
Double-Loop Unadjusted Langevin Algorithm

A. Proof of Lemma 9

Before proving Lemma 9, we first prove some intermediate Lemmas.

Lemma 14. Let µ, ⌫ be any two distributions. Then, 8R > 0, we have

W2
2(µ, ⌫) 4R2

kµ� ⌫kTV + 2EX⇠µ

⇥
kXk

2
21{kXk2>R}

⇤
+ 2R2EX⇠µ

⇥
1{kXk2>R}

⇤

+ 2EY⇠⌫

⇥
kY k

2
21{kY k2>R}

⇤
+ 2R2EY⇠⌫

⇥
1{kY k2>R}

⇤

where 1{kXk2>R} is the indicator function of the set B(0, R)c = {x 2 Rd : kxk2 > R}.

Proof. Let X ⇠ µ, Y ⇠ ⌫. W2-distance between probability measures µ and ⌫ can be interpreted as the most cost-efficient
transport plan to transform µ into ⌫, defined as

W2
2(µ, ⌫) = min

(X,Y)⇠�
EkX � Y k

2
2, (24)

where the minimization is over all probability measures � that marginalize to µ, ⌫, namely,

�(A⇥ Rd) = µ(A), �(Rd
⇥B) = ⌫(B), (25)

for any measurable sets A,B ✓ Rd. For a fixed such measure �, let us decompose the right-hand side of (24) as

EkX � Y k
2
2 = E

⇥
kX � Y k

2
21ER

⇤
+ E

⇥
kX � Y k

2
21Ec

R

⇤
, (26)

where 1ER stands for the indicator of the event ER = {kXk2  R, kY k2  R}. Above, Ec
R is the complement of ER. For

the first expectation on the right-hand side above, we write that

E
⇥
kX � Y k

2
21ER

⇤
 4R2E [1X 6=Y 1ER]

 4R2E[1X 6=Y]. (27)

For the second expectation on the right-hand side of (26), we write that

E
⇥
kX � Y k

2
21Ec

R

⇤
 2E

⇥
kXk

2
21Ec

R

⇤
+ 2E

⇥
kY k

2
21Ec

R

⇤
. ((a+ b)2  2a2 + 2b2) (28)

Let us in turn focus on, say, the first expectation on the right-hand side of (28). Since

1Ec
R
= 1{kXk2>R} + 1{kXk2R}1{kY k2>R},

we can write that

E
⇥
kXk

2
21Ec

R

⇤
= E

⇥
kXk

2
21{kXk2>R}

⇤
+ E

⇥
kXk

2
21{kXk2R}1{kY k2>R}

⇤

 E
⇥
kXk

2
21{kXk2>R}

⇤
+R

2E
⇥
1{kY k2>R}

⇤
. (29)

Bounding E
⇥
kY k

2
21Ec

R

⇤
similarly, we obtain

EkX � Y k
2
2 4R2E[1X 6=Y] + 2EX⇠µ

⇥
kXk

2
21{kXk2>R}

⇤
+ 2R2EX⇠µ

⇥
1{kXk2>R}

⇤

+ 2EY⇠⌫

⇥
kY k

2
21{kY k2>R}

⇤
+ 2R2EY⇠⌫

⇥
1{kY k2>R}

⇤

The result is then obtained by minimizing the above inequality over all coupling �, and using the fact that kµ� ⌫kTV =
min(X,Y)⇠� E[1X 6=Y] (Gibbs & Su, 2002).

Lemma 15. Suppose that µ, ⌫ both satisfy Assumption 4 with ⌘,M⌘ > 0 and such that EX⇠µ

⇥
kXk

2
2

⇤
,EY⇠⌫

⇥
kY k

2
2

⇤
 C

2.
Then, for any R � C,

W2
2(µ, ⌫)  4R2

kµ� ⌫kTV + 8
�
R

2 +RC + C
2
�
e
�R

C +1
. (30)

Double-Loop Unadjusted Langevin Algorithm

Proof. We start from the result of Lemma 14. The goal is then to bound the each term on the right hand side using the tail
property of log-concave distributions (Lemma 6).

