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Abstract 

While real-world decisions involve many com-
peting objectives, algorithmic decisions are often 
evaluated with a single objective function. In this 
paper, we study algorithmic policies which explic-
itly trade off between a private objective (such as 
profit) and a public objective (such as social wel-
fare). We analyze a natural class of policies which 
trace an empirical Pareto frontier based on learned 
scores, and focus on how such decisions can be 
made in noisy or data-limited regimes. Our theo-
retical results characterize the optimal strategies 
in this class, bound the Pareto errors due to inac-
curacies in the scores, and show an equivalence 
between optimal strategies and a rich class of 
fairness-constrained profit-maximizing policies. 
We then present empirical results in two different 
contexts — online content recommendation and 
sustainable abalone fisheries — to underscore the 
applicability of our approach to a wide range of 
practical decisions. Taken together, these results 
shed light on inherent trade-offs in using machine 
learning for decisions that impact social welfare. 

1. Introduction 
From medical diagnosis and criminal justice to financial 
loans and humanitarian aid, consequential decisions increas-
ingly rely on data-driven algorithms. Machine learning algo-
rithms used in these contexts are mostly trained to optimize 
a single metric of performance. As a result, the decisions 
made by such algorithms can have unintended adverse side 
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effects: profit-maximizing loans can have detrimental ef-
fects on borrowers (Skiba & Tobacman, 2009) and fake 
news can undermine democratic institutions (Persily, 2017). 

The field of fair machine learning proposes algorithmic ap-
proaches that mitigate the adverse effects of single objective 
maximization. Thus far it has predominantly done so by 
defining various fairness criteria that an algorithm ought to 
satisfy (see e.g., Barocas et al., 2019, and references therein). 
However, a growing literature highlights the inability of any 
one fairness definition to solve more general concerns of 
social equity (Corbett-Davies & Goel, 2018). The impos-
sibility of satisfying all desirable criteria (Kleinberg et al., 
2017) and the unintended consequences of enforcing parity 
constraints based on sensitive attributes (Kearns et al., 2018) 
indicate that existing fairness solutions are not a panacea for 
these adverse effects. Recent work (Liu et al., 2018; Hu & 
Chen, 2020) contend that while social welfare is of primary 
concern in many applications, common fairness constraints 
may be at odds with the relevant notion of welfare. 

In this paper, we consider welfare-aware machine learn-
ing as an inherently multi-objective problem that requires 
explicitly balancing multiple objectives and outcomes. A 
central challenge is that certain objectives, like welfare, may 
be harder to measure than others. Building on the traditional 
notion of Pareto optimality, which provides a characteri-
zation of optimal policies under complete information, we 
develop methods to balance multiple objectives when those 
objectives are measured or predicted with error. 

We study a natural class of selection policies that balance 
multiple objectives (e.g., private profit and public welfare) 
when each individual has predicted scores for each objective 
(e.g., their predicted contribution to total welfare and profit). 
We show that this class of score-based policies has a natural 
connection to statistical parity constrained classifiers and 
their �-fair analogs. In the likely case where scores are 
imperfect predictors, we bound the sub-optimality of the 
multi-objective utility as a function of the estimator errors. 
Simulation experiments highlight characteristics of problem 
settings (e.g. correlation of the true scores) that affect the 
extent to which we can jointly maximize multiple objectives. 
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We apply the multi-objective framework to data from two 
diverse decision-making settings. We first consider an eco-
logical setting of sustainable fishing, where we study score 
degradation to mimic certain dimensions being costly or 
impossible to measure. Our second empirical study uses 
existing data on the popularity and ‘social health’ of roughly 
40,000 videos promoted by YouTube’s recommendation al-
gorithm, and shows that multi-objective optimization could 
produce substantial increases in average video quality for 
almost negligible reductions in user engagement. 

In summary, we provide a characterization, theoretical anal-
ysis, and empirical study of a score-based multi-objective 
optimization framework for learning welfare-aware policies. 
We hope that our framework may help decouple the complex 
problem of defining and measuring welfare, which has been 
studied at length in the social sciences, e.g. (Deaton, 2016), 
from a machine toolkit geared towards optimizing it. 

