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Abstract
We study generalization properties of weakly su-
pervised learning, that is, learning where only a
few “strong” labels (the actual target for predic-
tion) are present but many more “weak” labels are
available. In particular, we show that pretraining
using weak labels and finetuning using strong can
accelerate the learning rate for the strong task to
the fast rate of O(1/n), where n is the number
of strongly labeled data points. This acceleration
can happen even if, by itself, the strongly labeled
data admits only the slower O(1/√n) rate. The
acceleration depends continuously on the number
of weak labels available, and on the relation be-
tween the two tasks. Our theoretical results are
reflected empirically across a range of tasks and
illustrate how weak labels speed up learning on
the strong task.

1. Introduction
While access to large amounts of labeled data has enabled
the training of big models with great successes in applied
machine learning, labeled data remains a key bottleneck.
In numerous settings (e.g., scientific measurements, experi-
ments, medicine), obtaining a large number of labels can be
prohibitively expensive, error prone, or otherwise infeasible.

When labels are scarce, a common alternative is to use ad-
ditional sources of information: “weak labels” that contain
information about the “strong” target task and are more
readily available, e.g., a related task, or noisy versions of
strong labels from non-experts or cheaper measurements.

Such a setting is called weakly supervised learning, and,
given its great practical relevance, it has received much at-
tention (Zhou, 2018; Pan & Yang, 2009; Liao et al., 2005;
Dai et al., 2007; Huh et al., 2016). A prominent example
that enabled breakthrough results in computer vision and is
now standard is pretraining, where one first trains a com-

1Massachusetts Institute of Technology, Cambridge, MA 02139.
Correspondence to: Joshua Robinson <joshrob@mit.edu>.

Proceedings of the 37th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

plex model on a related, large data task, and to then uses
the learned features for finetuning on the small-data target
task (Girshick et al., 2014; Donahue et al., 2014; Zeiler &
Fergus, 2014; Sun et al., 2017). Numerous approaches to
weakly supervised learning have succeeded in a variety of
tasks; beyond computer vision (Oquab et al., 2015; Durand
et al., 2017; Carreira & Zisserman, 2017; Fries et al., 2019).
Examples include clinical text classification (Wang et al.,
2019), sentiment analysis (Medlock & Briscoe, 2007), so-
cial media content tagging (Mahajan et al., 2018) and many
others. Weak supervision is also closely related to unsu-
pervised learning methods such as complementary and con-
trastive learning (Xu et al., 2019; Chen & Batmanghelich,
2019; Arora et al., 2019), and particularly to self-supervised
learning (Doersch et al., 2015), where feature maps learned
via supervised training on artificially constructed tasks have
been found to even outperform ImageNet learned features on
certain downstream tasks (Misra & van der Maaten, 2019).

In this paper, we make progress towards building theoretical
foundations for weakly supervised learning, i.e., where we
have a few strong labels, but too few to learn a good model
in a conventional supervised manner. Specifically we ask,

Under what conditions can large amounts of
weakly labeled data provably help us learn
a better model than strong labels alone?

We answer this question by analyzing a generic feature
learning algorithm that learns features by pretraining on
the weak task, and fine-tunes a model on those features for
the strong downstream task. While generalization bounds
for supervised learning typically scale as O(1/√n), where
n is the number of strongly labeled data points, we show
that the pretrain-finetune algorithm can do better, achieving
the superior rate of Õ(n−γ) for 1/2 ≤ γ ≤ 1, where
γ depends on how much weak data is available, and on
generalization error for the weak task. This rate smoothly
interpolates between Õ(1/n) in the best case, when weak
data is plentiful and the weak task is not too difficult, and
slower rates when less weak data is available or the weak
task itself is hard.

One instantiation of our results for categorical weak labels
says that, if we can train a model with O(1/√m) excess risk
for the weak task (where m is the amount of weak data),
and m = Ω(n2), then we obtain a “fast rate” Õ(1/n) on the
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excess risk of the strong task. This speedup is significant
compared to the commonly observedO(1/√n) “slow rates”.

