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A. Appendix
Appendix A.1 proves Theorem 1. Appendix A.2 extends
the theoretical results of the fairness discriminator to other
measures. Appendix A.3 shows additional experiments.
Appendix A.4 provides more details of the model training
setup.

A.1. Proof for Theorem 1

Before we present the proof of the main theorem, we first
recall our notation. Let PZ(z) be the distribution of Z
where z ∈ Z and Z is the set of possible sensitive attribute
values. Let Ŷ |Z = z ∼ PŶ |z(·) and Ŷ ∼ PŶ (·). Then
PŶ (·) =

∑
z∈Z PZ(z)PŶ |z(·). Also, let Y ∼ PY (·).

For convenience, let us repeat the statement of Theorem 1
here:

I(Z; Ŷ ) =

max
Dz(ŷ):

∑
z Dz(ŷ)=1, ∀ŷ

∑
z∈Z

PZ(z)EPŶ |z

[
logDz(Ŷ )

]
+H(Z).

We now prove the theorem.

Proof. Denote byD the collection ofDz(ŷ) for all possible
values of z and ŷ, and by ν the collection of νŷ for all values
of ŷ. We can construct the Lagrangian function as follows:

L(D,ν) =
∑
z∈Z

PZ(z)EPŶ |z

[
logDz(Ŷ )

]
+H(Z)

+
∑
ŷ∈Y

νŷ

(
1−

∑
z∈Z

Dz(ŷ)

)
.

We use the following KKT conditions:

∂L(D,ν)
∂Dz(ŷ)

= PZ(z)
PŶ |z(ŷ)

D?
z(ŷ)

− ν?ŷ = 0, ∀(ŷ, z) ∈ Y × Z,

1−
∑
z∈Z

D?
z(ŷ) = 0, ∀ŷ ∈ Y.

Solving the two equations, we obtain ν?ŷ = PŶ (ŷ) for all ŷ.
Thus,

D?
z(ŷ) =

PZ(z)PŶ |z(ŷ)

PŶ (ŷ)
.

Putting this to the above optimization,

∑
z∈Z

PZ(z)EPŶ |z

[
log

PZ(z)PŶ |z(Ŷ )

PŶ (Ŷ )

]
+H(Z)

=
∑
z∈Z

PZ(z)EPŶ |z

[
log

PZ(z)PŶ |z(Ŷ )

PŶ (Ŷ )

]

+
∑
z∈Z

PZ(z) log
1

PZ(z)

=
∑
z∈Z

PZ(z)EPŶ |z

[
log

PŶ |z(Ŷ )

PŶ (Ŷ )

]
=
∑
z∈Z

PZ(z)DKL(PŶ |z‖PŶ )

, JSPZ
(PŶ |z1 , . . . , PŶ |z|Z|

) = I(Z; Ŷ ).

Here, the second last equality is due to the definition of the
generalized Jensen-Shannon divergence, and the last equal-
ity is due to its equivalence to the mutual information (Lin,
1991).

A.2. Extensions to other fairness measures

We now extend FR-Train to the case of equalized odds,
which is another important fairness metric, defined as fol-
lows:

Definition 2. (Equalized Odds)
P (Ŷ = y|Y = y, Z = z1) = P (Ŷ = y|Y = y, Z = z2),
∀y ∈ Y, ∀z1, z2 ∈ Z .

The following theorem relates the conditional mutual in-
formation I(Z; Ŷ |Y ) to the solution of an optimization
problem.

Theorem 3. I(Z; Ŷ |Y ) =
maxDz|y(ŷ):

∑
z∈Z Dz|y(ŷ)=1, ∀ŷ∑

y∈Y
∑

z∈Z PY,Z(y, z)EPŶ |y,z

[
logDz|y(Ŷ )

]
+H(Z|Y ).

This conditional mutual information term can be used to
capture equalized odds. We also note that the following
theorem can be modified in a straightforward manner so that
it can handle I(Z; Ŷ |Y = 1), which can be used to capture
equal opportunity.

We now prove the theorem.

Proof. Denote by D the collection of Dz|y(ŷ) for all pos-
sible values of (z, ŷ, and y) and by ν the collection of νy,ŷ
for all values of y and ŷ. We can construct the Lagrangian
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function as follows:

L(D,ν) =
∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
logDz|y(Ŷ )

]

+H(Z|Y ) +
∑
ŷ∈Y

∑
y∈Y

νy,ŷ

(
1−

∑
z∈Z

Dz|y(ŷ)

)
.