2. Related Work 
2.1. Fair and Welfare-Aware Machine Learning 

The growing subfield of fairness in machine learning has 
investigated the implementation and implications of ma-
chine learning algorithms that satisfy definitions of fairness 
(Dwork et al., 2012; Barocas & Selbst, 2016; Barocas et al., 
2019). Machine learning systems in general cannot satisfy 
multiple definitions of group fairness (Chouldechova, 2017; 
Kleinberg et al., 2017), and there are inherent limitations 
to using observational criteria (Kilbertus et al., 2017). Al-
ternative notions of fairness more directly encode specific 
trade-offs between separate objectives, such as per-group 
accuracies (Kim et al., 2019) and overall accuracy versus a 
continuous fairness score (Zliobaite, 2015). These fairness 
strategies represent trade-offs with domain specific impli-
cations, for example in tax policy (Fleurbaey & Maniquet, 
2018) or targeted poverty prediction (Noriega et al., 2018). 

An emerging line of work is concerned with the long-term 
impact of algorithmic decisions on societal welfare and fair-
ness (Ensign et al., 2018; Hu & Chen, 2018; Mouzannar 
et al., 2019; Liu et al., 2020). Liu et al. (2018) investi-
gated the potentially harmful delayed impact that a fairness-
satisfying decision policy has on the well-being of differ-
ent subpopulations. In a similar spirit, Hu & Chen (2020) 
showed that always preferring “more fair” classifiers does 
not abide by the Pareto Principle (the principle that a policy 
must be preferable for at least one of multiple groups) in 
terms of welfare. Motivated by these findings, our work 
acknowledges that algorithmic policies affect individuals 
and institutions in many dimensions, and explicitly encodes 
these dimensions in policy optimization. 

We will show that fairness constrained policies that result 
in per-group score thresholds and their �-fair equivalent 

soft-constrained analogs (Elzayn et al., 2019) can be cast 
as specific instances of the Pareto framework that we study. 
Analyzing the limitations of this optimization regime with 
imperfect scores therefore connects to a recent literature on 
achieving group fairness with noisy or missing group class 
labels (Lamy et al., 2019; Awasthi et al., 2019), including 
using proxies of group status (Gupta et al., 2018; Chen et al., 
2019). The explicit welfare effects of selection in our model 
also complement the notion of utilization in fair allocation 
problems (Elzayn et al., 2019; Donahue & Kleinberg, 2020). 

2.2. Multi-objective Machine Learning 

We consider two simultaneous goals of a learned classifier: 
achieving high profit value of the classification policy, while 
improving a measure of social welfare. This relates to an ex-
isting literature on multi-objective optimization in machine 
learning (Jin & Sendhoff, 2008; Jin, 2006), where many 
algorithms exist for finding or approximating global optima 
(Deb & Kalyanmoy, 2001; Knowles, 2006; D´ eri, 2012)esid´ 
under different problem formulations. 

Our work studies the Pareto solutions that arise from learned 
score functions, and is therefore related to, but distinct from 
a large literature on learning Pareto frontiers directly. Evo-
lutionary strategies are a popular class of approaches to 
estimating a Pareto frontier from empirical data, as they 
refine a class of several policies at once (Deb & Kalyanmoy, 
2001; Kim & de Weck, 2005). Many of these strategies use 
surrogate convex loss functions to afford better convergence 
to solutions. Surrogate functions can be defined over each 
dimension independently (Knowles, 2006), or as a single 
function over both objective dimensions (Loshchilov et al., 
2010). While surrogate loss functions play an important 
role in a direct optimization of non-convex utility functions, 
our framework provides an alternative approach, so long as 
scores functions can be reliably estimated. 

Another class of methods explicitly incorporates models of 
uncertainty in dual-objective optimization (Peitz & Dellnitz, 
2018; Paria et al., 2019). For sequential decision-making, 
there has been recent work on finding Pareto-optimal poli-
cies for reinforcement learning settings (Van Moffaert & 
Nowé, 2014; Liu et al., 2014; Roijers & Whiteson, 2017). 
To promote applicability of our work to a variety of real-
world domains where noise sources are diverse, and the 
effects of single policy enactments complex, we first de-
velop a methodology under a noise-free setting, then extend 
to reasonable forms of error in provided estimates. 

2.3. Measures of Social Welfare 

The definition and measurement of welfare is an important 
and complex problem that has received considerable atten-
tion in the social science literature (cf. Deaton, 1980; 2016; 
Stiglitz et al., 2009). There, a standard approach is to sum 
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up individual measures of welfare, to obtain an aggregate 
measure of societal welfare. The separability assumption 
(independent individual scores) is a standard simplifying as-
sumption (e.g. Florio, 2014) that appears in the foundational 
work of (Pigou, 1920), as well as (Burk, 1938), (Samuelson, 
1947), (Arrow, 1963) and (Sen, 1973). Future work may 
explore alternative social welfare function (e.g. Clark & Os-
wald, 1996). Our focus is on bringing machine learning to 
the most common notion of welfare. 

