
Reverse-Engineering Deep ReLU Networks

A. Isomorphism under scaling
Lemma 1. Given a fully connected ReLU network N , the
network sz,c(N ) is isomorphic toN for every neuron z and
constant c > 0.

Suppose that z = zki is the ith neuron in layer k. Then, for
each neuron zk+1

j in layer k+1 of the networkN , we have:

zk+1
j (x) =

nk∑
i=1

Wk
ij ReLU(zki (x)) + bk+1

j

=

nk∑
i=1

Wk
ij ReLU

(
nk−1∑
h=1

Wk−1
hi ReLU(

zk−1h (x)) + bki

)
+ bk+1

j . (1)

By comparison, in network sz,c(N ), we have:

zk+1
j (x) =

nk∑
i=1

1

c
Wk

ij ReLU

(
nk−1∑
h=1

cWk−1
hi ReLU(

zk−1h (x)) + cbki

)
+ bk+1

j

=

nk∑
i=1

Wk
ij ReLU

(
nk−1∑
h=1

Wk−1
hi ReLU(

zk−1h (x)) + bki

)
+ bk+1

j . (2)

where we used the property that ReLU(cx) = cReLU(x)
for any c > 0.

As expressions (1) and (2) are equal, we conclude that
sz,c(N ) is isomorphic to N .

B. Proof of Theorem 1
It is observed in Hanin & Rolnick (2019b) that Bz cannot
bend except at points of intersection with Bz′ for z′ in an
earlier layer than z. We now prove the converse. Suppose
that neurons z, z′ are such that z′ lies in an earlier layer
than z. Consider a point p of intersection between Bz
and Bz′ , and suppose that p1 and p2 are in an arbitrarily
small neighborhood of p, lying on opposite sides of Bz′ . It
suffices to prove that∇z(p1) 6= ∇z(p2), and therefore that
Bz bends as it intersects Bz′ .

By the Linear Regions Assumption, N (x) computes dif-
ferent functions on the two sides of Bz′ . Since N (x) is
continuous, ∇N (x) must differ on the two sides of Bz′ ;
that is, ∇N (p1) 6= ∇N (p2). Suppose that z = zkj lies in
layer k; then there exists some neuron zk` in layer k such that

∇zk` (p1) 6= ∇zk` (p2). If j = `, we are done. Otherwise,
observe that

zk` (x) =

nk−1∑
h=1

Wk
h`ReLU(zk−1h (x)) + bk` .

Consider the nin × nk−1 matrix M(x) with columns
∇ReLU(zk−1h (x)) indexed by h. As ∇zk` (x) is a linear
combination of these columns, we conclude that M(p1) 6=
M(p2). Note that ∇z(x) = ∇zkj (x) is a linear combina-
tion of the columns of M(x) with coefficients Wk

hj . Since
M(p1) 6=M(p2), we conclude that with probability 1 over
the choice of Wk

hj , we must have ∇z(p1) 6= ∇z(p2), as
desired.

C. Proof of Theorem 4
In this proof, we will show how the information we are given
by the assumptions of the theorem is enough to recover
the weights and biases for each neuron z in layer k. We
will proceed for each z individually, progressively learning
weights between z and each of the neurons in the preceding
layer (though for skip connections this procedure could
also easily be generalized to learn weights from z to earlier
layers).

For each of the points pi ∈ Az , suppose that Hi is the
local hyperplane associated with pi on boundary Bz . The
gradient ∇z(pi) at pi is orthogonal to Hi, and we thus
already know the direction of the gradient, but its magnitude
is unknown to us. We will proceed in order through the
points p1,p2, . . . ,pm, with the goal of identifying ∇z(pi)
for each pi, up to a single scaling factor, as this computation
will end up giving us the incoming weights for z.

We begin with p1 by assigning ∇z(p1) arbitrarily to either
one of the two unit vectors orthogonal to Hi. Due to scaling
invariance (Lemma 1), the weights of N can be rescaled
without changing the function so that ∇z(pi) is multiplied
by any positive constant. Therefore, our arbitrary choice
can be wrong at most in its sign, and we need not determine
the sign at this stage. Now, suppose towards induction that
we have identified∇z(pi) (up to sign) for i = 1, . . . , s− 1.
We wish to identify∇z(ps).