We use the following KKT conditions:

∂L(D,ν)
∂Dz|y(ŷ)

= PY,Z(y, z)
PŶ |y,z(ŷ)

D?
z|y(ŷ)

− νy,ŷ = 0,

∀(ŷ, y, z) ∈ Y × Y × Z

1−
∑
z∈Z

D?
z|y(ŷ) = 0, ∀(ŷ, y) ∈ Y × Y.

Solving the two equations, we obtain ν?y,ŷ = PY,Ŷ (y, ŷ) for
all (y, ŷ) ∈ Y × Y . Thus,

D?
z|y(ŷ) =

PZ|y(z)PŶ |y,z(ŷ)

PŶ |y(ŷ)
, ∀y, ŷ ∈ Y × Y.

Putting this to the above optimization,

∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
log

PZ|y(z)PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]
+H(Z|Y )

=
∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
log

PZ|y(z)PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]

+
∑
y∈Y

∑
z∈Z

PY,Z(y, z) log
1

PZ|y(z)

=
∑
y∈Y

∑
z∈Z

PY,Z(y, z)EPŶ |y,z

[
log

PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]

=
∑
y∈Y

∑
z∈Z

PY (y)PZ|y(z)EPŶ |y,z

[
log

PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]

=
∑
y∈Y

PY (y)
∑
z∈Z

PZ|y(z)EPŶ |y,z

[
log

PŶ |y,z(Ŷ )

PŶ |y(Ŷ )

]
=
∑
y∈Y

PY (y)
∑
z∈Z

PZ|y(z)DKL(PŶ |y,z‖PŶ |y)

,
∑
y∈Y

PY (y) · JSPZ|y (PŶ |z1,y, . . . , PŶ |z|Z|,y
)

=
∑
y∈Y

PY (y)I(Z; Ŷ |Y = y) = I(Z; Ŷ |Y ).

The third last equality is due to the definition of the general-
ized Jensen-Shannon divergence; the second last equality is
due to its equivalence to the mutual information (Lin, 1991);
and the last equality is due to the definition of conditional
mutual information.

We now discuss how to actually compute the mutual infor-
mation. We compute the following empirical version using
the examples {(x(i), z(i), y(i))}mi=1.

max
Dz|y(ŷ):

∑
z∈Z Dz|y(ŷ)=1;∀ŷ

∑
y∈Y

∑
z∈Z

PY,Z(y, z)

∑
i:(y(i),z(i))=(y,z)

1

my,z
logDz|y(ŷ

(i)) +H(Z|Y ).

Now for a sufficiently large value of m, my,z ≈
PY,Z(y, z)m. Therefore, the above expression is approxi-
mated as:

max
Dz|y(ŷ):

∑
z∈Z Dz|y(ŷ)=1;∀ŷ

∑
y∈Y

∑
z∈Z∑

i:(y(i),z(i))=(y,z)

1

m
logDz|y(ŷ

(i)) +H(Z|Y ).

Hence, we can set L2 (i.e., the loss w.r.t. the fairness discrim-
inator) to the above expression. The rest of the objective
function is the same. Figure 5 shows the resulting FR-Train
architecture.

A.3. Additional experiments

A.3.1. SYNTHETIC DATA

We continue our experiments from Section 4.1. In particular,
we perform FR-Train with different amounts of poisoning,
and evaluate robust training with meta learning using smaller
validation sets.

FR-Train with different amounts of poisoning Table 9
shows FR-Train performances with the different levels
of poisoning. Even on the heavily poisoned (say 40%)
data, FR-Train shows marginal performance degradations
(< 6.5% decrease in DI).

Table 9. Accuracy and fairness performances of FR-Train on the
poisoned synthetic test datasets for different amount of poisoning.
We used the same label poisoning attack described in Section 2.

Data Poisoning amount DI Accuracy

Clean 0% 0.818 0.807

Poisoned

10% 0.827 0.814
15% 0.813 0.800
20% 0.802 0.800
25% 0.784 0.803
30% 0.780 0.800
35% 0.770 0.802
40% 0.765 0.806
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Figure 5. The architecture of FR-Train for equalized odds.