3. Problem Setting: Pareto-optimal Policies 
We consider a setting in which a centralized policymaker 
has two simultaneous objectives: to maximize some pri-
vate return (such as revenue or user engagement), which 
we generically refer to as profit; and to improve a public 
objective (such as social welfare or user health), which we 
refer to as welfare. The policymaker makes decisions about 
individuals, who are specified by feature vectors x ∈ Rd . 
Decision policies are functions that output a randomized 
decision π(x) ∈ [0, 1] corresponding to the probability that 
an individual with features x is selected. To each individual 
we associate a value p representing the expected profit to 
be garnered from approving this individual and w encoding 
the change in welfare. The profit and welfare objectives are 
thus expectations over the joint distribution of (w, p, x): 

UW(π) = E[w · π(x)] and UP(π) = E[p · π(x)] . (1) 

Notice that this aggregate measure of societal welfare is 
defined as a sum of individual measures of welfare; this 
is a standard approach in the social science literature (see 
Section 2.3). While this induces limitations on the form 
of the welfare function, it affords flexibility when focusing 
instead on the resulting binary decision, a point we expand 
on in Section 6. 

Given two objectives, one can no longer define a unique 
optimal policy π. Instead, we focus on policies π which are 
Pareto-optimal (Pareto, 1906), in the sense that they are not 
strictly dominated by any alternative policy, i.e. there is no 
π0 such that both UP and UW are strictly larger under π0 . 

For a general set of policy classes (defined in Proposi-
tion A.11), it is equivalent to consider policies that maximize 
a weighted combination of both objectives. We can thus 
parametrize the Pareto-optimal policies by α ∈ [0, 1]: 
Definition 3.1 (Pareto-optimal policies). An α-Pareto-
optimal policy (for α ∈ [0, 1]) satisfies: 

πα
? ∈ argmax Uα(π), 

Uα(π) := (1 − α)UP(π) + αUW(π). 

In the definition above, the maximization of π is taken 
over the class of randomized policies π(x) → [0, 1]. In 

1All references starting with letters appear in the appendices. 
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Figure 1. Illustration of a Pareto curve (bottom left) and the deci-
sion boundaries induced by three different trade-off parameters α. 
Colored (darker in gray scale) points indicate selected individuals. 

Section 3.1 we show that when features x can exactly encode 
scores the optimal policy is a threshold of the scores. 

3.1. Optimal Policies with Exact Scores 

We briefly consider an idealized setting, where the welfare 
and profit contributions w and p can be directly determined 
from the features x via exact score functions, fW(x) = w, 
fP(x) = p. These exact score functions can be thought of as 
sufficient statistics for the decision: the expected weighted 
contribution from accepted individuals is described by ((1− 
α)p + αw). Therefore, one can show (Proposition A.2) that 
the optimal policy is given by thresholding this composite: 

πα
? (p, w) = I((1 − α)p + αw ≥ 0). (2) 

Though they are all Pareto-optimal, the policies π? induceα 
different trade-offs between the two objectives. The param-
eter α determines this trade-off, tracing the Pareto frontier: 

Pexact := {(UP(πα
? ), UW(πα

? )) : α ∈ [0, 1]} 

Figure 1 plots an example of this curve (bottom-left panel) 
and the corresponding decision rules for three points along it. 
We note the concave shape of this curve, a manifestation of 
diminishing marginal returns: as a decision policy forgoes 
profit to increase total welfare, less welfare is gained for the 
same amount of profit forgone. The notion of diminishing 
return is formalized in Theorem A.5. 
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4. Pareto Frontiers with Inexact Scores 
In many settings, we typically do not know the profit score 
p or welfare score w — or the score functions fP and fW — 
for all individuals a priori. Instead, we might estimate score 
functions fb 

P(x) and fb 
W(x) from data in the hope that these 

models can provide good predictions on future examples. 

