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Abstract

Trustworthy Al is a critical issue in machine learn-
ing where, in addition to training a model that is
accurate, one must consider both fair and robust
training in the presence of data bias and poisoning.
However, the existing model fairness techniques
mistakenly view poisoned data as an additional
bias to be fixed, resulting in severe performance
degradation. To address this problem, we pro-
pose FR-Train, which holistically performs fair
and robust model training. We provide a mutual
information-based interpretation of an existing ad-
versarial training-based fairness-only method, and
apply this idea to architect an additional discrimi-
nator that can identify poisoned data using a clean
validation set and reduce its influence. In our ex-
periments, FR-Train shows almost no decrease in
fairness and accuracy in the presence of data poi-
soning by both mitigating the bias and defending
against poisoning. We also demonstrate how to
construct clean validation sets using crowdsourc-
ing, and release new benchmark datasets!.

1. Introduction

As machine learning becomes widespread in the Software
2.0 era (Karpathy, 2017), trustworthy Al is becoming in-
creasingly critical. In addition to simply training accurate
models, there is an urgent need to address multiple require-
ments including fairness, robustness, explainability, trans-
parency, and accountability altogether (IBM, 2020). In
particular, we focus on fairness and robustness, which are
closely related issues that are affected by the same training
data. For sensitive applications like healthcare, finance, and
self-driving cars, a trained model must not discriminate cus-
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tomers based on sensitive attributes including age, sex, or
religion. In addition, as applications often rely on external
datasets for their training data, the model training must be
resilient against noisy, subjective, or even adversarial data.

Traditionally, model fairness research (Venkatasubramanian,
2019; Chouldechova & Roth, 2018; Verma & Rubin, 2018)
has focused on developing metrics such as disparate im-
pact (Feldman et al., 2015), equalized odds (Hardt et al.,
2016), and equal opportunity (Hardt et al., 2016), which cap-
ture various notions of discrimination. More recently, there
has been a surge in unfairness mitigation techniques (Bel-
lamy et al., 2018b), which improve the model fairness by
either fixing the training data, training process, or trained
model. Unfairness mitigation usually involves some tradeoff
between the model’s accuracy and fairness. Most recently,
generative adversarial networks (GANs) are being adapted
to a fairness setting (Zhang et al., 2018a). The architecture
of GANS is suitable because accuracy and fairness are not
always aligned, and it makes sense to simultaneously train
two models: a classifier that predicts labels using input fea-
tures and an adversary that predicts sensitive attributes using
the classifier’s predicted labels.

Robust model training is also important and needs to be
concurrently taken into consideration. As dataset publishing
is becoming mainstream as demonstrated by systems like
Kaggle and Google Dataset Search (Noy et al., 2019), it is
easy to publish data that is noisy, subjective, and even ad-
versarial, which we hereafter refer to as poisoned data. As a
result, there has been a proliferation of algorithms that make
model training resilient to data poisoning as well (Natara-
jan et al., 2013; Biggio et al., 2011; Frénay & Verleysen,
2014). However, data poisoning attacks have become in-
creasingly sophisticated, and defending against all of them
is difficult (Koh et al., 2018).

Solving model fairness without addressing data poisoning
may lead to a worse tradeoff between accuracy and fairness.
For example, consider a banking system that is giving out
loans where there are two sensitive groups: men and women.
Suppose we use disparate impact (Feldman et al., 2015) as
the fairness measure. If the model’s positive prediction rate
is M for men and W for women, the disparate impact is
min{%, % where a value of 1 is considered perfectly fair.
Figure 1 shows a toy example of five men and five women
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who need loans. Each person is associated with a single-
dimensional feature z, and only the ones with a rounded box
would pay back their loans (i.e., their labels are positive).
Let us train a threshold classifier that divides the people
into two groups where those on the left are denied loans
and those on the right are granted loans. On the clean data
above, a classifier that does not consider fairness (non-fair
classifier, red dotted line) can have perfect accuracy at the
cost of having a disparate impact of 0.5 because 40% of
females are granted loans while 80% of males are granted
loans. On the other hand, a fair classifier (blue solid line) can
divide the people such that the disparate impact is perfect,
but the accuracy is only 0.8. Now suppose we poison the
data where we flip the labels of the 5" and 7*" persons
(both male) from positive to negative as shown below. While
each classifier is trained on the poisoned data, its accuracy
is measured using the clean data labels. For the non-fair
classifier trained on this data, the results are mixed where the
accuracy decreases from 1 to 0.9, but the disparate impact
increases from 0.5 to 0.67. However, the fair classifier has
strictly worse results where the accuracy decreases from 0.8
to 0.6 without any change in the disparate impact. Hence,
the fair classifier’s accuracy-fairness tradeoff is worse when
the data is poisoned. One proposal is to sanitize the data
prior to the model training, but it is known that removing
poisoning without any knowledge of the model is extremely
difficult (Koh et al., 2018).

