contrast to con-

ventional attention, the target and source sequences are

equal, i.e., x = y. Consequently, the attention coefficients

αi,j encode correlations among input element pairs (xi, xj).
For vision tasks, self-attention has been proposed to encode

visual co-occurrences in data (Hu et al., 2018; Wang et al.,

Figure 3. English to French

translation. Brighter depicts

stronger influence. Note how

relevant parts of the input sen-

tence are highlighted as a func-

tion of the current output word

during translation. Taken from

Bahdanau et al. (2014).

2018; Park et al., 2018; Woo et al., 2018; Cao et al., 2019;

Bello et al., 2019; Ramachandran et al., 2019; Romero &

Hoogendoorn, 2020). Unfortunately, its application on vi-

sual and, in general, on high-dimensional data is non-trivial.

2.3.1. VISUAL ATTENTION

In the context of visual attention, consider a feature map

f : X → R
Nc to be the source “sequence”2. Self-attention

then imposes the learning of a total n2 = |X|2 attention

vectors αi,j ∈ R
Nc̃ , which rapidly becomes unfeasible with

increasing feature map size. Interestingly, Cao et al. (2019)

and Zhu et al. (2019) empirically demonstrated that, for vi-

sual data, the attention coefficients {αi,j} are approximately

invariant to changes in the target position xj . Consequently,

they proposed to approximate the attention coefficients

{αi,j} ∈ R
|X|2×Nc̃ by a single vector {αi} ∈ R

|X|×Nc̃

which is independent of target position xj . Despite this sig-

nificant reduction in complexity, the dimensionality of {αi}
is still very large and further simplifications are mandatory.

To this end, existing works (Hu et al., 2018; Woo et al., 2018)

replace the input f with a much smaller vector of input

statistics s that summarizes relevant information from f .

For instance, the SE-Net (Hu et al., 2018) utilizes global

average pooling to produce a vector of channel statistics of f ,

sC ∈ R
Nc̃ , sC = 1

|Rd|

∫

Rd fc̃(x) dx, which is subsequently

passed to a small fully-connected network ϕC(·) to compute

channel attention coefficients αC = {αC
c̃ }

Nc̃

c̃=1
= ϕC(sC).

These attention coefficients are then utilized to modulate the

corresponding input channels fc̃.

Complementary to channel attention akin to that of the SE-

Net, Park et al. (2018) utilize a similar strategy for spatial

attention. Specifically, they utilize channel average pool-

ing to generate a vector of spatial statistics of f , sX ∈ R
d,

sX = 1

Nc̃

∑Nc̃

c̃=1
fc̃(x), which is subsequently passed to a

small convolutional network ϕX (·) to compute spatial atten-

tion coefficients αX = {αX (x)}x∈R2 = ϕX (sX ). These

attention coefficients are then utilized to modulate the corre-

sponding spatial input positions f(x). Recent works include

extra statistical information, e.g., max responses (Woo et al.,

2018), or replace pooling by convolutions (Cao et al., 2019).

2In the machine translation context we can think of f as a
sequence x = {f(xi)}

n
i=1, with n = |X| number of elements.
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Figure 4. Same colors depict equal weights. The

first column of AC corresponds to ψ and the follow-

ing ones to Lh[ψ], obtained via cyclic permutations.

See how {Lh[ψ]}h∈H resembles a circulant matrix.

Taken from Romero & Hoogendoorn (2020).

3. Attentive Group Equivariant Convolution

In this section, we propose our generalization of visual self-

attention, discuss its properties and relations to prior work.

Let f, ψ : G → R
Nc̃ be a vector valued signal and kernel

on G, and let α : G × G → [0, 1]Nc̃ be an attention map

that takes target and source elements g, g̃ ∈ G, respectively,

as input. We define the attentive group convolution (⋆αG) as:

[f ⋆αG ψ](g) =

Nc̃
∑

c̃=1

∫

G

αc̃(g, g̃)fc̃(g̃)Lg[ψc̃](g̃) dg̃ (14)

with α = A[f ] computed by some attention operator A.