We study the class of score-based policies that act on the 
predicted scores: 
Definition 4.1 (Score-based policy class). bΠemp := { π : (fb 

P(X), fW(X)) 7→ [0, 1] } 

Focusing on this class of policies allows us to character-
ize optimal policies within this class (Section 4.1), derive 
diagnosable bounds the utility of suboptimal policies (Sec-
tion 4.3), and relate our results to common fairness criteria 
(Section. 6). We summarize additional benefits as well as 
potential limitations of restricting our study to this policy 
class in Section 7. 

4.1. Pareto-optimality for Learned Scores 

To characterize Pareto-optimal policies over Πemp, we de-
fine the following conditional expectations over the distribu-
tion D of (x, p, w): b bµP(f

b 
P(x), fW(x)) := ED[p | fb 

P(x), fW(x)], b bµW(f
b 
P(x), fW(x)) := ED[w | fb 

P(x), fW(x)] . 

Intuitively, these values represent our best guesses of p 
and w, given the predicted scores. We define πopt as theα 
threshold policy on the composite of these predictions: 

πopt := I((1 − α) · µP + α · µW ≥ 0).α 

Theorem 4.1 (Pareto frontier in inexact knowledge case). 
Given any population distribution D over (x, p, w) and em-
pirical score functions fb 

W and fb 
P, 

(i) The policies πopt are Pareto optimal over the class α 
Πemp, with πα 

opt ∈ argmaxπ∈Πemp 
Uα(π). 

(ii) The Pareto frontier P(Πemp) is given by 
{(UP(πopt), UW(πopt) : α ∈ [0, 1]}. The associated α α 
function mapping supπ∈Πemp 

{UW(π) : UP(π) = p}
is concave and non-increasing in p. 

(iii) The empirical frontier Pemp is dominated by the exact 
frontier Pexact. That is, if (p, wexact) ∈ Pexact and 
(p, wemp) ∈ Pemp, then wemp ≤ wexact. 

Thus an optimal empirical-score based policy can also be 
realized as a threshold policy (this time of the conditional ex-
pectations), and it obeys the same diminishing-returns phe-
nomenon as in the exact score case. One example of score 

predictors that achieves this optimality is the Bayes optimal 
estimators i.e., fb 

P(x) = E[p | x] and fb 
W(x) = E[w | x]. 

We present a proof of Theorem 4.1 in Appendix A.4. 

4.2. Plug-in Policies 

In general, we may have access to score predictions or 
the ability to learn them from data, but not a guarantee 
that the predictions are Bayes’ optimal. In the hopes that 
the predicted scores will suffice, we can define a natural 
selection rule based on α-defined plug-in threshold policies. 

Definition 4.2 (Plug-in policy). For α ∈ [0, 1] and score 
predictions fb 

P(x), fb 
W(x), the α-plug-in policy is: 

πplug(x) = I((1 − α)fb 
P(x) + αfb 

W(x) ≥ 0) . (3)α 

Since πopt requires computing conditional expectations over α 
the distribution D, it will in general will differ from the plug-
in policy (3). The following corollary of Theorem 4.1 gives 

and πpluga condition in which πα 
opt 

α coincide. 

Corollary 4.2. The plug-in policies πplug are optimal in the α 
class Πemp as long as the predicted score functions are well-b bcalibrated, in the sense that E[p | fb 

P(x), fW(x)] = fP(x) b band E[w | fb 
P(x), fW(x)] = fW(x). 

Proof. In this case, µ̄ p = fb 
P(x) and µ̄ w = fb 

W(x), so we 
may invoke Theorem 4.1. 

Under typical conditions (Liu et al., 2019), this form of 
calibration can be achieved by empirical risk minimization. 

In Section 4.3, we bound the error in the plug-in policies by 
the error by the individual errors in each score. Simulation 
experiments in Section 5 detail the use of the plug in policy 
under controlled degradations of learned score accuracy. 
Real-data experiments provide further insight into using the 
plug-in policy for welfare-aware optimization in practice. 

4.3. Bounding Pareto Inefficiencies 

Even when plug-in policies are not optimal, the sub-
optimality of the resulting classifier in terms of the utility 
function Uα is bounded by the α-weighted sum of ` 1 errors 
in the profit and welfare scores. 