Our main contribution is an integrated solution called
FR-Train, which trains accurate models that are also fair
and robust to poisoning. FR-Train extends a state-of-
the-art fairness-only method called Adversarial Debiasing
(AD) (Zhang et al., 2018a), which consists of a generator
used for classification and a discriminator that distinguishes
predictions from one sensitive group against others, simi-
lar to GANs (Goodfellow et al., 2014). The discriminator
ensures that the prediction ¢ is independent of the sensitive
attribute z. We first provide interpretation of such an ad-
versarial learning approach using mutual information. We
then use the results as an inspiration to add a new robustness
discriminator that uses mutual information to distinguish
(training examples, predictions) of the training data from
(validation examples, validation labels) of a separate and
clean validation set. This discriminator ensures that the
model predictions on the training data are “consistent” with
labels on clean data, where the clean validation set acts as a
reference to the training. In addition, we also utilize the ro-
bustness discriminator results to further improve the fairness
training by re-weighting examples. In our experiments, we
show that addressing robustness and fairness sequentially
during model training is not as effective as addressing them
concurrently as in FR-Train.

Another contribution is addressing the challenge of con-
structing a clean validation set and gracefully handling the
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Figure 1. A small dataset of 10 people who need loans (F: female,
M: male). A rounded box indicates a positive label. The clean data
(above) is poisoned by flipping two labels (below). The vertical
lines are the decision boundaries of non-fair and fair threshold
classifiers. DI is disparate impact, and AcCelean (AcCpoi) is the
accuracy on clean (poisoned) data.

case where it is small or unavailable. To this end, we demon-
strate a practical crowdsourcing method using majority vot-
ing for constructing a clean validation set, which has less
poisoning than the input data. We construct clean validation
sets from real datasets using Amazon Mechanical Turk and
release them as a community resource. In the worst case
when the validation set is non-existent, we show how the
parameters of FR-Train can be adjusted to still maintain
reasonable accuracy and fairness.

In the following sections, we demonstrate the weaknesses
of current fairness methods, propose FR-Train with experi-
ments, and present the related work.

2. Vulnerability of Fairness Methods

We perform experiments to demonstrate that state-of-the-art
fairness methods are indeed vulnerable even to simple poi-
soning attacks. We generate a synthetic dataset as shown in
Figure 2a (see the generation details in Section 4.1). There
are two non-sensitive attributes x; and xo, which are re-
flected in the x-axis and y-axis, respectively. The examples
are further divided into two classes based on the sensitive
attribute z. For generation of poisoned data, we poison
10% of the training data by flipping the labels of examples
that belong to a specific z attribute (for this experiment z
= 1) so as to maximize the accuracy performance degrada-
tion. This approach is similar to an existing label flipping
method (Paudice et al., 2018). To make a validation set, we
randomly select clean examples that amount to 10% of the
entire training data.

We use disparate impact as the fairness measure and evaluate
a fairness method called Fairness Constraints (Zafar et al.,
2017), which incorporates a regularization term that reflects
fairness constraints in the context of convex margin-based
classifiers such as logistic regression and support vector
machines (SVMs). As this method involves a regularization
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(b) Accuracy-fairness tradeoff curves for Fairness Constraints

Figure 2. The top figure shows a synthetic dataset with data poison-
ing. Examples are divided into z = 1 (marked with circles) and z
=0 (crosses) as per a sensitive attribute z. The blue points indicate
positive labels while the red points denote negative ones. For the
poisoning, we flipped labels of 10% of the examples with z = 1
s0 as to maximize the accuracy performance degradation (Paudice
et al., 2018). The bottom figure shows that poisoning significantly
worsens the accuracy-fairness tradeoff (i.e., the curve shifts to the
left) of the Fairness Constraints method (Zafar et al., 2017).

factor A that balances the accuracy and fairness objectives,
we can obtain a tradeoff curve by adjusting its value. Fig-
ure 2b shows two accuracy-fairness tradeoff curves obtained
with the clean and poisoned synthetic datasets. Notice that
adding data poisoning clearly shifts the curve to the left,
which means accuracy decreases. This coincides with our
intuition. The poisoning confuses the model so that there
are more biased examples to fix, which in turn makes it
overreact and thus sacrifice more on accuracy. We also
leave in the supplementary the accuracy-fairness tradeoff
curves of Fairness Constraints on real datasets. The results
clearly show that both accuracy and fairness decrease on
the poisoned data. In Section 4, we will show how data
poisoning affects other fairness methods.

3. FR-Train

We now describe FR-Train (see Figure 3). Unlike traditional
GAN:s, the generator is a classifier that receives an example
x € X and returns a prediction ¢. There are two discrim-
inators that respectively optimize fairness and robustness
using mutual information. In addition, the outputs of the
robustness discriminator can be used to further improve the
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Figure 3. The architecture of FR-Train.

fairness training by re-weighting examples.

