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A. Generalized Visual Self-Attention

Before we derive the constraints for general visual self-
attention and prove Thm. 1 of the main article, we first moti-
vate our definition of group equivariant visual self-attention.
In the subsequent subsections we explain that our defini-
tion of attentive group convolution, as given in Eq. 14 of
the main article, and reformulated in Eq. 25, essentially de-
scribes a group equivariant linear mapping that is augmented
with an additional attention function.

A.1. Self-attention: From Vectors to Feature Maps

Let us first consider the general form of a linear map be-
tween respectively vector spaces (used in multi-layer per-
ceptrons) and feature maps (used in (group) convolutional
neural nets), defined as follows:

vectors:
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Here, the first equation describes a linear map between
vectors x™ € RNe and x°** € RN via matrix-vector
multiplication with matrix W € R¥eXNe  The second
equation describes a linear map between feature maps " €
(L2(G))Ne and fout € (Lo(G))Ne, via a two argument
kernel ¥ € L; (G x G)Ne*Ne, The two argument kernel ¥
can be seen as the continuous counterpart of the matrix W,
and matrix-vector multiplication (sum over input indices) is
augmented with an integral over the input coordinates g.

Keeping this form of linear mapping, we define the self-
attentive map as the regular linear map augmented with
attention weights computed from the input. Consequently,
we formally define the self-attentive mappings as:

vectors: x4 Z A W, xi (23)
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in which the attention weights are computed from the input
via some operator A, i.e., A,z = A[x""].z in the vector
case and o,z = A[f""].,z in the case of feature maps.

A.2. Equivariant Linear Maps are Group Convolutions

Now, since we want to preserve the spatial correspondences
between the input and output feature maps, special attention
should be paid to the continuous self-attentive mappings.
In other words, these operators should be equivariant. By
including an equivariance constraint on the linear mapping
of Eq. 22 we obtain a group convolution (see e.g. Kondor
& Trivedi (2018); Cohen et al. (2019a); Bekkers (2020)).
The derivation is as follows:

Imposing the equivariance constraint £,[ "] = Lglfomt]
q.

means that for all g, g € G and all f € Ly (G)Ne we must
guarantee that:
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where the change of variables § — g~ 'g as well as the
left-invariance of the Haar measure ( d(g ') = dg)) is
used in the last step. Since this equality must hold for all
f € La(G)N¢ we obtain that ¥ should be left-invariant in
both input arguments. In other words, we have that

¥(g,7)

Resultantly, we can always multiply both arguments with

! and obtain ¥(e, g~1§), which is effectively a single
argument function 1)(g~1g) := W(e,g 1) that takes as
input a relative “displacement” g~!§. Consequently, un-
der the equivariance constraint, Eq. 22 becomes a group
convolution:

Vg.eq 1 ¥(99,99) =
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A.3. Proof of Theorem 1

We can apply the same type of derivation to reduce the
general form of visual self-attention of Eq. 24 to our main
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definition of attentive group convolution:
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However, we cannot reduce attention map « to a single
argument function like we did for the kernel ¥ since «

depends on the input f?". To see this consider the following:

Without loss of generality, let 2 : Lo (G) — Lo(G) denote
the attentive group convolution defined by Eq. 25, with
N, = N; = 1, and some ¢ which in the following we
omit in order to simplify our derivation. Equivariance of 2
implies that er]l,2(G)» Vg,geg :

ALy [f]] (9) = Lg [2[11] (9)

=

ALy [f]] (9) = A1 (T"9)

-
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where we once again perform the variable substitution g —
g1 at the right hand side of the last step. This must hold
for all f € Lo(G) and hence:

Vgea : AlLgf] (9,9) = Alf1 (T 9.5 '9), (26

which proves the constraint on A as given in Thm. 1 of the
main article. Just as for convolutions in Sec. A.2, we can
turn this into a single argument function as:

Alfl(g.9) = A [ﬁg—lf} (e, g_lg) =: A/[ﬁg—lf] (g_lg)v

27)
in which A’ is an attention operator that generates a single
argument attention map from an input f. However, this
would mean that for each g the input should be transformed
via £,-1, which does not make things easier for us. Things
do get easier when we choose to attend to either the input
or the output, which we discuss next.

Corollary 1. Each attention operator A that generates an
attention map « : G x G — [0, 1] which is left-invariant
to either one of the arguments, and thus exclusively attends
either the input or output domain, satisfies the equivariance
constraint of Eq. 26, iff the operator is G-equivariant, i.e., a
group convolution.