We have

E
⇥
kXk

2
21{kXk2>R}

⇤
= 2

Z

kxk2>R

Z

z2R
1{kxk2�z}zdzdµ(x)

= 2

Z

z2R
zdz

Z

kxk2�max(R,z)
dµ(x)

= 2

Z

z2R
z Pr [kXk2 � max(R, z)] dz

= 2Pr[kXk2 � R]

Z R

0
zdz + 2

Z 1

R
z Pr[kXk2 � z]dz

 R
2
e
�R

C +1 + 2

Z 1

R
ze

� z
C +1

dz


�
R

2 + 2CR+ 2C2
�
e
�R

C +1
. (31)

Similarly, we have
E[1{kXk2>R}] = Pr[kX|2 > R]  e

�R
C +1

. (32)

Doing the same calculation for Y and replacing the terms in Lemma 14 provides the result.

Using the previous Lemma, it is now easy to prove the result of Lemma 9.

Proof of Lemma 9. Let us apply Lemma 15 using

R = Cmax

✓
log

✓
1

kµ� ⌫kTV

◆
, 1

◆
.

With this choice of R and if kµ� ⌫kTV  1, note that

e
�R

C = kµ� ⌫kTV. (33)

On the other hand, if kµ� ⌫kTV > 1, then

e
�R

C  1  kµ� ⌫kTV. (34)

Thus, Lemma 15 gives

W2
2(µ, ⌫)  4C2 max

✓
log2

✓
1

kµ� ⌫kTV

◆
, 1

◆
kµ� ⌫kTV + 8C2

✓
1 + max

✓
log

✓
1

kµ� ⌫kTV

◆
, 1

◆◆2

kµ� ⌫kTV

 20C2 max

✓
log2

✓
1

kµ� ⌫kTV

◆
, 1

◆
kµ� ⌫kTV. (35)

Lemma 9 then follows from taking the square root of (35) and using C
2 = d(d+1)

⌘2 +M⌘ according to Lemma 5.

B. Proof of Theorem 10

We start by showing the following result in the case where the target distribution µ
⇤ satisfies EX⇠µ⇤

⇥
kXk

2
2

⇤
 1.

Theorem 16. (iteration complexity of DL-ULA) Let µ
⇤ be a L-smooth log-concave distribution such that

EX⇠µ⇤
⇥
kXk

2
2

⇤
 1. Suppose that µ0 also satisfies EX⇠µ0

⇥
kXk

2
2

⇤
 1. For every k � 1, let

nk = Ldk
2
e
3k (36)

Double-Loop Unadjusted Langevin Algorithm

�k =
1

Ld
e
�2k (37)

⌧k = k. (38)

Then, 8✏ > 0, we have:

• After NKL = Õ(Ld✏�
3
2) total iterations, we obtain KL(µ̃k;µ⇤)  ✏ where µ̃k is the distribution associated to the

iterates of outer iteration k just before the projection step.

• After NTV = Õ(Ld✏�3) total iterations, we obtain kµ̃k � µ
⇤
kTV  ✏.

• After NW2 = Õ(Ld✏�6) total iterations, we obtain W2(µ̃k, µ
⇤)  ✏.

Proof. Recall that in Algorithm 1, we denote as µ̄k the average of the distributions associated to the iterates of outer iteration
k just before the projection step, i.e., just before the projection step, xk ⇠ µ̄k. We also denote as µ̃k the same distribution,
but after the projection step, i.e. the iterate that will be used as a warm start for the next outer iteration.

In order to show the result, we will show by induction that 8k � 1,

kµ̃k � µ
⇤
kTV  uke

�k (39)

where {uk}k�1 is a real-valued sequence defined as u1 = min(2
p
eW2(µ0, µ

⇤) + 1 + 2
p
2, 2e) and uk = 4

p
euk�1 + 9+

2
p
2.