3.1. Fairness

We denote by D,, the training data set. Suppose Dy, has
m examples {(z(), z(), y()}™ where () contains the
non-sensitive attributes, 2() contains the sensitive attributes,
and y(* is the label. Both the sensitive attribute and label
can be multi-class, i.e., they can have one of multiple values.
For notational simplicity, we assume there is one sensitive
attribute, which can be viewed as a merged result of mul-
tiple sensitive attributes with a larger alphabet size. For
illustrative purposes, we focus on disparate impact, leaving
in the supplementary our formulation and experimental re-
sults for equalized odds and equal opportunity. Disparate
impact aims for the same positive prediction ratio for each
sensitive attribute z € Z where Z is the set of possible
sensitive attribute values. We use the following definition
for disparate impact:

Definition 1. (Disparate Impact)
P(Y = 1|Z = Zl) = P(Y = 1|Z = 2’2), V21,29 € Z.

The first discriminator in FR-Train distinguishes predictions
w.r.t. one sensitive group from those in the others. Disparate
impact intends the sensitive attribute to be independent of
the model’s prediction, i.e., I(Z; 17) =0.

We explain how FR-Train can enforce the above constraint.
Let Pz(z) be the distribution of Z where z € Z. Let
Y|Z =2z~ Py () and Y ~ Pp(-). Then Py(-) =
2ocz Pz(2) Py ()

The following theorem asserts that mutual information is
equivalent to the following function optimization where
the optimal discriminator DX(§) = Py (2]§) and
ZzEZD:(Q) = 17 V@ € y

Theorem 1. I(Z;Y) =

max Py()Ep. |logD,(Y)| + H(Z).
DZ@>:ZZDZ<@>=1,V@ZeZz z(2) PY‘Z[ B D )} 2)

While deferring the detailed proof to the supplemental ma-
terials, we provide a brief overview of the proof. As the
optimization problem in the RHS is convex, we find the
optimal discriminator by solving the KKT conditions. We
then show that the maximum value attained by the optimal
discriminator is equal to the mutual information by using
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the properties of mutual information and the generalized
Jensen-Shannon divergence (Lin, 1991).

What is more involved than showing the above equality
is designing the right optimization problem. One needs
to carefully handcraft a plausible optimization problem so
that its unique solution matches the desired quantity. Here,
we design the optimization problem via a ‘guess-&-check’
approach aided by the structural insights across the KL di-
vergences that appear in an alternative expression of mutual
information.

We now discuss how to implement the above expression.
Since we do not know PY|2() exactly, we compute the
following empirical version:

Pz(z) Y. LlogD.(3%)+ H(Z).

__max X
D= (9):3°, D=(9)=1, V9 ,cz iz =2

Now for sufficiently large m, the number m, of examples
with z(*) = 2 is approximately the same as P (z)m. There-
fore, the above expression becomes:

1 .
max —log D.(§) + H(Z).

Interestingly, this formulation is exactly the same as that in
the original GAN (Goodfellow et al., 2014) when | Z| = 2.
We also remark that our formulation does not require a prior
knowledge on Py(z).

We note that Adversarial Debiasing (AD) (Zhang et al.,
2018a) has an additional projection term that is used to
force the classifier to never decrease the discriminator’s loss.
However, we do not use this term in FR-Train because it
worsens the training stability in our experiments.

3.2. Robustness

The robustness discriminator ensures robust training by us-
ing mutual information to distinguish examples and predic-
tions from a clean validation set. For now, let us assume
such a validation set exists (in Section 4.2, we demonstrate
how to construct one). The discriminator then distinguishes
the training data with predictions { (z(*), 2( ()} | from
the validation set {(2"), 2% )} Intuitively, if the
classifier is confused by data poisoning in the training data,
then its predictions will not be consistent with the labels of
the clean data, and the discriminator would be able to detect
that difference. Our use of a validation set is inspired by
meta learning-based robust training algorithms (Ren et al.,
2018), which also defends against poisoning attacks by us-
ing the validation data loss as a meta objective. However,
a key difference is that we take an adversarial learning ap-
proach, which introduces a knob that controls the emphasis
of robust training. We find that this knob enables FR-Train
to be more robust to the validation set size (see details in

Section 4.1). In Section 3.3, we also use the robustness
discriminator to further improve the fairness training using
example re-weighting.

We first define X = VX + (1 = V)X, Z=VZ + (1 -
V)Z, and Y = VY + (1 — V)Yy. Here, note that V
is an indicator random variable that denotes whether an
example is generated (V' = 1) or comes from the validation
set (V' = 0). We then want to ensure that the distribution
of (X, Z, f/) matches that of (Xya1, Zyal, Yvar). This can be
done by enforcing I(V; X, Z,Y) = 0, i.e., the predictions
on the training data are indistinguishable from the labels
of the validation set. Thus we can mimic the clean dataset

while expecting an indirect sanitization effect.

Analogous to the fairness discriminator, we show
that mutual information is equivalent to the fol-
lowing function optimization where the optimal dis-
criminator  Djj(z,z,y) = Pyxzy(vlz,zy) and
Yowev Dis(@,2,y) = 1, Y(z,2,y) € X x Z x V. The
proof is similar to that of Theorem 1.