As such, the attentive group convolution modulates the con-

tributions of group elements g̃ ∈ G at different channels

c̃ ∈ [Nc̃] during pooling.3 The properties and conditions on

A are summarized in Thm. 1. An extensive motivation as

well as its proof are provided in the supplementary material.

Theorem 1. The attentive group convolution is an equivari-

ant operator if and only if the attention operator A satisfies:

∀g,g,g̃∈G : A[Lgf ](g, g̃) = A[f ](g−1g, g−1g̃) (15)

If, moreover, the maps generated by A are invariant to one

of its arguments, and, hence, exclusively attend to either the

input or the output domain (Sec. 3.4), then A satisfies Eq. 15

iff it is equivariant and thus, based on group convolutions.

3.1. Tying Together Equivariance and Visual Attention

Interestingly, and, perhaps in some cases unaware of it, all

of the visual attention approaches outlined in Section 2.3.1,

as well as all of those we are aware of (Xu et al., 2015;

Hu et al., 2018; Park et al., 2018; Woo et al., 2018; Wang

et al., 2018; Ilse et al., 2018; Hu et al., 2019; Ramachandran

et al., 2019; Cao et al., 2019; Chen et al., 2019; Bello et al.,

2019; Lin et al., 2019; Diaconu & Worrall, 2019; Romero

& Hoogendoorn, 2020) exclusively utilize translation (or

group) equivariance preserving maps for the generation of

the attention coefficients and, hence, constitute altogether

group equivariant networks by which they satisfy Thm. 1.

As will be explained in the following sections, all these

works resemble special cases of Eq. 14 by substituting G

with the corresponding group and modifying the specifica-

tions about how α is calculated (Sec. 3.2 - 3.4).

3Note that Eq. 14 is equal to Eq. 9 up to a multiplicative factor
αc̃(g, g̃)

−1, if αc̃(g, g̃) is constant for every g, g̃ ∈ G, c̃ ∈ [Nc̃].

3.1.1. TRANSLATION EQUIVARIANT VISUAL ATENTION

Since convolutions as well as popular pooling operations

are translation equivariant, the visual attention approaches

outlined in Sec. 2.3.1 are translation equivariant as well.4

One particular case worth emphasising is that of SE-Nets.

Here, a fully-connected network ϕC , a non-translation equiv-

ariant map, is used to generate the channel attention coef-

ficients αC . However, ϕC is indeed translation equivariant.

Recall that ϕC receives sC as input, a signal obtained via

global average pooling (a convolution-like operation). Re-

sultantly, sC can be interpreted as a R
Nc̃×1×1 tensor and

hence, applying a fully connected layer to sC equals a

pointwise convolution between sC and a filter ψfully ∈
R

No×Nc̃×1×1 with No output channels.5

3.1.2. GROUP EQUIVARIANT VISUAL ATTENTION

To the best of our knowledge, the only work that provides a

group theoretical approach towards visual attention is that

of Romero & Hoogendoorn (2020). Here, the authors con-

sider affine groups G with elements g = (x, h), x ∈ R
d,

h ∈ H and cyclic permutation groups H . Consequently,

they utilize a cyclic permutation equivariant map, ϕH(·), to

generate attention coefficients αH(h), h ∈ H , with which

the corresponding elements h are modulated. As a result,

their proposed attention strategy is H-equivariant. To pre-

serve translation equivariance, and hence, G-equivariance,

ϕH is re-utilized at every spatial position x ∈ R
d. This is

equivalent to combining ϕH with a pointwise filter on R
d.

Romero & Hoogendoorn (2020) found that equivariance

to cyclic groups H , can only be achieved by constraining

ϕH to have a circulant structure. This is equivalent to a

convolution with a filter ψ, whose group representations Lh

induce cyclical permutations of itself (Fig. 4) and hence,

resembles a group convolution, by which Thm. 1 is satisfied.