Let us fix k � 2. Thanks to the inequality (10),

kµ̄k � µ
⇤
kTV 

p
2KL(µ̄k;µ⇤) (Pinsker’s inequality)



s
W 2

2 (µ̃k�1, µ
⇤)

�knk
+ 2Ld�k


W2(µ̃k�1, µ

⇤)
p
�knk

+
p

2Ld�k (40)

In order to use a recursion argument, we need to bound W2(µ̃k�1, µ
⇤) by kµ̃k�1 � µ

⇤
kTV. Note that the projection step for

µ̃k�1 with ⌧k�1 = (k � 1) ensures that PrX⇠µ̃k�1(kXk2 � k � 1) = 0. Knowing that EX⇠µ⇤
⇥
kXk

2
2

⇤
 1, we can apply

Lemma 15 on W2(µ̃k�1, µ
⇤) using R = k. Also, by replacing the values for �k, nk, we get

W
2
2 (µ̃k�1, µ

⇤)  4k2kµ̃k�1 � µk�1kTV + 16ek2e�k
.

Thus,

kµ̄k � µ
⇤
kTV 

2kkµ̃k�1 � µ
⇤
kTV + 4

p
eke

� k
2

ke
k
2

+
p
2e�k

Now, by using the recursion hypothesis, i.e. that kµ̃k�1 � µ
⇤
kTV  uk�1e

�k+1, we have:

kµ̄k � µ
⇤
kTV 

⇣
2
p
euk�1 + 4

p
e+

p
2
⌘
e
�k (41)

Then, by taking into account the projection step at the end of outer iteration k, we obtain

kµ̃k � µkkTV  kµ̃k � µ̄kkTV + kµ̄k � µ
⇤
kTV (triangle inequality)

= Pr
X⇠µ̄k

[kXk2 > ⌧k] + kµ̄k � µ
⇤
kTV, (42)

Double-Loop Unadjusted Langevin Algorithm

where the last line above follows because the projection step ensures PrX⇠µ̃k [kXk2 > ⌧k] = 0. In turn, to compute the
probability in the last line above, we write that

Pr
X⇠µ̄k

[kXk2 � ⌧k]  Pr
X⇠µ⇤

[kXk2 � ⌧k] + |µ̄k([⌧k,1])� µ
⇤([⌧k,1])| (triangle inequality)

 e
�k + kµ̄k � µ

⇤
kTV, (43)

By combining (41), (42) and (43), we finally obtain

kµ̃k � µ
⇤
kTV  2kµ̄k � µ

⇤
kTV + e

�k



⇣
4
p
euk�1 + 9 + 2

p
2
⌘
e
�k

= uke
�k

Finally, using equations (40), (42) and (43) applied at k = 1, we can also apply Lemma 15 and we get:

kµ̃1 � µ1kTV 

⇣
2W2(µ0, µ

⇤) + 2
p
2 + 1

⌘
e
�1 (44)

which proves the result for the initial case. We thus showed that equation (39) holds for all k � 1.

It is easy to verify that the sequence {uk}k�1 converges, and is upper bounded by U = max(u1, u
⇤) where u⇤ = limk!1 uk.

Moreover, since EX⇠µ⇤
⇥
kXk

2
2

⇤
,EX⇠µ0

⇥
kXk

2
2

⇤
 1 we have that W2(µ0, µ

⇤)  2, and thus U is dimension independent.

After each outer iteration k, we thus have kµ̃k � µ
⇤
kTV  Ue

�k. Therefore, after KTV = log(U✏) iterations, we have
kµ̃k � µ

⇤
kTV  ✏. The total number of iterations required is

N
TV =

KTVX

k=1

nk

 LdK
2
KTVX

k=1

e
3k

=
1

1� e�3
Ld log2

✓
U

✏

◆
U

3
✏
�3

Similarly, we also have W2
2(µ̃k, µ

⇤)  4k2kµ̃k�µ
⇤
kTV+16ek2e�k

 (4U+16e)k2e�k. Thus, after KW2 = log(4U+16e
✏2)

iterations, we have W2
2(µ̃k, µ

⇤)  ✏ log(4U+16e
✏2). The total number of iterations required is NW2 = O(Ld✏�6).