Theorem 2. [(V;X,Z,Y) =

max
Dy(z,2,y):>, Dv(x,2,y)=1, V(m,zﬂ o
> Pv(v)Ep, ., [log Duo(X, Z,Y)] + H(V).
veVY '

3.3. Architecture

We describe the FR-Train architecture in Figure 3. For the
loss function of the generator, we employ cross entropy:

L= % i —y log g™ — (1 =y log(1 — §©).
i=1
We set the loss function w.r.t. the fairness discriminator as:
L = max >y 1 log D..(5") + H(Z)
O eZisne "
where D(-) := (Di(-),...,Dz(")).

> .cz Di(Y) = 1 can be enforced by adding a softmax
layer to the discriminator.

The condition

Finally, implementing I(V; X, Z,Y), we set the loss func-
tion w.r.t. the robustness discriminator as:

1 ) ) .
— log DT(I(Z) FONMO! )+

L3 = max val? “val> Yval

D7 (- m
( )i:v(i’):O

1 ) ) .
> —log(l— D (@, 20, 50)) + H(V).
() =1

The final objective function is the weighted sum of these
value functions:

min L1 + )\1L2 + )\2L3.
Ge)

Here A\, and A, are tuning knobs that play roles to emphasize
fair and robust training, respectively.
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Example Re-weighting for Fairness Training In addi-
tion to the above architecture, we also utilize the decision
values D" (X, Z,Y) of the robustness discriminator as ex-
ample weights to further improve the fairness training (in
Figure 3, the arrow from the robustness discriminator’s out-
put to the classifier’s input). In particular, the two losses
L, and L, are now computed using the example weights.
The intuition is that, by giving more weight to the clean
examples, we can improve the accuracy-fairness tradeoff.
A question is when to apply these weights. If we apply the
weights too early, then D(X, Z,Y') may not be accurate
enough and actually harm the fairness training. Intuitively,
we would like to use the discriminator’s results when we
know it is performing at least as well as the classifier. Hence,
for a more reliable signal, we use the relative performance
between the classifier and robustness discriminator to gen-
erate the weights. Given the classifier’s loss L. and the
robustness discriminator’s loss L, we compute the final ex-
ample weights as W = R+ D(X, Z,Y) x (1 — R) where
R= a(f—; — () is a conversion of the loss ratio into a prob-
ability using the sigmoid function ¢ and hyperparameter C'.
We note that C' acts as a threshold on the loss ratio.

4. Experiments

We provide experimental results for FR-Train. For the
fairness measure, we use disparate impact, while leaving
in the supplementary the results for equalized odds and
equal opportunity. We evaluate all models on separate
clean test sets. In our experiments, we use two sensitive
attributes z; and 2o, and disparate impact is measured as

. . (P(Y=1|Z=z) P(Y=1|Z=z)
the ratio min{ PO —1Z=2)" P(Y:l\Z:zl)}' We use Py-

Torch (Paszke et al., 2017), and all experiments are per-
formed on a server with Intel i7-6850 CPUs. More imple-

mentation details are in the supplementary.

4.1. Synthetic Data Results

For the synthetic data, we generate 2,000 examples with
two non-sensitive attributes x; and x5, a sensitive attribute
z, and a label y, using a method similar to the algorithm
proposed by (Zafar et al., 2017). Both z and y are bi-
nary, and the (x1, x2) pair consists of two normal distri-
butions: (z1,z2)|ly = 0 ~ N([—2;—2],[10,1;1,3]) and
(z1,22)ly = 1 ~ N([2;2],[5,1;1,5]). The z attribute
has the Bernoulli distribution p(z = 1) = p((z}, z4)|ly =
1)/[p((@),25)ly = 0) + p((2},25)ly = 1)] where
(xf,25) = (x1cos(w/4) — xgsin(w/4),zqsin(n/4) +
2o cos(m/4)). Finally for each example, the z; and o
values are sampled as per the normal distribution associated
with the y. For data poisoning, we flip the labels of exam-
ples with z = 1 so as to maximize the accuracy performance
degradation as described in Section 2, and the amount of
poisoning is 10% of D;,.. In the supplementary, we also

Table 1. Accuracy and fairness performances on the synthetic test
datasets w.r.t. disparate impact (DI). Two types of methods are com-
pared: (1) fairness methods: FC (Zafar et al., 2017), LBC (Jiang
& Nachum, 2020), and AD (Zhang et al., 2018a) where “RML+"
denotes the application of sanitization using RML (Ren et al.,
2018) beforehand; (2) non-fairness methods: LR and RML. For
FR-Train and RML, the validation set is 10% of D,.. The amount
of poisoning is 10% of D;,.. For each result of the poisoned data,
we make a comparison with the clean data result and show the
percentage increase or decrease.

Method Clean data Poisoned data
DI Acc. DI Acc.

