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Abstract

There has been a growing realization of the po-
tential of Bayesian machine learning as a plat-
form that can provide both flexible modeling,
accurate predictions as well as coherent uncer-
tainty statements. In particular, Bayesian Additive
Regression Trees (BART) have emerged as one
of today’s most effective general approaches to
predictive modeling under minimal assumptions.
Statistical theoretical developments for machine
learning have been mostly concerned with approx-
imability or rates of estimation when recovering
infinite dimensional objects (curves or densities).
Despite the impressive array of available theoret-
ical results, the literature has been largely silent
about uncertainty quantification. In this work, we
continue the theoretical investigation of BART
initiated recently by (Rockova and van der Pas,
2017). We focus on statistical inference ques-
tions. In particular, we study the Bernstein-von
Mises (BvM) phenomenon (i.e. asymptotic nor-
mality) for smooth linear functionals of the re-
gression surface within the framework of non-
parametric regression with fixed covariates. Our
semi-parametric BvM results show that, beyond
rate-optimal estimation, BART can be also used
for valid statistical inference.

1. Introduction

With visible successes on a wide range of predictive tasks,
the role of machine learning has become increasingly rec-
ognized across a wide array of application domains rang-
ing from economics to electronic commerce. Bayesian ap-
proaches have been particularly appealing as they provide
a structured approach to uncertainty assessment via hierar-
chical modeling. Uncertainty quantification for inference
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(hypothesis testing and confidence statements) is a funda-
mental goal of statistics that goes beyond mere prediction.
This note studies the inferential potential of Bayesian Ad-
ditive Regression Trees (BART) of (Chipman et al., 2010),
one of the workhorses of Bayesian machine learning (Hahn
etal., 2017; Hill, 2011; He et al., 2019; Bleich, 2014; Linero,
2016; Linero and Yang, 2017).

In particular, we study the Gaussian approximability of
certain aspects of posterior distributions in non-parametric
regression with trees/forest priors. Results of this type, ini-
tially due to Laplace (1810) but most commonly known as
Bernstein-von Mises (BvM) theorems, imply that posterior-
based inference asymptotically coincides with the one based
on traditional frequentist 1/4/n-consistent estimators. In
this vein, BvM theorems provide a rigorous frequentist justi-
fication of Bayesian inference. The main thrust of this work
is to understand the extent to which this phenomenon holds
for various incarnations of BART.

In simple words, the BvM phenomenon occurs when, as
the number of observations increases, the posterior distribu-
tion has approximately the shape of a Gaussian distribution
centered at an efficient estimator of the parameter of inter-
est. Moreover, the posterior credible sets, i.e. regions with
prescribed posterior probability, are then also confidence
regions with the same asymptotic coverage. This property
has important practical implications in the sense that con-
structing confidence regions via variation in MCMC draws
is relatively straightforward compared to direct construc-
tions. Under fairly mild assumptions, BvM statements can
be expected to hold in regular finite-dimensional models
(van der Vaart, 2000).

Unfortunately, the frequentist theory on asymptotic normal-
ity does not generalize fully to semi- and non-parametric
estimation problems (Bickel and Kleijn, 2012). Freedman
initiated the discussion on the consequences of unwisely
chosen priors in the 1960’s, providing a negative BvM
result in a basic f5-sequence Gaussian conjugate setting.
The warnings against seemingly innocuous priors that may
lead to posterior inconsistency were then reiterated many
times in the literature, including (Cox, 1993) and (Diaco-
nis and Freedman, 1998; 1986). Other counterexamples
and anomalies of the BvM behavior in infinite-dimensional
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problems can be found in (Johnstone, 2010) and (Leahu,
2011). While, as pointed out by (Bickel and Kleijn, 1999),
analogues of the BvM property for infinite-dimensional pa-
rameters are not immediately obvious, rigorous notions of
non-parametric BvM’s have been introduced in several pi-
oneering works (Leahu, 2011; Ghosal, 2000; Castillo and
Nickl, 2014; 2013).