By assumption (ii), there exists a precursor pr to ps such
that Hr and Hs intersect on a boundary Bz′ . Let vr =
tz∇z(pr) be our estimate of ∇z(pr), for unknown sign
tz ∈ {+1,−1}. Let vs be a unit normal vector to Hs, so
that vs = ctz∇z(ps) for some unknown constant c. We
pick the sign of vs so that it has the same orientation as
vr with respect to the surface Bz , and thus c > 0. Finally,
let v = tz′∇z′(pr) = tz′∇z′(ps) be our estimate of the
gradient of z′; where tz′ ∈ {+1,−1} is also an unknown
sign (recall that since z′ is in layer k−1 we know its gradient
up to sign). We will use v and vr to identify vs.



Reverse-Engineering Deep ReLU Networks

Suppose that z = zkj is the jth neuron in layer k and that
z′ = zk−1h is the hth neuron in layer k − 1. Recall that

z(x) = zkj (x) =

nk−1∑
i=1

Wk
ij ReLU(zk−1i (x)) + bkj . (3)

As Bz′ is the boundary between inputs for which z′ = zk−1h

is active and inactive, ReLU(zk−1h (x)) must equal zero
either (Case 1) on Hr or (Case 2) on Hs.

In Case 1, we have

∇z(ps)−∇z(pr) = Wk
hj∇z′(pr),

or equivalently:

ctzvs − tzvr = Wk
hjtz′v,

which gives us the equation:

cvs − vr = Wk
hjtztz′v.

Since we know the vectors vs,vr,v, we are able to deduce
the constant c.

A similar equation arises in Case 2:

vr − cvs = Wk
hjtztz′v,

giving rise to the same value of c. We thus may complete
our induction. In the process, observe that we have cal-
culated a constant Wk

hjtztz′t
′, where the sign t′ is +1 in

Case 1 and −1 in Case 2. Note that tz′t′ can be calculated
based on whether v points towards pr or ps. Therefore, we
have obtained Wk

hjtz , which is exactly the weight (up to
z-dependent sign) that we wished to find. Once we have all
weights incoming to z (up to sign), it is simple to identify
the bias for this neuron (up to sign) by calculating the equa-
tion of any known local hyperplane for Bz and using the
known weights and biases from earlier layers.

To complete the proof, we must now also calculate the
correct signs tz′ of the neurons in layer k − 1. Pick some
z = zkj in layer k and observe that for all points ps ∈ Az
there corresponds an equation, obtained by taking gradients
in equation (3):

∇zkj (ps) =
nk−1∑
i=1

Wk
ij1i,s∇zk−1i (ps),

where 1i,s equals 1 if ps is on the active side of Bzk−1
i

.
We can substitute in our (sign-unknown) values for these
various quantities:

tzvs =

nk−1∑
i=1

Wk
ij1i,stzk−1

i
vi.

Now, we may estimate 1i,s by a function 1′i,s that is 1 if
ps and vi are on the same side of Bzk−1

i
. This estimate

will be wrong exactly when tzk−1
i

= −1. Thus, 1i,s =

(1 + tzk−1
i

1′i,s)/2, giving us the equation:

tzvs =

nk−1∑
i=1

Wk
ij

1 + tzk−1
i

1′i,s

2
tzk−1

i
vi

=
1

2

nk−1∑
i=1

Wk
ij(tzk−1

i
+ 1′i,s)vi

All the terms of this equation are known, with the exception
of tz and the nk−1 variables tzk−1

i
– giving us a linear sys-

tem in nk−1 + 1 variables. For a given zkj , there are nk−1
different ps representing the intersections with Bz′ for each
z′ in layer k − 1; choosing these ps should in general give
linearly independent constraints. Moreover, the equation is
in fact a vector equality with dimension nin; hence, it is a
highly overconstrained system, enabling us to identify the
signs tzk−1

i
for each zk−1i . This completes the proof of the

theorem.