Meta learning with different validation set sizes Ta-
ble 10 shows the accuracy and fairness results for RML
for different validation set sizes. We observe a drastic de-
crease of accuracy and fairness when the validation set size
is 0.1% of the training data.

Table 10. Accuracy and fairness performances of the meta learning
method by (Ren et al., 2018) on the clean and poisoned synthetic
test datasets for different validation set sizes. We used the same
label poisoning attack described in Section 2, and the amount of
poisoning is 10% of Dtr .

Data Val. set size Disparate impact Accuracy

Clean 10% 0.429 0.883

Poisoned

10% 0.395 0.869
5% 0.378 0.852
0.5% 0.290 0.830
0.1% 0.098 0.714

A.3.2. REAL DATA

We continue our experiments from Sections 2 and 4.2.

Fairness Constraints on real datasets We show the
accuracy-fairness tradeoffs of Fairness Constraints (Zafar
et al., 2017) on the COMPAS and AdultCensus datasets.
Figures 6a and 6b show that both accuracy and fairness of
Fairness Constraints decrease on the poisoned data, showing
a strictly-worse tradeoff.

Training with only validation set We evaluate the base-
line that simply trains fairness algorithms on the clean vali-
dation set. Table 11 shows that the baseline performs worse
than those in Tables 2 and 3. For example, training FC on
the AdultCensus crowdsourced validation set yields (DI,
Acc) = (0.756, 0.761), which is worse than the FC base-
line result (DI, Acc) = (0.826, 0.825) as shown in Table 3.
We thus observe that the validation set is sufficient to help
discern clean and poisoned data in FR-Train, but not large
enough for algorithms to obtain high performance.

(a) Accuracy-fairness tradeoff curve on COMPAS dataset

(b) Accuracy-fairness tradeoff curve on AdultCensus dataset

Figure 6. Accuracy-fairness tradeoff curves of Fairness Constraints
on real datasets.

FR-Train using other fairness measures As we showed
in Appendix A.2, FR-Train respects equalized odds and
equal opportunity. Table 12 shows the experimental results
on the synthetic and real datasets for equalized odds. We see
that FR-Train significantly improves equalized odds with
reasonable accuracy. The results w.r.t. equal opportunity are
similar and thus not shown here.

A.4. Training methodology

The generator G is a neural network with zero or one hid-
den layer. The discriminator Df is a single layer neural
network, and the discriminator Dr is a neural network with
one hidden layer. We used 8 or 16 nodes in the hidden
layers. We set an Adam optimizer (Kingma & Ba, 2014)
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Table 11. Accuracy and fairness performances of the baseline that
trains with only validation set. We use the same validation sets
utilized in FR-Train.

Method COMPAS AdultCensus

DI Acc. DI Acc.

FC 0.796 0.647 0.761 0.756
LBC 0.796 0.647 0.795 0.799
AD 0.762 0.646 0.682 0.693

Table 12. Accuracy and fairness performances on synthetic and
real test datasets w.r.t. equalized odds. Two algorithms are com-
pared: (1) LR (non-fairness method) and (2) FR-Train.

Dataset Method Equalized odds Accuracy

Y = 0 Y = 1

Synthetic Data LR 0.351 0.804 0.885
FR-Train 0.888 0.936 0.865

COMPAS LR 0.427 0.557 0.674
FR-Train 0.718 0.959 0.628

AdultCensus LR 0.286 0.909 0.848
FR-Train 0.503 0.917 0.842

for the generator, and a stochastic gradient descent (SGD)
optimizer for each discriminator. We empirically observe
that one can stabilize the training procedure by freezing the
parameters of the fairness discriminator Df for the initial
phase of training. Thus, we choose to freeze the parameters
of the fairness discriminator Df for the first few epochs
until the generator achieves a certain accuracy. We pre-train
the generator for the first few epochs and use the genera-
tor/discriminator update ratio of 1:3 (or 1:5) for the rest of
training.

Also, we use the following details for choosing the values
of λ1, λ2, and C. For clean data, we set λ2 as a small value
(e.g., 0.1) and vary λ1 from 0 to 0.85. For poisoned data, we
set λ2 as 0.2, 0.3, or 0.4, and vary λ1 from 0 to 0.95− λ2.
Given the values of λ1 and λ2, we also normalize L1 (the
generator loss) by multiplying it with (1 − λ1 − λ2). We
set C to be a value between 0 to 3.