Proof. Left-invariant to either one of the arguments (let us
now consider invariance in the first argument) means that:

Vo : Alflg,9) = Alfll(e, 9),

and hence, we are effectively dealing with a single argument
attention map, which we define as A'[f](g) := Ale, g).
Consequently, the equivariance constraint of Eq. 26 be-
comes:

Vaea : AlLgf](9,9) = Alf1 (T 9.5 '9) &
Vgea : A'[Lgf](9) = A'[f1 (T '9) <
Vgea : A'[Lgf] = Lg [A][f].

Conclusively, A’ must be an equivariant operator. O

The derivation of the Eq. 26 together with the proof of
Corollary 1 completes the proof of Theorem 1 of the main
article.

A 4. Equivariance Proof of the Proposed Visual
Attention

In this section we revisit the proposed attention mechanisms
and prove that they indeed satisfy Thm. 1 of the main article.
Recall the general formulation of attentive group convolu-
tion given in Eq. 25. Inspired by the work of Woo et al.
(2018), we reduce the computation load by factorizing the
attention map « into channel and spatial components via:

060,5(97 g) = aX (J}, h7 B)agé(h’ B)

where o attends to both input and output channels as well
as input and output poses h, h € H, and spatial attention
attends to the output domain g = (x, h) € G for all input
poses h € H but does not change for input spatial positions
# € R We denote the operators A, AX utilized to
compute the attention maps as o = AC[f] and o =
A?[f], respectively.

A.4.1. CHANNEL ATTENTION

We compute channel attention via:

ALY R) = € [ [ F101] ] (. ) (28)
= o ([WahR) - [Wi(h™"h) - 55, (, )] ]

avg

+ [Wa(h ™ R) - [Wa(h™'R) - s, )] ]

with ~ ~ ~
fea(@, b, h) == [fz *pa Lp[tbe]] (2, h) (29)

the intermediary result from the convolution between the
input f and the h-transformation of the filter v, L, [¢)] be-
fore pooling over ¢ and h. 5, and s5,, denote respectively
average and max pooling over the x coordinate.
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Here, we apply a slight abuse of notation with f[f] and s€[f]
in order to keep track of the dependencies. In order to proof
equivariance of the attention operator A¢ we need to proof
that Vo + AC[L5f])(h, h) = AC[f)(R " h, i 'h), with
g = (T, h). To this end, we first identify the equivariance
and invariance properties of the functions used in Eq. 28.

From Eq. 29 we see that the intermediate convo-
lution result f is equivariant via f[C5[f]](Z,h) =
f1f] (g‘lx,ﬁ_lhﬁ_l/}). For the statistics operators s¢ we
have invariance w.r.t. translations due to the pooling over z,
and equivariance w.r.t. parameter h via s€[f[Lgf]](h, h) =

sCIfIA]] (h_lh7 E_liz). Now, we propagate the transforma-
tion on the input and compute the result of A€ [L5[f]](g, ).
That is, we compute the left-hand side of the constraint

given in Eq. 26, where, for brevity, we omit the sgax term:
AC1L5f11(9,9) =
Wo(h™h) - [Wi(h 'R - s hyB )]

The right-hand side of Eq. 26 is given by:
AUf(g 9,9 9) =
Wo(h~'h) - [Wi(h~ ') - S (R " h,7 R

avg

and hence, Eq. 26 is satisfied for all § € G. Resultantly, A€
is a valid attention operator.

A.4.2. SPATIAL ATTENTION
The spatial attention map ot is computed via:
a¥(g,h) = A*[f](g. h)
=" [s* [7171]] (0.1
=0 ([s* *ga Lu[07]) (2,h)  (30)

where o is a point-wise logistic sigmoid, ¥ G > R%isa
group convolution filter and s*[f] : G x H — R? is a map
of averages and maximum values taken over the channel
axis ateach g € G in f for each h € H. Note that Eq. 30
corresponds to a group convolution up to the final pooling
operation over h. Since the statistics operator s7 is invariant
w.r.t. translations in the input and Eq. 30 corresponds to a
group convolution (up to pooling over h), we have that AX
is a valid attention operator as well.

B. Extended Implementation Details

In this section we provide extended details over our imple-
mentation. For the sake of completeness and reproducibility,
we summarize the exact training procedures utilized during
our experiments. Moreover, we delve into some important
changes performed to some network architectures during
our experiments to ensure exact equivariance, and shed light
into their importance for our equivariant attention maps.