Proposition 4.3 (Sub-optimality Bound). For any score b bprediction functions fP(x), fW(x) and α ∈ [0, 1], the 
gap in α-utility from applying the plug-in policy (3) with b bfP(x), fW(x) versus applying the optimal policy (2) with 
true scores fP, fW, is bounded above as 

α) − Uα(πplugUα(π? ) ≤α 

(1 − α)E[|fb 
P(x) − fP(x)|] + αE[|fb 

W(x) − fW(x)|]. (4) 
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Figure 2. Simulated experiments corresponding to the setting in Example 1 (fixing σw = σp = 1). Empirical frontiers P(Πemp) for 100 
random trials with n = 5, 000 each are shown as overlaid translucent curves. Exact frontiers Pexact are shown as dashed curves. 

α) − Uα(πplugNote that by definition of πα
? , Uα(π? 

The proof of Proposition 4.3 is given in Appendix A.5. 
) ≥ 0.α 

Proposition 4.3 provides a general bound on the α-
performance of the plug-in policy which holds for any dis-
tribution on scores and estimator errors. To provide further 
insight, we consider a specific distributional setting. 

Example 1. Suppose that individuals’ true scores are dis-
tributed as: �� � � �� 

0 σ2 ρσwσpw(wi, pi) ∼i.i.d. N , (5)
0 ρσwσp σ2 

p 

Let the prediction errors εpi := p̂i − pi and εwi := ŵi − wi 

be independent of the true scores pi, wi, zero-mean, and 
sub-Gaussian with parameters σεp and σεw , respectively. 

This example elucidates how correlation between profit and 
welfare scores affects the empirical Pareto frontier. 

Proposition 4.4. In the setting of Example 1 with −1 ≤ 
√σyρ ≤ 1, E[Uα(πα

? )] = and the expected α-utility of the 
2π 

plug in policy is at least: 2 � � 

E[Uα(πplug 2 · σ̃2 

)] ≥ E[Uα(πα
? )] 1 − (6)α σ2 + σ2˜ y 

where σy 
2 = α2σw 

2 + (1 − α)2σp 
2 + 2ρα(1 − α)σwσp and 

σ̃2 = 4(α2σ2 + (1 − α)2σ2 ).εw εp 

The proof of Proposition 4.4 is given in Appendix A.5. This 
lower bound is in terms of both the optimal α-utility and 
a discount factor. Because σ2 is increasing in ρ for any y 
α ∈ (0, 1), both of these terms are increasing in ρ. Thus, 
the expected α-utility of the plug in policy is higher for 
correlated scores, not only because the optimal α-utility is 
higher, but also because the discount factor is closer to 1. 

2The constant on σ̃2can be reduced to 1 when εw |= εp. 
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Figure 3. Lower bound (right hand side of Eq. (6)) on expected 
α-utility as a function of α and correlation in the true scores, 
from Proposition 4.4, with σw = σp = 1; σεw = .5; σεp = 0.1. 

Figure 3 shows the lower bound on expected α-utility with 
noisy scores as a function of possible score correlations ρ 
and trade-off parameters α, for a fixed setting of predictor 
noise in Example 1. For comparatively small error in profit 
scores and moderate welfare error, the lower bound on the 
α-utility increases as the correlation (ρ) between the scores 
increases. This captures how the low-noise profit score 
indirectly improves decisions about the high-noise welfare. 
The lower bound is decreasing in α for positive ρ, which 
reflects the higher variance introduced by placing more 
weight on the noisier welfare score. 

5. Experiments 
This section presents three sets of empirical results. In Sec-
tion 5.1 we corroborate our theoretical results under differ-
ent simulated distributions on scores and prediction errors. 
Our second experiment studies empirical Pareto frontiers 
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from learned scores with realistic degradation of training 
data, in the context of sustainable abalone collection in Sec-
tion 5.2. Our third experiment in Section 5.3 shows how 
our methods facilitate trading off between user engagement 
with predicted quality of content in a corpus of YouTube 
videos, using pre-learned scores. 

5.1. Simulation Experiments 

Our first set of simulations shows the performance of the 
plug-in policy when scores are perturbed by additive noise of 
varying degrees in each dimension (Fig. 2a). We instantiate 
true scores wi and pi as in Eq. (5) with ρ = 0 and σ2 = w 
σ2 = 1, and instantiate predicted scores as:p 

fb 
W(xi) = wi + εwi εwi ∼ N (0, σε 

2 
w 
), (7) 

fb 
P(xi) = pi + εpi εpi ∼ N (0, σε 

2 
p 
) 

These score predictions satisfy the well-calibrated condition 
of Corollary 4.2. The results for different pairs (σεw , σε 

2 
p 

are shown in Figure 2a. As the noise in scores increases, 
the empirical Pareto frontiers recede from the exact frontier 
Pexact. Additionally, higher noise in the predicted scores 
imposes a wider distribution of empirical Pareto frontiers. 