Finally, we have KL(µ̄k;µ⇤)  W 2
2 (µ̃k�1,µ

⇤)
2�knk

+ Ld�k  2kµ̃k�1 � µ
⇤
kTVe

�k + e
�2k

 (U + 1)e�2k. Therefore, after
K

KL = 1
2 log(

U+1
✏) iterations, we have KL(µ̄k;µ⇤)  ✏. The total number of iterations required is NKL = O(Ld✏�

3
2).

In order to show the more general theorem 10, we must get rid of the assumption that EX⇠µ⇤
⇥
kXk

2
2

⇤
 1. To this end, we

will suppose that we apply DL-ULA to a contracted version of µ⇤, for which theorem 10 applies. Then, we will dilate the
obtained sample in order to recover samples from the desired measure µ

⇤ and bound the error induced by this dilatation in
order to obtain the final convergence result.

Let us first recall the notion of push-forward measure.

Definition 17. Let h : Rd
! R be a strongly convex function whose gradient is denoted as rh : Rd

! Rd. We say that ⌫
is the push-forward measure of µ under rh, and we write ⌫ = rh#µ, if ⌫ is the distribution obtained by sampling from µ,
and then applying the map rh to the samples.

More precisely, it means that for every Borel set E on Rd, we have ⌫(E) = µ(rh
�1(E)).

Double-Loop Unadjusted Langevin Algorithm

Lemma 18. Let dµ = e
�f(x) dx and d⌫ = e

�g(x) dx be such that ⌫ = rh#µ for some strongly convex function h. Then,
the triplet (µ, ⌫, h) must satisfy the Monge-Ampère equation:

e
�f = e

�g�rh detr2
h.

Let dµ⇤ = e
�f(x) dx be an L-smooth log-concave target distribution such that EX⇠µ⇤

⇥
kXk

2
2

⇤
 M

2. Instead of directly
sample from µ

⇤, suppose that we sample from the shrunk distribution ⌫
⇤ = rh#µ

⇤ with h(x) = 1
2M kxk

2
2 for some M � 0,

i.e., rh(x) = x
M . In this particular case, we have that detr2

h(x) is independent of x. Therefore, we have according the
Lemma 18 that d⌫⇤ / e

�f(Mx) dx.

This means that ⌫⇤ is the same distribution as µ⇤, after the samples have been divided by M . It is easy to see that this
scaling procedure implies that EX⇠⌫⇤ [kXk2] =

1
MEX⇠µ⇤ [kXk2]  1.

Thus, if we apply DL-ULA for sampling from ⌫
⇤, then we can apply the convergence result provided by theorem 16. Note

that this push-forward implies that ⌫⇤ is M2
L-smooth, i.e., the Lipschitz constant has been multiplied by M

2. Indeed, if
g(x) = f(Mx) and f is L-smooth, then,

krg(y)�rg(x)k2 = Mkrf(My)�rf(Mx)k2

 M
2
ky � xk2.

Let ⌫̃ be the approximated distribution obtained using DL-ULA on ⌫ with nk = LM
2
dk

2
e
3k, �k = 1

LM2de
�2k and ⌧k = k.

Then, according to Theorem 16, we have the following convergence results:

• After NKL = Õ(LM2
d✏

� 3
2) total iterations, we obtain KL(⌫̃ � ⌫

⇤)  ✏.

• After NTV = Õ(LM2
d✏

�3) total iterations, we obtain k⌫̃ � ⌫
⇤
kTV  ✏.

• After NW2 = Õ(LM2
d✏

�6) total iterations, we obtain W2(⌫̃, ⌫⇤)  ✏.

By applying the inverse mapping rh
�1(x) = Mx, we obtain samples from µ̃ = rh

�1#⌫̃. Interestingly, it can be shown
that applying the same push-forward on two measures does not change their TV-distance not their KL divergence (Hsieh
et al., 2018):

k⌫̃ � ⌫
⇤
kTV = krh

�1#⌫̃ �rh
�1#⌫

⇤
kTV = kµ̃� µ

⇤
kTV,

KL(⌫̃; ⌫⇤) = KL(rh
�1#⌫̃;rh

�1#⌫
⇤) = KL(µ̃;µ⇤).