The work of Romero & Hoogendoorn (2020) exclusively

performs attention on the h component of the group ele-

ments g = (x, h) ∈ G and is only defined for (block) cyclic

groups. Consequently, it does not consider spatial rela-

tionships during attention (Fig. 1) and is not applicable to

general groups. Conversely, our proposed framework allows

for simultaneous attention on both components of the group

elements g = (x, h) in a G equivariance preserving manner.

3.2. Efficient Group Equivariant Attention Maps

Attentive group convolutions impose the generation of an

additional attention map α : G × G → [0, 1]Nc̃ , which is

computationally demanding. To reduce this computational

4In fact, conventional pooling operations (e.g., max, average)
can be written as combinations of convolutions and pointwise
non-linearities, which are translation equivariant, as well.

5This resembles a depth-wise separable convolution (Chollet,
2017) with the first convolution given by global average pooling.
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burden, we exploit the fact that visual data is defined on R
d

and, hence, relevant groups are affine, to provide an efficient

factorization of the attention map α.

In Sec. 2.3.1 we indicated that attention coefficients α can be

equivariantly factorized into spatial and channel compo-

nents. We build upon this idea and factorize attention via:

αc̃(g, g̃) := αX ((x, h), (x̃, h̃))αC
c̃ (h, h̃)

where αX attends for spatial relations without considering

channel characteristics and αC attends for patterns in the

channel- and H-axis, but ignores spatial patterns. We thus

factorize α into a spatial attention map αX : G×G→ [0, 1]
and a channel attention map αC : H × H → [0, 1]Nc̃ .

Findings in literature have shown that, for visual data, atten-

tion maps are almost equivalent for different query positions

and thus, only query-independent dependencies are learnt

(Cao et al., 2019; Zhu et al., 2019). Based on this obser-

vation, we further simplify αX to be invariant over spatial

positions either at the input or output space. Since separate

convolutional filters ψ could possibly benefit from differ-

ent attention maps, we omit spatial positions in the input

space (see Sec. 3.2.1 for details). In other words, we re-

place αX (g, g̃) with αX (g, h̃), an spatial position invariant

attention map over the input space: αX : G×H → [0, 1].

Conveniently, attention coefficients of type α : Rd ×H →
[0, 1]Nc̃ can be interpreted as functions on Rd with pointwise

visualizations x̃ 7→ α(x̃, h̃) for each x̃ ∈ R
d. Resultantly,

we are able to aid the interpretability of the learned concepts

and of the attended symmetries (e.g., Figs. 7, 8, 11).

3.2.1. THE ATTENTION OPERATOR A

Recall that the attention map α is computed via an attention

operator A. In the most general case, α and, hence A, is

a function of both the input signal f and the filter ψ. In

order to define A as such, we generalize the approach of

Woo et al. (2018) such that: (1) equivariance to general

symmetry groups is preserved and (2) the attention maps

depend on the filter ψ as well.

Let φC : f̃ 7→ sC = {sCavg, s
C
max}, sCi : H ×H → R

Nc̃ and

φX : f̃ 7→ sX = {sXavg, s
X
max}, sXi : G × G → R be func-

tions that generate channel (sC) and spatial statistics (sX ),

respectively, from an intermediary vector valued signal

f̃ : G×G→ R
Nc̃ containing information both from the in-

put and output spaces. Analogously to Woo et al. (2018), we

compute spatial and channel statistics to reduce the dimen-

sionality of the input. However, in contrast to them, we com-

pute these statistics from intermediary convolutional maps

f̃ rather than from the input signal f directly.6 As a result,

6This is why the statistics sCi , sXi receive tuples (h, h̃), (g, g̃),
respectively, as input, as opposed to single argument inputs which
often emerge in several prior works on visual attention.