Next, we study the effect of noise in predictions when scores 
are correlated (Fig. 2b). We draw wi and pi according to 
Eq. (5) with σw = σp = 1 and correlation parameter ρ. 
We then add random noise as in Eq. (7) with parameters 
σεw = σεp = 1.0. Note that in this setting, scores are in 
general not calibrated due to the correlation between wi and 
pi. For positive values of ρ, the exact and empirical utilities 
are greatest at α = 0.5, since the correlation in the scores 
allows us to overcome some of the noise in each individual 
parameter, as predicted by Proposition 4.4. 

Lastly, we study the space of empirical and exact frontiers 
with degraded noise when scores are correlated and predic-
tion error is higher in the welfare the score, with σεp = 0.5 
whereas σεw = 2.0 (Fig. 2c). While the optimal Pareto 
frontiers are the same as in Fig. 2b, we see a stark change 
in the empirical Pareto frontiers. Compared to the case of 
no correlation, the empirical Pareto frontier is expanded 
when ρ > 0 and when ρ < 0 the frontier recedes. Addition-
ally, we see evidence that due to the correlation, πplug is noα 
longer guaranteed to be optimal, as welfare utility decreases 
for large enough α when ρ = 0.5. 

5.2. Learned Scores with Imperfect Data: Abalone 

Our next example is motivated by the domain of ecologically 
sustainable selection, where the goal is to select profitable 
mollusks to catch and keep, while having minimal impact 
on the natural development of the mollusks’ ecosystem. We 
learn scores for the age and profitability of each abalone 
from data, and perform experiments to test the degradation 

of the empirical Pareto frontiers under realistic degradations 
of the data. While our characterization of the problem is 
highly simplified, the main focus of this experiment is to 
demonstrate the instantiation of Pareto curves for differ-
ent predictor function classes and different regimes of data 
availability. 

The welfare measure we use is an increasing function of age 
(see Appendix B for full experimental details), encoding that 
it is more sustainable to harvest older abalones. We define 
the profit score of each abalone as a linear function of meat 
weight and shell area. We use the features (sex, total weight, 
height, width, and diameter) to train score predictors. We 
derive these measures from physical data collected by Nash 
et al. (1994) (accessed via the UCI data repository (Dua 
& Graff, 2017)). The correlation of the profit and welfare 
scores is 0.56. 
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Figure 4. Abalone empirical frontiers as training set size increases. 
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Figure 5. Abalone empirical frontiers for different feature sets. 

In this setting, we study the effectiveness of two models — 
ridge regression and random forests — to learn scores with 
which to instantiate the plug-in policy. To assess how the 
empirical Pareto frontiers degrade under realistic notions of 
imperfect data, we subsample training instances to reflect 
a hypothetical regime were data is sparse and we subsam-
ple features to reflect a hypothetical regime where entire 
measurements were not recorded in the original dataset. 

Figure 4 shows the empirical Pareto frontiers reached as we 



Balancing Competing Objectives with Noisy Data 

(a) Distribution of YouTube data pre-
dicted quality scores unlabeled videos 
(gray), and hand labeled conspiracy (red) 
and non-conspiracy (purple) videos. 
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Figure 6. Balancing user engagement and health of hosted YouTube videos. 

change the size of the training data set from which learn the 
profit and welfare scores. Even with 33 training samples 
(1% of the original training set), the set of plug-in policies 
traces a meaningful trade-off over α. For severely degraded 
scores (16 training samples - just 0.5% of the original train-
ing sets), the error on the welfare score predictions is so 
high that instantiating a plug-in policy with α > 0 actually 
decreases welfare overall. 

Figure 5 shows the empirical Pareto frontiers reached as we 
change the features learned to train the model, using just 
length, just weight, or all seven features as in Fig. 4. 

The trends to increasing the data set size and feature set are 
consistent with four replications done on separate training 
and evaluation splits; we find that Pareto frontiers dominate 
each other roughly in accordance with the mean average er-
ror of the score predictions (Figs. 9 and 10 in Appendix B.1). 
The mean average error of welfare scores is substantially 
greater than the average error of profit scores for most pre-
diction instances (Figures 9 and 10 in Appendix B.1), thus 
the empirical frontiers are farther from Pexact in the welfare 
dimension than the profit dimension. 