In terms of W2-distance, when applying the same mapping rh
�1 to two measures, it can be shown that

W2(µ̃;µ
⇤)  M W2(rh#µ̃;rh#µ

⇤) = M W2(⌫̃; ⌫
⇤).

Therefore, by sampling from ⌫
⇤, and then multiplying the obtained samples by M , we obtain the following convergence

results:

• After NKL = Õ(LM2
d✏

� 3
2) total iterations, we obtain KL(µ̃� µ

⇤)  ✏.

• After NTV = Õ(LM2
d✏

�3) total iterations, we obtain kµ̃� µ
⇤
kTV  ✏.

• After NW2 = Õ(LM2
d
�

✏
M

��6
) = Õ(LM8

d✏
�6) total iterations, we obtain W2(µ̃, µ⇤)  ✏.

Finally, we make the following important observation. By modifying the parameters �k, ⌧k, it is possible to mimic the above
procedure by directly applying DL-ULA to µ

⇤. Suppose that we apply DL-ULA for sampling from d⌫⇤ = e
g(y) dy, where

g(y) = f(My), using parameters �k, nk, ⌧k. Let yi be the iterates of some arbitrary outer iteration k, and let xi = Myi be
their scaled version. The ULA iterates are:

⇢
yi+1 = yi + �irg(yi) +

p
2�̃igi

xi+1 = Myi+1

Double-Loop Unadjusted Langevin Algorithm

Since rg(yi) = Mrf(Myi), we can rewrite this scheme only in terms of {xi}:

xi+1 = xi +M
2
�irf(xi) +

p
2M2�igi

Moreover, applying the projection step to yi with parameter ⌧k is the same as applying this projection to xi with parameter
M⌧k.

Therefore, applying DL-ULA to ⌫
⇤ using parameters nk, �k, ⌧k, and then multiplying the iterates by M is the same as

directly applying DL-ULA to µ
⇤ using parameters nk,M

2
�k,M⌧k.

Overall, if we apply DL-ULA to a distribution µ
⇤ such that EX⇠µ⇤

⇥
kXk

2
2

⇤
 M

2 using nk = LM
2
dk

2
e
3k, �k = 1

Lde
�k

and ⌧k = Mk, then we can guarantee convergence rates of Õ(LM2
d✏

� 3
2), Õ(LM2

d✏
�3) and Õ(LM8

d✏
�6) in KL

divergence, TV-distance and W2-distance respectively.

Finally, thanks to Lemma 5, we know that we can choose M =
q

2d(d+1)
⌘2 +M2

⌘ = O(d). Thus, plugging this value inside
the convergence results above concludes the theorem.

C. Proof of Lemma 12

Proof. A similar result has been shown in (Brosse et al., 2017) (Proposition 5) for W1 distance, and it is only a matter of
trivial technicalities to extend their result to W2 distance. Since the full proof requires to introduce several concepts that are
out of the scope of this paper, we only present the required modifications that allow us to extend the result from W1- to
W2-distance.

Using (Villani, 2009), Theorem 6.15, we have:

W
2
2 (µ�, µ

⇤)  2

Z

Rd

kxk
2
2|µ

⇤(x)� µ�(x)|dx = A+B (45)

where

A =

Z

Kc

kxk
2
2µ�(x)dx , B =

1�

R
K e

�f

R
Rd e

�f�

!Z

K
kxk

2
2µ

⇤(x)dx (46)

Following very closely the proof in (Brosse et al., 2017) (equations 48 to 51), we can easily obtain:

A  ��1
1

d�1X

i=0

d

r

r
⇡�

2

!d�i ⇣
R

2 + 2R
p

�(d� i+ 2) + �(d� i+ 2)
⌘
. (47)

Therefore, for � 
r2

2⇡d2 ,

A  ��1
1

p

2⇡�dr�1

R

2 + 2Rr

r
3

2d⇡
+ r

2 3

2d⇡

!
. (48)

Moreover, it is also shown in (Brosse et al., 2017) (equations 17, 30, 42) that
⇣
1�

R
K e�f

R
Rd e�f�

⌘
 ��1

1 2⇡�dr�1, which
implies:

B  ��1
1

p

2⇡�dr�1
R

2 (49)

We thus showed that W2(µ�, µ
⇤)  C

p
d�

1
4 for some C > 0 depending on D, r,�1.