Figure 5. Attentive group convolution on the roto-translation group

SE(2). In contrast to group convolutions (Fig. 2, Eq. 13), attentive

group convolutions utilize channel αC and spatial αX attention to

modulate the intermediary convolutional responses [f ⋆R2 Lh[ψ]]
before pooling over the c̃ and h̃ axes.

we take the influence of the filter ψ into account during the

computation of the attention maps. Following the simplifi-

cations proposed in Sec. 3.2 for αX , we can further reduce

sXi and f̃ to functions of the form sXi : G ×H → R and

f̃ : G×H → R
Nc̃ , respectively. Consequently, we define:

f̃ = {f̃c̃}
Nc̃

c̃=1
, f̃c̃(x, h, h̃) :=

[

fc̃⋆RdLh[ψc̃]
]

(x, h̃), (16)

which is the intermediary result of the convolution between

the input f and the h-transformation of the filter ψ, Lh[ψ]
before pooling over c̃ and h̃ (Fig. 5, Eq. 13).

Channel Attention. Let ϕC : sC 7→ αC be a function

that generates a channel attention map αC : H × H →
[0, 1]Nc̃ from a vector of channel statistics sC : H ×H →
R

Nc̃ of the intermediate representation f̃ . Our channel

attention computation is analogous to that of Woo et al.

(2018) based on two fully connected layers. However, in

our case, each linear layer is parametrized by a matrix-

valued kernel Wi : H → R
Nout×Nin , which we shift via

left-regular representations Lh [Wi] (h̃) = Wi(h
−1h̃) in

order to guarantee equivariance (Thm. 1):

αC(h, h̃) = ϕC
[

sC
]

(h, h̃) (17)

= σ
(

[

W2(h
−1h̃) · [W1(h

−1h̃) · sCavg(h, h̃)]
+
]

+
[

W2(h
−1h̃) · [W1(h

−1h̃) · sCmax(h, h̃)]
+
]

)
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with [·]+ the ReLU function, σ the sigmoid function, r a

reduction ratio and W1 : H → R
Nc̃

r
×Nc̃ , W2 : H →

R
Nc̃×

Nc̃

r filters defined on H .

Spatial Attention. Let ϕX : sX 7→ αX be a function that

generates a spatial attention map αX : G×H → [0, 1] from

channel statistics sX : G × H → R
2, in which per input

h̃ ∈ H and output g ∈ G, the mean and max value is taken

over the channel axis. Similarly to Woo et al. (2018), spatial

attention αX is then defined as:

αX (x, h, h̃) = ϕX (sX )(x, h, h̃)

= σ
([

sX ⋆Rd Lh[ψ
X ]

])

(x, h̃) (18)

with ψX : G→ R
2 a group convolutional filter.

Full Attention. Woo et al. (2018) carried out extensive

experiments to find the best performing configuration to

combine channel and spatial attention maps for the Rd case,

e.g., in parallel, serially starting with channel attention, se-

rially starting with spatial attention. Based on their results

we adopt their best performing configuration, i.e., serially

starting with channel attention, for the G case (Fig. 6).

Recall that f̃ is the intermediary result from the convolution

between the input f and the h-transformation of the filter ψ

before pooling over c̃ and h̃. We perform attention on top of

f̃ (Fig. 6), where αC and αX are computed by Eqs. 17, 18,

respectively. Resultantly, the attentive group convolution is

computed as:

[f ⋆αG ψ](x, h) =

Nc̃
∑

c̃=1

∫

H

αX (x, h, h̃)

αC
c̃ (h, h̃)f̃(x, h, h̃) dh̃ (19)