Altogether, the empirical Pareto frontiers are relatively ro-
bust to small data regimes, as well as to missing predictors. 
However, when predictions have very high error (diagnos-
able by cross-validation or holdout set error), empirical 
Pareto frontiers degrade quickly. 

5.3. Balancing User Engagement and Health 

We now illustrate how the multi-objective framework can be 
used to balance the desire to promote high quality content 
with the need for profit. We work with a dataset that contains 
measures of content quality and content engagement for 
39,817 YouTube videos, which was constructed as part of 
an independent effort to automatically ascertain the quality 
and truthfulness of YouTube videos (Faddoul et al., 2020). 

The measure of quality fb 

spiracy score’ developed b
W we use is a function of the ‘con-

y Faddoul et al. (2020), which 
estimates the probability that the video promotes a debunked 
conspiracy theory. From this score sconspiracy ∈ [0, 1] we de-
rive a predicted ‘quality score’ as (0.95 − sconspiracy) (see 
Appendix B.2 for details). 

We instantiate the profit score fP[i] for video i as log((1 + 
# views[i])/100, 000). Dividing by a large constant repre-
sents that videos with low view counts may not be profitable 
due to storage and hosting costs. The resulting distribution 
over fP and fb 

W is shown in Figure 6a (gray dots), where 
dotted lines denote 0-utility thresholds in each score. 

Using these scores and predictions, we estimate a Pareto 
frontier using the optimal policies πplug for learned scoresα 
from Eq. (3). The resulting estimated Pareto curve is shown 
in Figure 6b. The curve is concave, demonstrating the 
phenomenon of diminishing returns in the trade-off between 
total user engagement and average video quality. While 
there is always some quality to gain by sacrificing some 
total engagement, these relative gains are greatest when 
the starting point is close to an engagement-maximizing 
policy. Specifically, at the maximum-engagement end of the 
spectrum (lower right star), we can gain a 1.1% increase in 
average video quality for a 0.1% loss in total engagement. 
However, for a policy with trade-off rate α = 0.8 (upper 
left star), to obtain an increase of 0.3% in welfare, a larger 
loss of 5.2% in user engagement is required. 

Next, we assess the validity of this estimated Pareto curve 
using the small set of 541 hand-labeled training set instances 
from which sconspiracy was learned. This assessment is likely 
optimistic due to the fact that the score predictor functions 
were trained on this same data; nonetheless, this is an im-
portant check to perform on the estimated Pareto frontier. 

In Figure 6c we plot the optimal-in-hindsight Pareto fron-
tier (dashed gray line) had we known the labels a priori 
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and applied thresholds according to (2). We also plot the 
performance of our estimated policy πplug on the labeled α 
instances (black line). The stars on each curve correspond to 
decision thresholds with α = 0 and α = 0.8, and illustrate 
the alignment of the curves. 

Relating back to Theorem 4.1, we see that performance of 
the learned scores (black line) is dominated by that of the 
optimal classifier, as is the predicted Pareto curve (thick 
blue line). Here the predicted Pareto curve under-predicts 
the actual performance; in general it is possible for the 
opposite to be true. Encouragingly, we observe that the 
curves representing the predicted and actual performance 
show similar qualitative trade-offs. 

6. Connections to Fairness Constraints 
Having shown our main results on learning Pareto-optimal 
policies with limited data, we now illustrate connections be-
tween our framework and approaches based on fair machine 
learning that constrain classification decisions to satisfy cer-
tain criteria. For example, in the setting of hiring or admis-
sions, one might require that the same proportion of male 
and female candidates are admitted, i.e. demographic parity. 
We demonstrate that profit maximization with group fair-
ness constraints corresponds to multi-objective optimization 
over profit and welfare for an induced definition of welfare. 
This connection illustrates that even though we consider 
a welfare function defined from individual welfare scores, 
our framework can encode more collective conceptions of 
welfare, like those arising from group fairness constraints. 