FC .822 806 .831(1.1% 1) .760 (5.7% )
LBC 819 760 827 (1.0% 1) .715(5.9% |)
AD 807 811 .834(B3.4% 1) .769 (5.2% |)
RML+FC  .822 .806 .802(2.4% ]) .529 (34.% )
RML+LBC .819 .760 .810(1.1% ) .752(1.1% |)
RML+AD .807 .811 .808(0.1% 1) .756 (6.8% )
LR 409 885 446 (9.1% 1) .819(7.5% )
RML 471 876  .395(16.% |) .869 (0.8% )
FR-Train .818 .807 .827(1.1% 1) .814 (0.9% 1)

perform FR-Train varying the amount of poisoning from
10% to 40%.

Accuracy and Fairness We compare FR-Train with vari-
ous baselines. First, there are the fairness methods: Fairness
Constraints (Zafar et al., 2017) (FC), Label Bias Correc-
tion (Jiang & Nachum, 2020) (LBC), and Adversarial De-
biasing (Zhang et al., 2018a) (AD). As described in the
previous sections, FC adds a penalty term that captures the
prediction differences across sensitive groups, while AD
utilizes adversarial learning to achieve high fairness. LBC is
an example re-weighting algorithm, which assumes the ex-
istence of true unbiased yet unknown labels. LBC provides
theoretical guarantees that training on the resulting loss
corresponds to training on the true unbiased labels, which
yields a fair model. While there exist other re-weighting
techniques including (Agarwal et al., 2018), we choose
LBC because it performs the best in experiments (Jiang &
Nachum, 2020).

Since FR-Train is to our knowledge the first method to
address both fairness and robustness in model training, there
is no fairness method that also performs data sanitization
using a clean validation set. However, (Ren et al., 2018)
is a state-of-the-art robust training method based on meta
learning using a clean validation set, which we call RML.
For a fair comparison, we thus extend the three fairness
methods by first performing RML and then utilizing the
example weights in the fairness training in a straightforward
fashion. In addition, we compare with non-fairness methods:
logistic regression (LR) and RML.
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Figure 4. Accuracy-fairness tradeoff curves. Figures (a) and (b) show that the poisoning worsens the accuracy-fairness tradeoffs of
LBC (Jiang & Nachum, 2020) and AD (Zhang et al., 2018a). Figures (c) and (d) show that FR-Train maintains the tradeoffs even with a
5% validation set. When the validation set is too small (Figure (e)), FR-Train can adjust A2 to reduce the adverse effect on training.

Table 1 compares FR-Train with the baselines. We use a
validation set that amounts to 10% of D,,.. We also apply
proper hyperparameters so that the disparate impacts are
similar (around 0.8) across all methods, if possible. When
setting A\; and A, for FR-Train, we usually fix Ay to some
value and then adjust A\; using one-round cross validation.
There is no hyperparameter tuning for logistic regression
and the meta learning-based robust training algorithm, as
they have no knobs for adjusting fairness. The results show
that for the fairness methods, data poisoning aggravates
accuracy-fairness trade-offs. For example, the accuracy of
FC falls by 5.7%, while the disparate impact of it remains
a similar value. On the other hand, the performance for
FR-Train does not degrade: disparate impact and accuracy
increase by 1.1% and 0.9%, respectively. Table 1 also shows
that combining the fairness methods with RML (rows 4-6)
does not always yield better accuracy and fairness. In fact,
using sanitization may lower the accuracy or fairness (e.g.,
RML+FC has an accuracy of 0.529 on poisoned data while
FC has 0.760). The results suggest that removing poisoning
and then bias is not that effective.

‘We observe how accuracy trades off with fairness on clean
and poisoned datasets. The results for FC are shown in
Figure 2b. For LBC, we employ the number of training as
a knob to trade accuracy off fairness since LBC gradually
improves fairness by repeatedly updating example weights
per training. As shown in Figure 4a, the tradeoff curve shifts
to the left, which demonstrates a clear tradeoff degradation.
For AD, we employ the o parameter (Zhang et al., 2018a)
analogous to \; as a knob to trade accuracy off fairness.
Figure 4b shows the tradeoff curve again shifts to the left.

Validation Set Size Figures 4c to 4e show how the valida-
tion set size affects the robustness of FR-Train. In particular,
we compare the accuracy-fairness tradeoff of FR-Train on
clean data and that on poisoned data while varying the size
of the validation set. When running on poisoned data, we
fixed Ao = 0.4 and varied \;. We see that even a 5% vali-
dation set (Figure 4d) is sufficient to maintain the accuracy
and fairness obtained on the clean data. When using 0.1%
(Figure 4e), the validation set is too small and has an adverse

effect on the training. However, by decreasing the tuning
knob Ay down to 0.1, we can de-emphasize robust train-
ing, thereby avoiding the adverse effect (Figure 4e, green
triangles). This is in contrast to RML, which suffers from
a non-negligible performance degradation for a very small
validation set. See details in the supplementary.