Unwisely chosen priors leave room for unintended conse-
quences also in semi-parametric contexts (Rivoirard and
Rousseau, 2012). Castillo (2012a) provided an interest-
ing counterexample where the posterior does not display
the BvM behavior due to a non-vanishing bias in the cen-
tering of the posterior distribution. Various researchers
have nevertheless documented instances of the BvM limit
in semi-parametric models (a) when the parameter can be
separated into a finite-dimensional parameter of interest and
an infinite-dimensional nuisance parameter (Castillo, 2012b;
Shen, 2002; Bickel and Kleijn, 2012; Cheng and Kosorok,
2008; Johnstone, 2010; Jonge and van Zanten, 2013), and
(b) when the parameter of interest is a functional of the
infinite-dimensional parameter (Rivoirard and Rousseau,
2012; Castillo and Rousseau, 2015). In this work, we fo-
cus on the latter class of semi-parametric BvM’s and study
the asymptotic behavior of smooth linear functionals of the
regression function.

We consider the standard non-parametric regression setup,
where a vector of responses Y™ = (Y1,...,Y,) is linked

to fixed (rescaled) predictors &; = (x;1, ..., zip)" € [0,1]P
for each 1 < ¢ < n through
Y = fol:) +e, & “ N(0,1), (D

where fj is an unknown a-Hélder continuous function on a
unit cube [0, 1]7. The true generative model giving rise to
(1) will be denoted with P{.

Each model is parametrized by f € F, where F is an
infinite-dimensional set of possibilities of fy. Let ¥ : F —
R be a measurable functional of interest and let II be a
probability distribution on F. Given observations Y "
from (1), we study the asymptotic behavior of the posterior
distribution of W(f), denoted with IT[¥(f) | Y ™]. Let
N (0, V) denote the centered normal law with a covariance
matrix V. In simple words, we want to show that under
the Bayesian CART or BART priors on F, the posterior
distribution satisfies the BvM-type property in the sense that

IV (B() =) | YP)~NO,V) @

as n — oo in [P{-probability, where W is a random centering
point estimator and where ~ stands for weak convergence.
We make this statement more precise in Section 2

Castillo and Rousseau (2015) provide general conditions
on the model and on the functional ¥ to guarantee that (2)

holds. These conditions describe how the choice of the
prior influences the bias ¥ and variance V. Building on this
contribution, we provide (a) tailored statements for various
incarnations of tree/forest priors that have occurred in the
literature, (b) extend the considerations to adaptive priors
under self-similarity.

1.1. Notation

The notation < will be used to denote inequality up to
a constant, a < b denotes a < bandb < aanda Vb
denotes max{a, b}. The e-covering number of a set {2 for a
semimetric d, denoted by N (g, €2, d), is the minimal number
of d-balls of radius € needed to cover set (). We denote by
#(-; o) the normal density with zero mean and variance
o2 With || - ||2 we denote the standard Euclidean norm and
with Apin () and Apq. (X) the extremal eigenvalues of a
matrix Y. The set of a-Holder continuous functions (i.e.
Holder smooth with 0 < « < 1) on [0, 1]? will be denoted
with H.

2. Rudiments

Before delving into our development, we first make precise
the definition of asymptotic normality.

Definition 2.1. We say that the posterior distribution for
the functional V( f) is asymptotically normal with centering
W,, and variance V' if, for 5 the bounded Lipschitz metric
for weak convergence, and the real-valued mapping T, :
f = V/n[Y(f) — ©,), it holds that

B[ | Yot N(0,V)) =0 3)

in Py probability as n — oo, which we denote as II[- |
Y™ o7t s N(0,V).

When efficiency theory at the rate y/n is available, we say
that the posterior distribution satisfies the BvM theorem if
(3) holds with ¥,, = ¥ +0p(1/4/n) for ¥ a linear efficient
estimator of W( fy). The proof of such a statement typically
requires of a few steps (a) a semi-local step where one
proves that the posterior distribution concentrates on certain
sets and (b) a strictly local study on these sets, which can
be carried out under the LAN (local asymptotic normality)
conditions. Denoting the log-likelihood with

n " Y — f(x)]2
) = Mrogzn 37 B S,

i=1

we define the log-likelihood ratio A,,(f) = £, (f) — € (fo)
and express it as a sum of a quadratic term and a stochastic
term via the LAN expansion as follows

Anlf) = =FIF = foll} + VAW (f = fo), )

where
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If = foll2

- Z fO mz mz)]za
Wal(f — fo) = (f — an\/ﬁ€>L
=Y Vi) -

fo(z:)].