D. Convergence rate of HULA for sampling from a distribution over a bounded domain

The proof of Theorem 13 is very similar to the one for DL-ULA. Before presenting it, we will need an auxiliary Lemma,
showing the light tail property of the distributions µ�.

Double-Loop Unadjusted Langevin Algorithm

Lemma 19. For � 
r2

8d2 , the distribution µ� as defined in equation (18) satisfies

PrX⇠µ�(kXk2 � R)  �e
�R

D

for some scalar � > 0 and any R > 0, where D is the diameter of the constraint set ⌦.

Proof. Suppose first that R � 2D. Then,

Pr
X⇠µ�

[kXk2 � R] =

R
B(0,R)c e

�f(x)� 1
2�kx�proj⌦(x)k2

2 dx
R
⌦ e�f(x) dx+

R
⌦c e

�f(x)� 1
2�kx�proj⌦(x)k2

2 dx

 �1

R
B(0,R)c e

� 1
2� (kxk2�D)2 dx

Vol(⌦)

 �1Vol(⌦)�1

Z 1

R
u
d�1

e
� 1

2� (u�D)2 du

= �1Vol(⌦)�1
dVol(B(0, 1))

Z 1

R
u
d�1

e
� 1

2� (u�D)2 du

 �1d
Vol(B(0, 1))

Vol(B(0, r))
D

d�1

Z 1

R�D
(u+D)d�1

e
� 1

2�u2

du

 �1d
1

rd

Z 1

R�D
(2u)d�1

e
� 1

2�u2

du since u � R�D � D

 �1d
1

rd
2d�1

Z 1

1
2� (R�D)2

(2v�)
d�1
2 e

�v

r
�

2v
du (v =

1

2�
u
2)

 �1d
2

3
2d�3

�
d
2

rd
�

✓
d

2
;
1

2�
(R�D)2

◆
where �(s;x) is the incomplete Gamma function

 �1d
2�3

dd

d

2

✓
1

2�
(R�D)2

◆ d
2

e
� 1

2� (R�D)2 since for x � s, �(s;x)  sx
s
e
�x, � 

r
2

8d2



�

1
d2

1 2
�4
d2 d

2
d2

✓
(R�D)2

2�d2

◆ 1
2d

e
� 1

2�d2
(R�D)2

!d2



⇣
cde

� 1p
2�d

(R�D)
⌘d2

since xe
�x2

 e
�x

8x � 0 and
1

2�d2
(R�D)2 � 1

where in the last line, cd = �
1
d2

1 2
�4
d2 d

2
d2 . If cde�

p
1
2�
d (R�D)

� 1, then, this does not provide a useful bound, and we can

always write PrX⇠µ� [kXk2 � R]  1  cde
�
p

1
2�
d (R�D). On the other hand, if cde�

p
1
2�
d (R�D)

 1, then we have

PrX⇠µ� [kXk2 � R] 

cde

�
p

1
2�
d (R�D)

!d2

 cde
�
p

1
2�
d (R�D).

Therefore, we can write:

Pr
X⇠µ�

[kXk2 � R]  cde
�
p

1
2�
d (R�D)

 cde
�2(R

D�1) since � 
r
2

8d2


D
2

8d2

 max(1, cd)e
2
e
�R

D .

Moreover, in the case R  2D, we have max(1, cd)e2e�
R
D � 1 � PrX⇠µ� [kXk2 � R]. We thus showed the result with

� = max(1, cd)e2. Note that although cd depends on d, it is bounded and converges to 1 as d ! 1, thus it does not involve
any asymptotic dependence in d.

Double-Loop Unadjusted Langevin Algorithm

Using this Lemma, we can now prove our convergence result for DL-MYULA (Theorem 13).

Proof. Let denote µk ⌘ µ�k the target distributions of the ULA iterations at outer iteration k � 1, and µinit the initial
distribution. It is straightforward to show that the distributions µk are Lk-smooth with Lk = L+ 1

�k
.