3.3. The Residual Attention Branch

Based on the findings of He et al. (2016), several visual

attention approaches propose to utilize residual blocks with

direct connections during the course of attention to facilitate

gradient flow (Hu et al., 2018; Park et al., 2018; Woo et al.,

2018; Wang et al., 2018; Cao et al., 2019). However, these

approaches calculate the final attention map α+ as the sum

of the direct connection 1 and the attention map obtained

from the attention branch α, i.e., α+ = 1+α. Consequently,

the obtained attention map α+ : R2 → [1, 2]Nc is restricted

to the interval [1, 2] and the network loses its ability to

suppress input components. Inspired by the aforementioned

works, we propose to calculate attention in what we call a

residual attention branch (Fig. 6). Specifically, we utilize

the attention branch to calculate a residual attention map

defined as α− = (1 − α+); α− : G × G → [0, 1]. Next,

we subtract the residual attention map α− from the direct

connection 1 to obtain the resultant attention map α+, i.e.,

α+ = 1− α−. As a result, we are able to produce attention

maps α+ that span the [0, 1] interval while preserving the

benefits of the direct connections of He et al. (2016).

Figure 6. Sequential channel and spatial attention performed on a

residual attention branch (Sec. 3.3).

3.4. The Attentive Group Convolution as a Sequence of

Group Convolutions and Pointwise Non-linearities

CNNs are usually organized in layers and hence, the input

f is usually convolved in parallel with a set of No filters

{ψo}
No

o=1. As outlined in the previous section, this implies

that the attention maps can change as a function of the cur-

rent filter ψo. One assumption broadly utilized in visual

attention is that these maps do not depend on the filters

{ψo}
No

o=1, and, hence, that α is a sole function of the input

signal f (Hu et al., 2018; Park et al., 2018; Woo et al., 2018;

Diaconu & Worrall, 2019; Romero & Hoogendoorn, 2020).

Consequently, the attention coefficients α are reduced from

a function α : G×G→ [0, 1]Nc̃ (c.f., Eq. 14) to a function

α : G → [0, 1]Nc̃ . In other words, attention becomes only

dependent on g (see Eqs. 17-19) and thus, the generation of

the attention maps αC , αX can be shifted to the input feature

map f . Resultantly, the attentive group convolution is re-

duced to a sequence of conventional group convolutions and

point-wise non-linearities (Thm. 1), which further reduces

the computational cost of attention:

[f ⋆αG ψ] = [fα ⋆G ψ] = [(αXαCf) ⋆G ψ] (20)

4. Experiments

We validate our approach by exploring the effects of using

attentive group convolutions in contrast to conventional ones.

We compare the conventional group equivariant networks

p4- and p4m-CNNs of Cohen & Welling (2016a) on the ro-

tated MNIST and CIFAR-10 datasets with their correspond-

ing attentive counterparts: α-p4-CNNs and α-p4m-CNNs,

respectively; and the p4- and p4m-DenseNets of Veeling

et al. (2018) on the PCam dataset with their corresponding

attentive counterparts: α-p4-DenseNet and α-p4m- CNNs

and DenseNets, respectively. Additionally, we explore the

effects of only applying channel attention (e.g., αCH-p4-

CNNs), spatial attention (e.g., αSP-p4-CNNs) and applying

attention directly on the input (e.g., αF -p4-CNNs).7

We notice that the network architectures in Cohen & Welling

(2016a) and Romero & Hoogendoorn (2020) used for the

CIFAR-10 experiments are equivariant only approximately.

This results from using odd-sized convolutional kernels with

stride ≥ 1 on even-sized feature maps (see Appx. C for a

7Our code is publicly available at:
https://github.com/dwromero/att_gconvs

 https://github.com/dwromero/att_gconvs
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complete discussion). Since this effect distorts the equivari-

ance property of our equivariant attention maps, i.e., they

also become equivariant only approximately (Figs. 10, 11),

this issue must be fixed. We achieve this by replacing strided

convolutions in such regimes by conventional convolutions

followed by a max-pooling layer.

For all our experiments we replicate as close as possible

the training and evaluation strategies of the corresponding

baselines, replace approximately equivariant networks by

exact equivariant ones, and initialize any additional parame-

ter in the same way as the corresponding baseline. Extended

implementation details are provided in Appx. B.