Recall that the phrase “semi-parametric” here refers to the
problem of estimating functionals in an infinite-dimensional
model rather than Euclidean parameters in the presence of
infinite-dimensional nuisance parameters. In this paper, we
consider the smooth linear functional

1 n
U(f) == ) alm)f(z (5)
(=5 L atw)f)

for some smooth uniformly bounded ~-Holder continuous
function a(-), ie. [laflc < C, and a € H}} for some
0 < v < 1. Were v > 1, Holder continuity would imply
that a(-) is a constant function and (5) boils down to a con-
stant multiple of the average regression surface evaluated at
fixed design points. This quantity is actually of independent
interest and has been studied in a different setup by (Ray
and van der Vaart, 2018) who focus on the posterior distri-
bution of the “half average treatment effect estimator” (the
mean regression surface) in the presence of missing data
and random covariates. Our results can be extended to this
scenario.

3. Tree and Forest Priors

Regression trees provide a piecewise constant reconstruction
of the regression surface fj, where the pieces correspond
to terminal nodes of recursive partitioning (Donoho, 1997).
Before introducing the tree function classes, we need to
define the notion of tree-shaped partitions.

Starting from a parent node [0, 1], a binary tree partition
is obtained by successively applying a splitting rule on a
chosen internal node. Each such internal node is divided into
two daughter cells with a split along one of the p coordinates
at a chosen observed value. These daughter cells define two
new rectangular subregions of [0, 1], which can be split
further (to become internal nodes) or end up being terminal
nodes. The terminal cells after K — 1 splits then yield a
tree-shaped partition 7 = {Q;}X_ | consisting of boxes
Q. C [0,1]P. We denote with VX the set of all tree-shaped
partitions that can be obtained by recursively splitting K —1
times with each split made at one of the observed values

X = {wi}le.

The tree functions can be then written as

K
fra@) =) T(z € )b, ©6)
k=1

where 7 = {0}, € VK and where B8 =
(B1,---,Br)" € RE isa vector of jump sizes. Solitary trees
are not as good performers as ensembles of trees/forests
(Breiman, 2001; Chipman et al., 2010). The forest mapping
underpinning the BART method of (Chipman et al., 2010)
is the following sum-of-trees model indexed by a collection
of T tree-shaped partitions £ = [T, ..., 7] and heights

=[8'....8":
Zth gt (T for 7% € VX' and B e RX".
(7

The prior distribution is assigned over the class of forests
F = {fe.p(x) asin (7) for some £ and Band T € N}

fes(x

in a hierarchical manner. One first assigns a prior distribu-
tion over 7' (or sets it equal to some value) and then a prior
over the tree-shaped partitions 7 as well as heights 3" for
1<t<T.

3.1. Tree Partition Priors 7(7)

In 1998, there were two Bayesian CART developments that
surfaced independently of each other: Chipman et al. (1997)
and Denison et al. (1998). Albeit related, the two methods
differ in terms of the proposed tree partition prior 7 (7).

The prior of Denison et al. (1998) is equalitarian in the sense
that trees with the same number of leaves are a-priori equally
likely, regardless of their shape. To prioritize smaller trees
(that do not overfit), one assigns a complexity prior 7(K)
on the tree size (i.e. the number of bottom nodes) K. They
considered the Poisson distribution
)\K
m(K) = (e’\—l)K!’K_l’Q""’ A>0.
®)

Given the tree size K, one assigns a uniform prior over tree
topologies

for some

I(T € VE)

(T | K)ZW,

©))
where | VK | is the cardinality of VX. This prior can be
straightforwardly implemented using Metropolis-Hastings

strategies (Denison et al., 1998) and was studied theoreti-
cally by Rockova and van der Pas (2017).

The Bayesian CART prior of Chipman et al. (1997), on the
other hand, specifies the prior implicitly as a tree-generating
Galton-Watson (GW) process. This process provides a math-
ematical representation of an evolving population of individ-
uals who reproduce and die subject to laws of chance. The
tree growing process is characterized as follows. Starting
with a root node oo = [0, 1]7, one decides to split each
node € into two children by flipping a coin. We are tac-
itly using the two-index numbering of nodes (I, k), where
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Figure 1: A binary tree of prior cut probabilities in Bayesian
CART by Chipman et al. (1998).

I corresponds to the tree layer and k denotes the (k + 1)%¢
left-most node at the [*" layer. In order to prevent the trees
from growing indefinitely, the success probability decays
with [, making bushy trees far less likely. Let us denote with
~ir € {0,1} the binary splitting indicator for whether or
not a node {2;;; was divided. Chipman et al. (1997) assume

P(yi, = 1)

=pi = ( (10)

o

1+41)°
for some o € (0,1) and 6 > 0. A plot of the hierarchi-
cally organized split probabilities is in Figure 1. Roc¢kova
and Saha (2019) propose a modification p;;, = o for some
1/n < « < 1, which yields optimal posterior concentra-
tion in the ¢5 sense. If the node €, splits (i.e. v = 1),
one chooses a splitting rule by first picking a variable j
uniformly from available directions {1,...,p} and then
picking a split point ¢ uniformly from available data values
Tl1jy--+sLnj-

Unlike in the homogeneous case (where all v;;’s are iid),
(10) defines a heterogeneous GW process where the off-
spring distribution is allowed to vary from generation to
generation, i.e. the variables ~;;, are independent but non-
identical.