The proof goes exactly the same way as for Theorem 10. We will show by induction that 8k � 1,

kµ̃k � µkkTV  uke
�k +

r
2 +

16d2

Lr2
e
�2k

where {uk}k�1 is defined u1 =
p
e

⇣
W2(µinit, µ

⇤ + C⌦d
1
4)
⌘

and the recurrence relation

uk = 4D
p
euk�1 + 4D

p
� +

2C⌦d
1
4 (
p
e+ 1)

k2
+

2
p
2d

1
2

L
+ �.

For any k � 1, we have:

kµ̄k � µkkTV 

p
2KL(µ̄k;µk) (Pinsker’s inequality)



s
W 2

2 (µ̃k�1, µk)

�knk
+ 2Lkd�k


W2(µ̃k�1, µk)

p
�knk

+
p

2Lkd�k


W2(µ̃k�1, µk�1)

p
�knk

+
W2(µk�1, µ

⇤)
p
�knk

+
W2(µk, µ

⇤)
p
�knk

+
p
2Lkd�k (50)

For the second and third term, we can use Lemma 12 and the values of �k to show that 8k � 1,

W2(µk, µ
⇤)  C⌦d

1
4 e

� k
2 (51)

For the first term, we use Lemma 14 with R = Dk together with the fact that PrX⇠µ̃k�1(kXk2 � Dk) = 0 thanks to the
projection step, and the light tail property of µk to obtain

W
2
2 (µ̃k�1, µk�1)  4D2

k
2
kµ̃k�1 � µk�1kTV + 4D2

k
2
�e

�k+1
. (52)

By replacing (51) and (52) in (50), and using the recursion hypothesis for kµ̃k�1 � µk�1kTV, we obtain

kµ̄k � µkkTV 

2D

p
euk�1 + 2D

p
� +

C⌦d
1
4 (
p
e+ 1)

k2
+

p
2d

1
2

L

!
e
�k +

r
2 +

16d2

Lr2
e
�2k (53)

Similarly as for DL-ULA, and using Lemma 19 we can show that

kµ̃k � µkkTV  2kµ̄k � µkkTV + �e
�k

Thus, using the recurrence relation for uk, we have

kµ̃k � µkkTV  uke
�k +

r
2 +

16d2

Lr2
e
�2k (54)

as required to show the induction property. The case for k = 1 is shown analogous to DL-ULA.

Double-Loop Unadjusted Langevin Algorithm

Finally, in order to relate µ̃k to the target distribution µ
⇤, we use the result shown in (Bubeck et al., 2018) that kµ��µ

⇤
kTV 

C
0
d
p
� for some constant C 0

> 0 and 8� <
r2

8d2 .

We can easily show that the sequence {uk}k�1 increasingly converges to the following limit:

U = 8eD2 + 4D
p
� +

2C⌦d
1
4 (
p
e+ 1)

k2
+

2
p
2d

1
2

L
+ � + 4D

s

4eD2 + 2D
p
� +

C⌦d
1
4 (
p
e+ 1)

k2
+

p
2d

1
2

L
+

�

2

= O(
p

d).

We thus have for all k � 1:

kµ̃k � µ
⇤
kTV  (U + C

0
p

d)e�k +

r
2 +

16d2

Lr2
e
�2k

Therefore, after KTV = log

0

@
2max

✓
U+C0pd,

⇣
2+ 16d2

Lr2

⌘ 1
4

◆

✏

1

A iterations, we have kµ̃k � µ
⇤
kTV  ✏. The total number of

iterations required is NTV = Õ(Ld3.5✏�5).

Finally, using W2
2(µ̃k, µ

⇤)  4D2
k
2
kµ̃k � µ

⇤
kTV, we can obtain a similar convergence result, i.e., after K

W2 =

log

0

@
8D2 max

✓
U+C0pd,

⇣
2+ 16d2

Lr2

⌘ 1
4

◆

✏

1

A iterations, we have W2(µ̃k, µ
⇤)  ✏ log2(K). The total number of iterations required

is NW2 = Õ(Ld3.5✏�10).