4.1. rot-MNIST

The rotated MNIST dataset (Larochelle et al., 2007) contains

62k gray-scale 28x28 handwritten digits uniformly rotated

for [0, 2π). The dataset is split into training, validation and

test sets of 10k, 2k and 50k images respectively. We com-

pare p4-CNNs with all the corresponding attention variants

previously mentioned. For our attention models, we utilize

a filter size of 7 and a reduction ratio r of 2 on the atten-

tion branch. Since attentive group convolutions impose the

learning of additional parameters, we also instantiate bigger

p4-CNNs by increasing the number of channels uniformly

at every layer to roughly match the number of parameters of

the attentive versions. Furthermore, we compare our results

with comparative attentive versions as defined in Romero

& Hoogendoorn (2020) (αRH), which perform attention ex-

clusively over the axis of rotations. Our results show that

(1) attentive versions consistently outperform non-attentive

ones, and that (2) performing attention over the entire group

is beneficial in terms of classification accuracy (Tab. 1).

4.2. CIFAR-10

The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of

60k real-world 32x32 RGB images uniformly drawn from

10 classes. The dataset is split into training, validation and

test sets of 40k, 10k and 10k images, respectively. We com-

pare the p4 and p4m versions of the All-CNN (Springenberg

et al., 2014) and the Resnet44 (He et al., 2016) in Cohen &

Welling (2016a) with attentive variations. For all our atten-

tion models, we utilize a filter size of 7 and a reduction ratio

r of 16 on the attention branch. Unfortunately, attentive

group convolutions impose an unfeasible increment on the

memory requirements for this dataset.8 Resultantly, we are

only able to compare the αF variations of the corresponding

networks. Our results show that attentive αF networks con-

sistently outperform non-attentive ones (Tab. 2). Moreover,

8the α-p4 All-CNN requires approx. 72GB of CUDA mem-
ory, as opposed to 5GBs for the p4-All-CNN. This is due to the
storage of the intermediary convolution responses required for the
calculation of the attention weights (Eqs. 17- 19)

Figure 7. Equivariant attention maps on the roto-translation group

SE(2). The predicted attention maps behave equivariantly for

group symmetries. The arrows depict the strength of the filter re-

sponses at the corresponding orientations throughout the network.

Table 1. Test error rates on rot-MNIST (with standard deviation

under 5 random seed variations).

NETWORK TEST ERROR (%) PARAM.

p4-CNN 2.048 ± 0.045 24.61K

αRH-p4-CNN 1.980 ± 0.032 24.85K

BIG19-p4-CNN 1.796 ± 0.035 77.54K

α-p4-CNN 1.696 ± 0.021 73.13K

BIG15-p4-CNN 1.848 ± 0.019 50.42K

αCH -p4-CNN 1.825 ± 0.048 48.63K

αSP -p4-CNN 1.761 ± 0.027 49.11K

BIG11-p4-CNN 1.996 ± 0.083 29.05K

αF -p4-CNN 1.795 ± 0.028 29.46K

Table 2. Test error rates on CIFAR10 and augmented CIFAR10+.

NETWORK TYPE CIFAR10 CIFAR10+ PARAM.

ALL-CNN

p4 9.32 8.91 1.37M
αF -p4 8.8 7.05 1.40M
p4m 7.61 7.48 1.22M

αF -p4m 6.93 6.53 1.25M

RESNET44
p4m 15.72 15.4 2.62M

αF -p4m 10.82 10.12 2.70M

we demonstrate that our proposed networks focus on rele-

vant parts of the input and that the predicted attention maps

behave equivariantly for group symmetries (Figs. 7, 11).