3.2. Priors on Jump Sizes 7(3 | K)

After partitioning the predictor space into K nested rect-
angular cells, one needs to assign a prior on the presumed
level of the outcome. Throughout this work, we denote
with 3 = (B1,...,0K)’ the vector of jump sizes associ-
ated with K partitioning cells. Both Chipman et al. (1997)
and Denison et al. (1998) assumed an independent product
of Gaussians 7(3) ~ Hszl é(Br; o?) for some 2 > 0.
Chipman et al. (2000) argue, however, that the simple in-
dependence prior on the bottom leaf coefficients 5 may
not provide enough structure. They claim that values S
that correspond to nearby cells in the predictor space should
be more similar so that the prior incorporates local smooth-
ness. They suggest a prior on bottom leaves that aggregates
priors on the ancestral internal nodes and, in this way, in-
duces correlation among neighboring cells. Motivated by

these considerations, here we allow for general correlation
structures by assuming a multivariate Gaussian prior

(B | K) ~ Nk (0,%), (11

with A\pin (X) > ¢ > 0 and Az (X) < n and where X is
some K x K positive definite matrix. We also consider an
independent product of Laplace priors (which was not yet
studied in this context)

K

where ¢(5; A) = A/2 e”\m| for some A\ > 0.

4. Simple One-dimensional Scenario

To set the stage for our development, we start with a simple
toy scenario where (a) p = 1, (b) K is regarded as fixed,
and (c) when there is only one partition 7 = {Q;}5_ |
consisting of K equivalent blocks. The equivalent blocks
partition 7 = {Qk}le (Anderson, 1966) comprises K
intervals € with roughly equal number of observations in
them, i.e. p(Qx) = + 30" I(z; € Q) < 1/K. For the
sake of simplicity, we will also assume that the data points
lie on a regular grid, where z; = i/n for 1 < < nin which
case the intervals €2 have also roughly equal lengths. This
setup was studied previously by van der Pas and Rockova
(2017) in the study of regression histograms. We relax this
assumption in the next section. We denote the class of
approximating functions as

ZHmEQk

13)
where we have omitted the subscript 7 and highlighted
the dependence on K. We denote with IT¥(f) the prior
distribution over F[K], obtained by assigning the prior (11)
or (12). To further simplify the notation, we will drop the
subscript 3 and write f¥ when referring to the elements of
FIK].

f[K]{fé(:[ 1P = R; f (z

The aim is to study the posterior distribution of ¥ (%) and
to derive conditions under which

V(P (f5) - w,) | Y (14)

converges to a normal distribution (in IPj probability) with
mean zero and variance Vp = ||a||%, where W, is a random
centering, distributed according to a Gaussian distribution
with mean U( fy) and variance Vj.

Using the fact that convergence of Laplace transforms for
all ¢ in probability implies convergence in distribution in
probability (Section 1 of Castillo and Rousseau (2015)) this
BvM statement holds when V¢ € R

Eﬂ[etﬁ(W(fK)—@K) | Y™ - e%l\al\Q (15)
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in Py probability as n — oo, where T x 1s a linear efficient
estimator of W( fj) such that

ViU —0,) = op(1).

In order to show (15), we first need to introduce some nota-
tion. Let a€ be the projection of a onto F[K], i.e.

K
)= I(xecQ)a
k=1

af(

. n I(x; € a(x;
with Cli( = Zi:l ( 761 = u((ﬂk))7
above as pu(Q) = 237" I(w; € Q). Similarly, we

denote with f& = Zle I(x € Q)BE the projection of

where 1(§2) was defined

fo onto F[K] with jump sizes 3 = (3, ..., BK). Next,
we define

~ W, (a® W,
G =0 (7)) + T g g, = w g+ T2@

vn vn
The following Theorem characterizes the BvM property
when K is sufficiently large and when « is known.