4.2. Real Data Results

We use two real datasets: ProPublica COMPAS (Angwin
et al., 2016) and AdultCensus (Kohavi, 1996), which have
7,214 and 45,222 examples, respectively. We use the same
preprocessing as in IBM’s Al Fairness 360 (Bellamy et al.,
2018a) and use the sensitive attribute SEX for both datasets.
For data poisoning, we use the same method employed
on synthetic data: flipping the labels with z = 1 so as
to maximize the accuracy performance degradation. The
amount of poisoning is 10% of Dy,..

While we assumed that a small yet clean validation set is
available in the previous synthetic data experiments, such
an assumption does not hold in practice. Thus, for real-
data experiments, we consider a scenario where one first
constructs a small (which amounts to 5% of D;,.) validation
set based on crowdsourcing, and then uses it for FR-Train.
We provide details on how to construct this validation set in
Section 4.5.

Summarized in Tables 2 and 3 are the fairness and accu-
racy performances of various training algorithms on the
COMPAS and AdultCensus datasets, respectively. As in
Table 1, we apply proper hyperparameters so that the dis-
parate impacts are similar across all distinct methods, both
for the clean and poisoned datasets. The results are similar
to Table 1: the three fairness methods have worse disparate
impact and accuracy due to data poisoning; LR and RML
exhibit poor disparate impacts; and FR-Train again shows
little degradation both in fairness and accuracy. Tables 2 and
3 also show that combining the fairness methods with sani-
tization using RML (rows 4-6) does not always yield better
accuracy and fairness and may even lower them, which is
consistent with the results on synthetic data. One may won-
der if the fairness baselines would perform better if they are
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Table 2. Accuracy and fairness performances on COMPAS test
data w.r.t. disparate impact (DI) where the training data is poisoned
using the label flipping attack. Two types of methods are compared:
(1) fairness methods: FC, LBC, and AD where “RML+" denotes
the application of sanitization using RML beforehand; (2) non-
fairness methods: LR and RML. For FR-Train and RML, the
validation set is 5% of Dy,.. The amount of poisoning is 10% of
Ds,. For each result of the poisoned data, we compare with the
clean data result and show the percentage increase or decrease.

Method Clean data Poisoned data
DI Acc. DI Acc.

FC TJ77.682 794 (22% 1) .612(10.% 1)
LBC 866 .671 .838(2.8% |) .671(0.0% -)
AD .846 .680 .813(6.1% |) .570 (16.% |)
RML+FC 777 .682 .560 (28.% |) .645(5.4% |)
RML+LBC .866 .671 .869 (0.4% 1) .646 (3.7% )
RML+AD .846 .680 .820(3.1% ]) .573(16.% |)
LR 465 .674 454 (5.0% |) .631 (6.4% )
RML 493 680 .575(17.% 1) .646 (5.0% )
FR-Train .838 .676 .846 (1.0% 1) .670 (0.9% |)

Table 4. Confusion matrix on poisoned AdultCensus dataset w.r.t.
disparate impact. Other settings are identical to Table 2.

Method | Female | Male

| =0 g=1]|g=0 g=1
i P
R
A

Table 5. Ablation study for FR-Train on COMPAS test data w.r.t.
disparate impact (DI) where the training data is poisoned using
the label flipping attack. Four methods are compared: (1) FR-
Train without R (A2 = 0), (2) FR-Train without F (A1 = 0), (3)
FR-Train without example re-weighting (Without RW), and (4)
FR-Train. For rows 24, the validation set is 5% of D;,.

trained on the clean validation set. In the supplementary, we
show that the performances are actually worse than those in
Tables 2 and 3. This is because the clean validation set is
too small to be used as a stand-alone train data. Indeed, a
similar observation is made in (Zhang et al., 2018b).

Table 3. Accuracy and fairness results on AdultCensus test data

Method Clean data Poisoned data
DI Acc. DI Acc.
Without R .846 .678 .802 (5.2% |) .580(14.% |)
Without F 482 .681 .420(13.% |) .632 (7.2% )
Without RW .832 .677 .840(1.0% 1) .624 (7.8% /)
FR-Train .838 .676 .846 (1.0% 1) .670 (0.9% |)
4.3. Ablation Study

w.r.t. disparate impact (DI). Other settings are identical to Table 2.

Method Clean data Poisoned data
DI Acc. DI Acc.

FC 825 826 741 (10.% ]) .801 (3.0% )
LBC 825 825 760 (7.9% |) .792 (4.0% 1)
AD 850 767 7155 (11.% ]) .563 (27.% 1)
RML+FC 825 .826 .821(0.5% ]) .780 (5.6% |)
RML+LBC .825 .825 .762(7.6% ]) .788 (4.5% |)
RML+AD 850 .767 .834(1.9% ]) .647 (16.% |)
LR 328 847 189 (42.% ]) .819 (3.3% )
RML 327 846 268 (18.% ]) .840(0.7% 1)
FR-Train .828 .824 .847 (2.3% 1) .809 (1.8% |)

Table 4 shows the confusion matrix comparison for disparate
impact between FR-Train, AD, and FC with sanitization us-
ing RML, using the poisoned AdultCensus dataset. The re-
sults are reported when FR-Train, AD, and FC achieve (Acc,
DI) = (0.809, 0.847), (0.647, 0.834), and (0.780, 0.821),
respectively. FR-Train outperforms AD and FC in all as-
pects because its robustness discriminator is more effective
in sanitizing poisoned data.