4.3. PCam

The PatchCamelyon dataset (Veeling et al., 2018) consists of

327k 96x96 RGB image patches of tumorous/non-tumorous

breast tissues extracted from the Camelyon16 dataset (Be-

jnordi et al., 2017), where each patch was labelled as tu-

morous if the central region (32x32) contained at least one

tumour pixel as given by the original annotation in Bejnordi

et al. (2017). We compare the p4 and p4m versions of the

DenseNet (Huang et al., 2017) in Veeling et al. (2018) with

attentive variants. For all our attention models, we utilize a

filter size of 7 and a reduction ratio r of 16 on the attention

branch. Similarly to the CIFAR-10 case, we restrict our
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Figure 8. Equivariant attention maps on the PCam dataset. The pre-

dicted attention maps behave equivariantly for group symmetries.

Additionally, the network seems to learn to focus on the nuclei of

the cells and remove background elements during training.

Table 3. Test error rates on PCam.

NETWORK TYPE TEST ERROR (%) PARAM.

DENSENET

Z
2 15.93 130.60K

p4 12.45 129.65K

αF -p4 11.34 140.45K

p4m 11.64 124.21K

αF -p4m 10.88 141.22K

experiments to αF attentive networks due to computational

constraints. Our results show that attentive αF consistently

outperform non-attentive ones (Tab. 3). Interestingly, the

αF-p4-DenseNet is already able to outperform the p4m-

DenseNet without attention. Surprisingly, our equivariant

attention maps reveal that the network learns to focus on the

nuclei of the cells and to removes background elements dur-

ing inference, all of this in a group equivariant way (Fig. 8).

5. Discussion and Future Work

Our results show that attentive group convolutions can be

utilized as a drop-in replacement for standard and group

equivariant convolutions that simultaneously facilitates the

interpretability of the network decisions. Similarly to convo-

lutional and group convolutional networks, attentive group

convolutional networks also benefit of data augmentation.

Interestingly, however, we also see that including additional

symmetries reduces the effect of augmentations given by

group elements. This finding supports the intuition that

symmetry variants of the same concept are learned inde-

pendently for non-equivariant networks (see Fig. 2 in

(Krizhevsky et al., 2012)). The main shortcoming of our

approach is its computational burden. As a result, the ap-

plication of α-networks is computationally unfeasible for

networks with several layers or channels. We believe, how-

ever, by extrapolation of our results on rot-MNIST, that

further performance improvements are to be expected for α

variations, should hardware requirements suffice.

Group convolutional networks have recently been proven

very successful in medical imaging applications (Bekkers

et al., 2018; Winkels & Cohen, 2018; Lafarge et al., 2020).

Since explainability plays a crucial role here, we believe

that our attentive maps could be of high relevance to aid the

explainability of the network decisions. Moreover, since

our attention maps are guaranteed to be equivariant to trans-

formations in the considered group, it is ensured that the

predicted attention maps will be consistent across group

symmetries. We believe this to be of crucial importance for

rotation invariant tasks. Illustratively, in contrast to vanilla

attentive CNNs, a malignant tissue will be ensured to gener-

ate consistent attention maps regardless of the orientation at

which it has been provided to the network.

In future work, we want to explore ways to reduce the com-

putational cost of full attention networks. If successful, we

consider feasible to obtain a direct performance boost over

our CIFAR-10 and PCam experimental results, without ex-

tensive additional memory requirements. Furthermore, we

want to extend our work to symmetry groups defined on 3D.

By doing so, we expect the range of possible applications of

our work to reach several other important applications such

as 3D medical imaging applications like CT-scans and other

voxel-based representations.

6. Conclusion

We introduced attentive group convolutions, a generaliza-

tion of the group convolution in which attention is utilized

to explicitly highlight meaningful relationships among sym-

metries. We provided a general mathematical framework

for group equivariant visual attention and indicated that

prior work on visual attention can be perfectly described

as special cases of the attentive group convolution. Our

experimental results indicate that attentive group convolu-

tional networks consistently outperform conventional group

convolutional ones and additionally provide equivariant at-

tention maps that behave predictively for symmetries of the

group, with which learned concepts can be visualized.
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