Theorem 4.1. Assume the model (1) with p = 1, where f
is endowed with a prior on F[K| in (13) induced by (11).
Assume fo € H and a € H] for 1/2 < a < 1 and vy >
1/2. With the choice K = K,, = |(n/logn)Y/ e+t | we
have

11 (v (95 = Bxc) | Y) = N0, alf})

in Py -probability as n — oo.
Proof: Appendix Section 1.1.

Remark 4.1. Theorem 4.1 applies to the so-called symmet-
ric dyadic trees. In particular, when n = 2" for some r > 0,
the equivalent blocks partition with K = 2F cells can be
represented with a symmetric full binary tree which splits
all the nodes at dyadic rationals up to a resolution L.

Theorem 4.1 is related to Theorem 4.2 of Castillo and

Rousseau (2015) for density estimation with non-adaptive

histogram priors. The proof here also requires two key in-

gredients. The first one is the construction of a prior which

does not change too much under the change of measures

from f¥ to f&, where fX is a step function with shifted
K

heights 8} = B), — MTI;L This property holds for (correlated)

Gaussian step heights and is safely satisfied by other prior
distributions with heavier tails.

Remark 4.2. Theorem 4.1 holds for Laplace product prior
(B | K)= HkK:1 (B, \) (as shown in the Supplemen-
tal Material). It is interesting to note that under the Laplace
prior, one can obviate the need for showing posterior con-
centration around a projection of fo onto F[K|, which is
needed for the Gaussian case.

The second crucial ingredient (as in the Proposition 1 of
Castillo and Rousseau (2015)) is the so-called no bias con-
dition:

ﬁ(a—al{,fo —f0K>L =o(1).

This condition vaguely reads as follows: one should be
able to approximate simultaneously a(-) and fo(-) well
enough using functions in the inferential class F[K]. Us-
ing the Cauchy-Schwartz inequality and Lemma 3.2 of
Rockova and van der Pas (2017), this condition will be
satisfied when /nK ~(®t7) — 0. Choosing K = K,, =
|(n/logn)*/ 22+ | (16) holds as long as v > 1/2. Dif-
ferent choices of K,,, however, would imply different re-
strictions on « and «. The no-bias condition thus enforces
certain limitations on the regularities « and . This poses
challenges for adaptive priors that only adapt to the regu-
larity of fo, which may not be necessarily similar to the
regularity of a. This phenomenon has been coined as the
curse of adaptivity (Castillo and Rousseau, 2015).

(16)

5. Overcoming the Curse of Adaptivity

The dependence of K, on o makes the result in Theorem 4.1
somewhat theoretical. In practice, it is common to estimate
the regularity from the data using, e.g., a hierarchical Bayes
method, which treats both K and the partition 7 as unknown
with a prior. This fully Bayes model brings us a step closer
to the actual Bayesian CART and BART priors. Treating
both K and 7 as random and assuming 7" = 1, the class of
approximating functions now constitutes a union of shells

where each shell

FIKI = |J FIT.

Tevk

itself is a union of sets F[T] =
{frp of the form (6) for some 3 € RX}.  The sets
F[T] collect all step functions that grow on the same tree
partition 7~ € VX,

As mentioned in Castillo and Rousseau (2015), obtaining
BvM in the case of random K is case dependent. As the
prior typically adapts to the regularity of fy, the no-bias
condition (16) may not be satisfied if the regularities of a
and fy are too different. The adaptive prior can be detrimen-
tal in such scenarios, inducing a non-vanishing bias in the
centering of the posterior distribution (see Castillo (2012a)
or Rivoirard and Rousseau (2012)). Roughly speaking, one
needs to make sure that the prior supports large enough
K values and sufficiently regular partitions 7 so that f
and a can be both safely approximated. To ensure this be-
havior, we enforce a signal strength assumption through
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self-similarity requiring that the function f; “does not ap-
pear smoother than it actually is” (Gine and Nickl, 2015).
Such qualitative assumptions are natural and necessary for
obtaining adaptation properties of confidence bands (Picard
and Tribouley, 2000; Bull, 2012; Gine and Nickl, 2010;
Nickl and Szabo, 2016; Ray, 2017).