In Table 5, we perform an ablation study to investigate the
effect of each component of FR-Train. (Without ‘R’) When
Ao = 0 (i.e., no robust training), disparate impact is high,
but accuracy is low on the poisoned data, just like the other
fairness-only methods (Table 2, rows 1-3). (Without ‘F’)
On the other hand, when A\; = 0 (i.e., no fair training),
the accuracy is high, but the disparate impact is low, just
like the other non-fairness methods (Table 2, rows 7-8).
(Without Re-weighting) Finally, when not using example
re-weighting, both accuracy and disparate impact are similar
to or worse than FR-Train.

In summary, only a holistic framework like FR-Train can
achieve both excellent model fairness and training robust-
ness. In comparison, other methods tailored for only one of
these objectives lose either accuracy, fairness or both.

4.4. Error range of FR-Train

We investigate the error range of FR-Train. All the FR-Train
experiments on the poisoned data are re-conducted with ten
different random seeds to generate error ranges with mean
(m) and standard deviation (s) values. The performances
are reported in the form of m + s/2 in Table 6. On the syn-
thetic and AdultCensus datasets, the lowest performances
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(i.e., m — s/2) of FR-Train are still better than the second-
best performances in Tables 1 and 3, respectively. For the
COMPAS dataset, the lowest performance of FR-Train is
slightly worse than those of the LBC-related algorithms,
which can be explained by the fact that the LBC algorithms
were not affected much by the poisoning in the first place.

Table 6. Error range of FR-Train on the poisoned datasets w.r.t.
disparate impact (DI). The poisoned settings are identical to the
previous experiments.

Dataset Poisoned data

DI Acc.
Synthetic 0.795 £+ 0.019 0.805 £ 0.008
COMPAS 0.827 £0.027 0.653 £ 0.005
AdultCensus 0.871 +0.034 0.796 4 0.006

4.5. Constructing a Clean Validation Set

We now demonstrate how to construct a clean validation
set using crowdsourcing. We construct validation sets for
the COMPAS and AdultCensus datasets using Amazon Me-
chanical Turk (AMT). Although these datasets have labels,
we assume that they are not available to use as clean data.
We also release the datasets as a community resource (see
the supplementary for the description and data) and believe
our construction can be generalized to other datasets. While
crowdsourcing is not the only way to construct a clean vali-
dation set, it is sufficient for our purposes.

We design the AMT task for each dataset by asking a worker
to classify each example. For the AdultCensus dataset, a
worker looks at various attributes of a person and predicts if
a person has an income of at least $50K. Instead of a yes/no
answer, the answer must be on a scale of 1 to 4, which re-
flects the worker’s opinion more accurately. The COMPAS
dataset has a similar setting where the only difference is that
the workers need to predict if a criminal will reoffend in
two years. Each task displays about 30 questions where we
pay 3 cents per answer. For quality control, each task also
contains quizzes to educate the workers, and some questions
are used to evaluate the performance of the workers. Af-
ter collecting answers, we filter out poor performers, take
the average of at most a fixed number of N responses per
question, and compare with the threshold 2.5 to produce the
final labels. The number of answers per question can be
fewer than NV if inaccurate workers are filtered out. We used
workers of all demographics in the US, Canada, and UK.
While this majority voting approach already works well in
our experiments, one could additionally apply various qual-
ity control techniques like peer-reviewing that are known to
further reduce bias (Karger et al., 2011).

The important questions are how accurate the crowdsourced
labels are and whether the constructed validation set results

Table 7. Accuracy comparison of the crowdsourced labels (/V:
number of answers averaged per example) and predictions of a
logistic regression model trained on ground truth labels.

Dataset Crowdsourcing  Trained Model
N=1 N=5 N=11

COMPAS 0.609 0.656 0.667 0.659

AdultCensus 0.645 0.721 0.743 0.804

Table 8. Accuracy and fairness of FR-Train when using crowd-
sourced labels versus ground truth labels for the validation set.
The training data is poisoned as in Tables 2 and 3.

Dataset Validation set DI Acc.
Crowdsourcing 0.846 0.670
COMPAS Ground truth 0.899 0.674
Crowdsourcing 0.847 0.809
AdultCensus 5 indtruth  0.864  0.809

in high accuracy and fairness for FR-Train. Table 7 shows
the crowdsourced labels accuracies when [V increases from
1 to 11. Even for the highest accuracies, the predictions are
not perfect because the workers are looking at limited infor-
mation (i.e., only the features) without any other context. To
see if the workers can do better, we also train logistic regres-
sion models on ground truth labels and show their accuracies
on test data as upperbounds. As a result, the accuracies are
comparable when IV = 11 for both the COMPAS and Adult-
Census datasets. We thus use this setting for all experiments.
Table 8 shows how useful our constructed validation set is
compared to using a “perfect” validation set of the same
size made of ground truth labels. For both datasets, using
a ground truth validation set results in slightly higher, but
comparable disparate impacts while obtaining near-identical
accuracies, justifying the use of crowdsourced validation
sets for FR-Train.