B.1. General Observations

We utilize PyTorch for our implementation. Any miss-
ing parameter specification in the following sections can be
safely considered to be the default value of the correspond-
ing parameter. For batch normalization layers, we utilize
eps=0.00002 similarly to Cohen & Welling (2016a).

B.2. rot-MNIST

For rotational MNIST, we utilized the same backbone net-
work as in Cohen & Welling (2016a). During training we
utilize Adam (Kingma & Ba, 2014), batches of size 128,
weight decay of 0.0001, learning rate of 0.001, drop-out
rate of 0.3 and perform training for 100 epochs. Importantly
and contrarily to Cohen & Welling (2016a), we consistently
experience improvements when utilizing drop-out and there-
fore we do not exclude it for any model.

B.3. CIFAR-10

It is not clear from Springenberg et al. (2014); Cohen &
Welling (2016a) which batch size is used in their experi-
ments. For our experiments, we always utilize batches of
size 128.

B.3.1. ALL-CNN

We utilize the All-CNN-C structure of Springenberg et al.
(2014). Analogously to Springenberg et al. (2014); Cohen
& Welling (2016a), we utilize stochastic gradient descent,
weight decay of 0.001 and perform training for 350 epochs.
We utilize a grid search on the set {0.01, 0.05, 0.1, 0.25} for
the learning rate and report the best obtained performance.
Furthermore, we reduce the learning rate by a factor of 10
at epochs 200, 250 and 300.

B.3.2. RESNET44

Similar to Cohen & Welling (2016a), we utilize stochastic
gradient descent, learning rate of 0.05 and perform training
for 300 epochs. Furthermore, we reduce the learning rate
by a factor of 10 at epochs 50, 100 and 150.

B.4. PCam

During training on the PatchCamelyon dataset, we utilize
Adam (Kingma & Ba, 2014), batches of size 64, weight
decay of 0.0001, learning rate of 0.001 and perform training
for 100 epochs. Furthermore, we reduce the learning rate
by a factor of 2 after 20 epochs of no improvement in the
validation loss.
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C. Effects of Stride and Input Size on
Equivariance

Theoretically seen, the usage of stride during pooling and
during convolution is of no relevance for the equivariance
properties of the corresponding mapping (Cohen & Welling,
2016a). However, we see that in practice stride can affect
equivariance for specific cases as is the case for our experi-
ments on CIFAR-10.

Consider the convolution between an input of even size and
a small 3x3 filter as shown in Fig. 9a. Via group convolu-
tions, we can ensure that the output of the original input and
a rotated one (Fig. 9b) will be exactly equal (up to the same
rotation). Importantly however, note that for Fig. 9, the lo-
cal support of the filter, i.e., the input section with which the
filter is convolved at a particular position, is not equivalent
for rotated versions of the input (denoted by blue circles for
the non-rotated case and by green circles by for t he rotated
case). As a result, despite the group convolution itself being
equivariant, the responses of both convolutions do not en-
tirely resemble one another and, consequently, the depicted
strided group convolution is not exactly equivariant.

It is important to highlight that this behaviour is just ex-
hibited for the special case when the residual between the
used stride and the input size is even. Unfortunately, this
is the case both for the ResNet44 as well as the All-CNN
networks utilized in our CIFAR-10 experiments. However,
as neighbouring pixels are extremely correlated with one
another, the effects of this phenomenon are not of much
relevance for the classification task itself. As a matter of
fact, it can be interpreted as a form of data augmentation by
skipping intermediary pixel values. Consequently, we can
say that these networks are approximately equivariant.

Importantly, this phenomenon does affect the resulting
equivariant attention maps generated via attentive group
convolutions as shown in Fig. 10. As these networks are
only equivariant in an approximate manner, the generated at-
tention maps are slightly deformed versions of one another
for multiple orientations. In order to alleviate this prob-
lem, we replace all strided convolutions in the All-CNN
and ResNet44 architectures by conventional convolutions
(stride=1), followed by spatial max pooling. Resultantly, we
are able to produce exactly equivariant attention maps as
shown in Fig. 7 in the main text and Fig. 11 here.
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Figure 9. Effect of stride and input size on exact equivariance.
Although group convolutions are ensured to be group equivariant,
in practice, if the residual between the stride and the input size is
even, as it’s the case for the networks utilized in the CIFAR-10
experiments, equivariance is only approximate. This has important
effects on equivariant attention maps (Fig. 10).
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Figure 10. Examples of equivariant attention maps under the approximate equivariance regime. Note, for example, that attention around
the horse’s back changes for different orientations.

Figure 11. Examples of equivariant attention maps under the exact equivariance regime.