5.1. Self-similarity

Various self-similarity conditions have been considered in
various estimation settings, including the supremum-norm
loss (Bull, 2012; Gine and Nickl, 2010; 2011) as well as the
{5 loss (Nickl and Szabo, 2016; Szabo et al., 2015). In the
multi-scale analysis, the term self-similar coins “desirable
truths” fo that are not so difficult to estimate since their
regularity looks similar at small and large scales. Gine and
Nickl (2010) argue that such self-similarity is a reasonable
modeling assumption and Bull (2012) shows the set of self-
dissimilar Holder functions (in the /., sense) is negligible.
Szabo et al. (2015) provided an /»-style self-similarity re-
striction on a Sobolev parameter space. Nickl and Szabo
(2016) weakened this condition and showed that it “cannot
be improved upon” and that the statistical complexity of the
estimation problem does not decrease quantitatively under
self-similarity in Sobolev spaces.

We consider a related notion of /5 self-similar classes within
the context of fixed-design regression as opposed to the
asymptotically equivalent white noise model. To this end,
let us first formalize the notion of the cell size in terms of the
local spread of the data and introduce the partition diameter
(Verma et al., 2009; Rockova and van der Pas, 2017).

Definition 5.1. (Diameter) Denote by T = {Qx}5_ | a

partition of [0,1]? and by X = {x1,...,x,} a collection

of data points in [0, 1]P. We define a diameter of Q) as
diam (Qk) =

max

o max e =yl

and with diam (T) = \/2521 1(Q)diam? (€,) we de-
fine a diameter of the entire partition T where () =
% Z?:l H(:cl S Qk) = n(Qk)/n

Here, we do not require that the design points are strictly
on a grid as long as they are regular according to Definition
3.3 of Rockova and van der Pas (2017). We define regular
datasets below. First we introduce the notion of the k-d
tree (Bentley, 1975). Such a partition 7 is constructed by
cycling over coordinate directions in S = {1,...,p}, where
all nodes at the same level are split along the same axis. For
a given direction j € S, each internal node, say €2}, will be
split at a median of the point set (along the j** axis). This
split will pass | u(2;)n/2] and [u(925)n/2] observations
onto its two children, thereby roughly halving the number
of points. After s rounds of splits on each variable, all K
terminal nodes have at least |n/K | observations, where

K =2s1Sl,

We now define regular datasets in terms of the k-d tree
partition.

Definition 5.2. Denote by T = {4}, € VE the k-d
tree where K = 2°P. We say that a dataset X = {x;}?_,
is regular if

K
 ax diam(Q) < M I;M(Qk)dlam(Qk) (17)

for some large enough constant M > 0 and all s € N\{0}.

The definition states that in a regular dataset, the maximal
diameter in the k-d tree partition should not be much larger
than a “typical” diameter.

Definition 5.3. We say that the function fo € H, is self-
similar, if there exists constant M > 0 and D > 0 such that

IS = foll7 > Mdiam(T)>* (18)

for all T € VX such that diam(T) < D where [} is the
the || - || projection of fo onto F[T].

We can relate the assumption (18) to the notion of self-
similarity in the Remark 3.4 of Szabo et al. (2015). To
see this connection, assume for now the equivalent block
partition 7 from Section 4, whose diameter diam(7) is
roughly 1/K when the design points lie on a regular grid.
The study of regression histograms with K = 2% equivalent
blocks under a fixed regular design is statistically equivalent
to the multi-scale analysis of Haar wavelet coefficients up to
the resolution L — 1 in the white noise model. The projected
model onto the Haar basis can be written as

Yir = f + for 0<I<L and 0<k<?2,

%Elk
where g, YN (0,1) and where f), are the wavelet coeffi-
cients indexed by the resolution level [ and the shift index
k. The speed of decay of f}), determines the statistical prop-
erties of fy, where a-Holder continuous functions satisfy
| £, IS 271 eF1/2) Assuming the equivalent blocks parti-
tion 7 with K = 2% blocks, the condition in the Remark
3.4 of Szabo et al. (2015) writes as follows: there exists
Ko € Nsuch that VK > K, we have fol | f9(z)— fo(z) |2
de = Y Y (f5)? > MK—2* < diam(7)?*. The
I>L 0<k<2!

first equality above stems from the orthogonality of the
Haar bases. In this vein, (18) can be regarded a general-
ization of this condition to imbalanced partitions and fixed
design under the norm || - || ..

To get even more insight into (18) in fixed design regression,
we take a closer look at the approximation gap. We have
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Ifo— f212 = Sor, u(Q)Var [fo | ], where

Var [fo mk]:@ 3 (mw—@ 3 fo(wi))

x; EQp x; €EQp

is the local variability of the function f; inside (2. The
function fy will be self-similar when the variability inside
each cell )’s is large enough to be detectable, i.e.