5. Related Work

Model Fairness The notion of discrimination has many
definitions and usually comes from certain social goals that
one wants to guarantee. As a result, many fairness mea-
sures have been proposed (Verma & Rubin, 2018). While
we focus on group fairness, which ensures similar statistics
between two sensitive groups, an interesting future work is
to consider individual fairness (Dwork et al., 2012), which
guarantees similar prediction results across nearby examples.
Recently, there has also been a surge of research on unfair-
ness mitigation techniques (Bellamy et al., 2018b). Depend-
ing on where a fix occurs, there are mainly three approaches:
(1) pre-processing techniques (Kamiran & Calders, 2011;
du Pin Calmon et al., 2017; Zemel et al., 2013; Feldman
et al., 2015) that fix the training data; (2) in-processing tech-
niques (Zafar et al., 2017; Jiang & Nachum, 2020; Zhang
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et al., 2018a; Kamishima et al., 2012; Cotter et al., 2019;
2018; Agarwal et al., 2018) that address the issue during
model training; and (3) post-processing techniques (Hardt
etal., 2016; Pleiss et al., 2017; Kamiran et al., 2012; Chzhen
et al., 2019) that manipulate predictions while maintaining
the model. Among the three, the in-processing techniques
have the advantages that one can work with any data and
that there is more control on model training (Venkatasubra-
manian, 2019).

Although not our immediate focus, there are other note-
worthy directions in fairness research. Causality-based fair-
ness (Kilbertus et al., 2017; Kusner et al., 2017; Zhang &
Bareinboim, 2018; Nabi & Shpitser, 2018; Khademi et al.,
2019; Khademi & Honavar, 2020) suggests how to under-
stand the causal relationship between attributes to over-
come the limitations of non-causal approaches. Just as
non-causal fairness can be captured by mutual informa-
tion, we suspect there may be a connection between causal
fairness and directed information. Another important ap-
proach (Hashimoto et al., 2018) is based on distributionally
robust optimization (DRO) (Sinha et al., 2017), which fo-
cuses on when the sensitive attribute z is unknown. The
DRO-based fairness approach ensures fair results by equal-
izing risks over all distributions without the knowledge of z,
but it does not directly minimize the fairness metrics such
as disparate impact and equalized odds. In comparison, FR-
Train assumes full knowledge of z and utilizes it to directly
minimize the fairness metrics.

As we demonstrate in Section 2, the existing fairness tech-
niques are not tailored for robust training, so they are vul-
nerable to data poisoning attacks. In comparison, FR-Train
addresses both model fairness and robust training within
the same model training process because they are closely
related and affected by the same training data.

Robust Training There is a heavy literature on how to
make the model training robust against noisy or even ad-
versarial data (Natarajan et al., 2013; Biggio et al., 2011;
Frénay & Verleysen, 2014; Kurakin et al., 2017). A major
challenge is that there can be a wide range of data poisoning
attacks that keep on evolving. While sanitizing the training
data before model training is an option, defending against all
possible attacks seems fundamentally infeasible as demon-
strated by (Koh et al., 2018). A more recent trend is to
develop general defense algorithms for any attack during
model training using meta learning (Veit et al., 2017; Li
et al., 2017; Xiao et al., 2015; Hendrycks et al., 2018). Our
FR-Train framework is inspired by robustness training with
meta learning (Ren et al., 2018), but employs a GAN-based
model to support fair and robust training without using meta
learning. In particular, the design of FR-Train’s robustness
discriminator is based on mutual-information-based theo-
retical insights (Section 3.2). Another line of research is
defending against adversarial attacks during test time (Big-

gio et al., 2013; Goodfellow et al., 2015; Wong & Kolter,
2018). In comparison, our focus is on defending against
data poisoning on the training data.

6. Conclusion

We proposed FR-Train, which is a holistic framework for
trustworthy Al by performing both unfairness mitigation
and robust training. Our key contribution is providing inter-
pretation of an adversarial learning approach using mutual
information and proposing a novel GAN architecture that en-
joys the synergistic effect of combining two approaches: (1)
employing a fairness discriminator that distinguishes predic-
tions w.r.t. one sensitive group from others and (2) employ-
ing a robustness discriminator that distinguishes training
data with predictions from a clean validation set and is also
used to further improve the fairness training through exam-
ple re-weighting. In addition, we demonstrated how a clean
validation set can be constructed using crowdsourcing and
released two new datasets built from Amazon Mechanical
Turk as a community resource. In our experiments, we
showed that existing fairness methods are vulnerable to data
poisoning, even when combined with data sanitization. In
comparison, FR-Train is robust to the poisoning and can be
adjusted to maintain reasonable accuracy and fairness even
if the validation set is too small or unavailable.
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