Consider the setting of requiring demographic parity be-
tween two subgroups A and B of a larger population 
(more general results are presented in Appendix C). In 
this case, we decompose policies over groups such that 
π = (πA, πB). Policies are chosen to maximize the follow-
ing �-demographic parity constrained problem: 

max UP(π) s.t. E[πj(x) |x in group j] = βj, 
π,β (8) 

|βA − βB| ≤ � 

We can restrict our attention to threshold policies πj(p) = 
I(p ≥ tj) where tj are group-dependent thresholds (Liu 
et al., 2018). Notice that the unconstrained solution would 
simply be πMaxUtil(p) = I(p ≥ 0) for all groups. For this 
reason, we consider groups with tj < 0 as comparatively 
disadvantaged (since their threshold increases in the ab-
sence of fairness constraints) and tj > 0 as advantaged. 
Then, the multi-objective framework provides an additional 
perspective on the trade-offs between �-fairness and profit. 

Corollary 6.1. It is possible to define fixed welfare scores 
such that the family of inexact fair policies parametrized by 
any � ≥ 0 in (8) corresponds to a family of Pareto-optimal 
policies parametrized by α(�). The group-dependent wel-

fare scores are such that w ≥ 0 for all individuals in the dis-
advantaged group and w ≤ 0 in the advantaged group. Fur-
thermore, the induced trade-off parameter α(�) increases 
as � decreases. 

Corollary 6.1 follows from Theorem C.3. Fairness con-
straints can be seen as encoding implicit group-dependent 
welfare scores for individuals, where members of disad-
vantaged groups are assigned positive welfare weights and 
members of advantaged groups assigned negative weights. 
Figure 7 illustrates this result applied to data from a credit 
lending scenario from Barocas et al. (2019), where welfare 
scores are induced for individuals depending on their race 
and likelihood of repayment. Further details on the gener-
ation of these weights are presented in Appendix C. This 
correspondence is related to the analysis of welfare weights 
in Hu & Chen (2018), however, our perspective focuses on 
trade-offs between welfare and profit objectives, in contrast 
to pure welfare maximization. 

In the case that group membership is believed to corre-
spond to the welfare impact of selection, Corollary 6.1 
connects our results in Section 4 with a body of work on 
achieving fairness when group labels are approximate or 
estimated (Kallus et al., 2020). While some applications 
may directly call for statistical parity as a criterion, Corol-
lary 6.1 emphasizes the inevitability of fairness constraints 
as trade-offs between multiple objectives, and frames these 
trade-offs explicitly in terms of welfare measures. 
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Figure 7. Trade-offs between profit and fairness in lending can be 
equivalently encoded by a multi-objective framework. 

7. Conclusions 
We present a methodology for developing welfare-aware 
policies that jointly optimize a private return (such as profit) 
with a public objective (such as social welfare). Taking 
care to consider data-limited regimes, we develop theory 
around the optimality of using learned predictors to make 
decisions. Experiments corroborate our theoretical results, 
showing that thresholding on predicted scores can approach 
a Pareto-optimal policy. 
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This score-based approach to balancing competing objec-
tives with noisy data is attractive for several reasons: 

• Score-based policies can trade off multiple objec-
tives with scalar predictions, with error bounded by 
a weighted sum of the errors in the learned scores. 

• The plug-in policy is a learned decision rule that is 
easily explained and diagnosed — in line with the 
desire for transparent classification rules in practice. 

• It provides a crisp and interpretable connection to fair-
constrained profit maximization, but reframes the prob-
lem as one of multi-objective optimization (see Sec. 6). 

While separating the problem of instantiating learned poli-
cies from the problem of learning scores has desirable bene-
fits, we note the limitations of this approach as well. First, 
the plug-in policy is not guaranteed to be the optimal policy 
learned from data. Thus, when further assumptions on the 
problem structure are appropriate, it may be worthwhile to 
consider more general policy classes learned from data. Sec-
ond, the score-based approach shifts much of the difficulty 
of welfare-aware machine learning toward defining and pre-
dicting welfare, which is an area of active academic and 
policy debate (Griffin, 1986; Kahneman & Krueger, 2006). 

When welfare utilities are estimable, the ability to trade 
off context-sensitive measures with general policies can im-
prove upon the status quo of applying machine learning poli-
cies in welfare-sensitive domains. Further, a multi-objective 
framework could allow communities to understand the trade-
offs between competing definitions of welfare or fairness in 
data constrained situations. 

Taken together, these results help illustrate how machine 
learning can be used to design policies that prioritize the 
social impact of an algorithmic decision from the outset, 
rather than as an afterthought. By elucidating the possible 
trade-offs between competing objectives, and by illustrating 
the importance of measurement and prediction error in multi-
objective optimization, we hope this work encourages new 
ways of thinking about welfare-aware machine learning. 
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