. . 2a
1§111€1£1(Var [fo | Q] > Mdiam=*(T)

for all T = {Qx} |, € VE such that diam(7) < D for
some D > 0. From the definition of the partition diameter,
it turns out that this will be satisfied when Var [fy | Q%] >
diam®* () forall 1 <k < K and T = {Q; }i<, € VK.
Functions that are nearly constant in long intervals will not
satisfy this requirement. The premise of self-similar func-
tions is that their signal should be detectable with partitions
T that undersmooth the truth. In addition, it follows from
the proof of Lemma 3.2 of Rockova and van der Pas (2017)
that || f% — fol|? < diam(7)2“. The lower bound in (18)
thus matches the upper bound making the approximation
error behave similarly across partitions with similar diame-
ters, essentially identifying the smoothness. Based on these
considerations, we introduce the notion of regular partitions
that are not too rough in the sense that their diameters shrink
sufficiently fast.

Definition 5.4. For some M > 0 and for some arbitrarily
slowly increasing sequence M, — oo, we denote

dp (@) = (M, /M) o=t/ ot/ (19)

A tree partition T € VX is said to be n-regular for a given
n € Nif

diam(7) < dn(a).
We denote the subset of all n-regular partitions with R.,.

The following Lemma states that, when fj is self-similar, the
posterior concentrates on partitions that are not too complex
or irregular.

Lemma 5.1. Assume that fo € Hy is self-similar, p S
Viogn and that the design X = {x;}_, is regular. Un-
der the Bayesian CART prior ((8) and (9) or (10)) with
Gaussian or Laplace step heights ((11) or (12)) we have

H({T¢Rn}U{TEVK:K>Kn} | Y<">>—>o

in Py-probability as n,p — oo, where R, are all
regular partitions and K, = Ms|ne/logn| =
(n/log n)P/2+P) for some My > 0.

Proof: Appendix Section 1.5.

5.2. Adaptive BvM for Smooth Functionals when p = 1

It is known that signal-strength conditions enforced through
self-similarity allow for the construction of honest adap-
tive credible balls (Gine and Nickl, 2010). Our notion of
self-similarity is sufficient for obtaining the adaptive semi-
parametric BvM phenomenon for smooth linear functionals.
Denote with

R(K,) ={T € R, NVE for K <K,}.

Lemma 5.1 shows that the posterior concentrates on this
set so that we can perform the analysis locally. For any
T € R(K,,), we write

= Wn(aT)
Uy = 0(f]) + —i47)
T (fO ) + \/ﬁ )
where fJ and ar are the || - || projections onto F[T].

Under the adaptive prior (treating the partitions as ran-
dom with a prior) the posterior is asymptotically close to a
mixture of normals indexed by 7 € R(K,,) with weights
(T | Y™ R(K,)). When

max — =o(1 20
ER%KH) | ||a7 ||L HaHL | 0( ) (20)

and
TGR%K,L) ( ) OP( ) @D

this mixture boils down to the target law A (0, ||a|%). The
first condition (20) holds owing to the fact that ||a—a7 ||, <
dp(a)” — 0 (Lemma 3.2 of Rockova and van der Pas
(2017)). The second condition (21) will be satisfied as long
as

Vnd,(a)*t — 0. (22)
For T € R(K,) and assuming p = 1, we have for M,, <
Vdlogn
Vnd,(a)*t < nlﬂ_ﬁ(log n)aTH -0
for v > 1/2. We can now state an adaptive variant of

Theorem 4.1 for random partitions.

Theorem 5.1. Assume model (1) with p = 1, where f, €
HY and a € H] for1/2 < a < 1and~y > 1/2. Assume
that fy is self-similar. Under the Bayesian CART prior ((8)
and (9) or (10)) with Gaussian or Laplace step heights ((11)
or (12)), we have

1 (Vi ((frp) = B7) | Y) s N0, al2)

in P -probability as n — oo.

Proof: Appendix Section 1.3.
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Theorem 5.1 can be regarded as an adaptive extension of the
regular density histogram result of Castillo and Rousseau
(2015). Here, we instead focus on irregular and adaptive
regression histograms underpinned by tree priors and treat
both K and 7 as random under self-similarity. The change
of measure argument is performed locally for each regular
partition.

Theorem 5.1 can be extended to tree ensembles. The self-
similarity assumption would be instead formulated in terms
of a global partition, which is obtained by super-imposing all
tree partitions inside £ and by merging empty cells with one
of their neighbors. Since tree ensembles also concentrate
at near-minimax speed (Rockova and van der Pas, 2017;
Rockova and Saha, 2019), one obtains that the posterior
concentrates on regular ensembles (where the diameter is
small). The analysis is then performed locally on regular
ensembles in the same spirit as for single trees.

5.3. Average Regression Surface when p > 1

One of the main limitations of tree/forest methods is that
they cannot estimate optimally functions that are smoother
than Lipschitz (Scricciolo, 2007). The reason for this lim-
itation is that step functions are relatively rough; e.g. the
approximation error of histograms for functions that are
smoother than Lipschitz is at least of the order 1/ K, where
K is the number of bins (Roc¢kova and van der Pas, 2017).
The number of steps required to approximate a smooth func-
tion well is thus too large, creating a costly bias-variance
tradeoff. When p > 1, the no-bias condition (16) would
be satisfied if v > p/2 which, from the Holder continuity,
holds when a(«;) is a constant function.

Focusing on the actual BART method when p > 1, we now
rephrase Theorem 5.1 for the average regression functional
(5) obtained with a(-) = 1. When a(-) is a constant function,
the no-bias condition (16) is automatically satisfied. Recall
that the second requirement for BvM pertains to the shift
of measures. It turns out that the Gaussian prior (11) may
induce too much bias when the variance is too small (fixed
as n — 00). We thereby deploy an additional assumption in
the prior to make sure that the variance increases suitably
with the number of steps K. For the BART prior on step
heights ﬁt of each tree 7! € £, we assume either a Gaussian
prior 3" ~ Nx:(0, K* x Ix+) or the Laplace prior with
\¢ =< 1/v/K*. Having the variance scale with the number of
steps is generic in the multi-scale analysis of Haar wavelets.

The following theorem is formulated for a few variants
of the BART prior. This prior consists of (a) either fixed
number of trees T' (as recommended by (Chipman et al.,
2010)), (b) the Galton-Watson prior (10) or the conditionally
uniform tree prior (8) and (9), independently for each tree,
and (c) the Gaussian prior 3" ~ N (0, K* x I+ or the
Laplace prior with \; = 1/v/K*, where K" is the number

of bottom nodes of a tree 7. Below, we denote with \/I\/g =
U(f2) + Wy, (a)/+/n, where fg is a projection of f; onto
F[&], a set of all forest mappings (7) supported on the tree
ensemble .

Theorem 5.2. Assume model (1) with p > 1, where f €
M, is endowed with the BART prior (as stated above) and
where logp <nand 1/2 < a < 1. Assume that a(-) = 1
in (5). When the design X = {x;}_, is regular, we have

(Vi (¥(fes) =) | YO) = N, al) in Bj-

probability as n — oo.

Proof: Appendix Section 1.4.

6. Discussion

This paper focuses on the important problem of uncertainty
quantification and inference for machine learning. We pro-
vide frequentist justifications for Bayesian inference with
BART based on (smooth) linear functionals of the regression
function. These results can be used for testing hypotheses
pertaining to exceedance of (weighted) average level, i.e.
Sy aifo(x;) > c for some ¢ € R, or for causal infer-
ence (Hill, 2011; Hahn et al., 2017). Indeed, embedding
our development within the missing data framework of Ray
(2017) will provide asymptotic normality results for average
treatment estimation. This work will be reported elsewhere.

Both Theorem 4.1 and Theorem 5.1 impose restrictions on «
and y to make sure that they are compatible. These theorems
can be obtained without assuming & > 1/2 when a(-) is
constant. The self-similarity assumption (a very typical
assumption for uncertainty quantification of densities and
functions) makes it possible to identify smoothness so that
« does not need to be known in Theorem 5.1. Variants of
this assumption are pervasive in the literature on adaptive
confidence sets construction. This assumption is, again, not
needed when a(-) is constant.

We focus on semi-parametric BvM’s for linear functionals
of the infinite-dimensional regression function parameters.
This semi-parametric setup already poses nontrivial chal-
lenges on hierarchical Bayes. We have reiterated and high-
lighted some of the challenges here and addressed them
with self-similarity identification. Our results serve as a step
towards obtaining fully non-parametric BvM for the actual
function fy, as opposed to just its low-dimensional sum-
maries. These results will be reported in follow-up work.
Finally, the limitation p = 1 for smooth functions a(-) is
due to the fact that BART cannot optimally approximate
functions smoother than Lipschitz. This can be overcome by
considering smoother versions of BART (Linero and Yang,
2017).
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