To obtain any such results, it is necessary to capture the task
relatedness between weak and strong tasks. We formulate a
general sufficient condition: that there exists a shared mutual
embedding for which predicting the strong label is “easy”,
and predicting the weak label is possible. “Easy” prediction
is formalized via the central condition (van Erven et al.,
2012; 2015), a property that ensures that learning improves
quickly as more data is added. We merely assume existence
of such an embedding; a priori we do not know what this
shared embedding is. Our theoretical analysis shows that
learning an estimate of the embedding by pretraining on the
weak task still allows fast learning on the strong task.

In short, we make the following contributions:

• We introduce a theoretical framework for analyzing
weakly supervised learning problems.

• We propose the shared embedding plus central condi-
tion as a viable way to quantify relatedness between
weak and strong tasks. The condition merely posits the
existence of such an embedding; this makes obtaining
generalization bounds non-trivial.

• We obtain generalization bounds for the strong task.
These bounds depend continuously on two key quan-
tities: 1) the growth rate of the number m of weak
labels in terms of the number n of strong labels, and
2) generalization performance on the weak task.

• We show that in the best case, when m is sufficiently
larger than n, weak supervision delivers fast rates.

We validate our theoretical findings, and observe that our
fast and intermediate rates are indeed observed in practice.

1.1. Examples of Weak Supervision

Coarse Labels. It is often easier to collect labels that cap-
ture only part of the information about the true label of
interest (Zhao et al., 2011; Guo et al., 2018; Yan et al., 2015;
Taherkhani et al., 2019). A particularly pertinent example
is semantic labels obtained from hashtags attached to im-
ages (Mahajan et al., 2018; Li et al., 2017). Such tags are
generally easy to gather in large quantities, but tend to only
capture certain aspects of the image that the person tagging
them focused on. For example, an image with the tag #dog
could easily also contain children, or other label categories
that have not been explicitly tagged.

Crowd Sourced Labels. A primary way for obtaining large
labeled data is via crowd-sourcing using platforms such as
Amazon Mechanical Turk (Khetan et al., 2018; Kleindess-
ner & Awasthi, 2018). Even for the simplest of labeling
tasks, crowd-sourced labels can often be noisy (Zhang &
Sabuncu, 2018; Branson et al., 2017; Zhang et al., 2014),

which becomes worse for labels requiring expert knowledge.
Typically, more knowledgeable labelers are more expen-
sive (e.g., professional doctors versus medical students for a
medical imaging task), which introduces a tradeoff between
label quality and cost that the user must carefully manage.

Object Detection. A common computer vision task is to
draw bounding boxes around objects in an image (Oquab
et al., 2015). A popular alternative to expensive bounding
box annotations is a set of words describing the objects
present, without localization information (?Bilen & Vedaldi,
2016; Branson et al., 2017; Wan et al., 2018). This setting
too is an instance of coarse labeling.

Model Personalization. In examples like recommender
systems (Ricci et al., 2011), online advertising (Naumov
et al., 2019), and personalized medicine (Schork, 2015), one
needs to make predictions for individuals, while informa-
tion shared by a larger population acts as supportive, weak
supervision (Desrosiers & Karypis, 2011).

2. Weakly Supervised Learning
We begin with some notation. The spaces X and Y denote
as usual the space of features and strong labels. In weakly
supervised learning, we have in additionW , the space of
weak labels. We receive the tuple (X, W, Y) drawn from the
product space X ×W ×Y . The goal is to then predict the
strong label Y using the features X, and possibly benefiting
from the related information captured by W.

More specifically, we work with two datasets: (1) a weakly
labeled dataset Dweak

m of m examples drawn independently
from the marginal distribution PX,W ; and (2) a dataset
Dstrong

n of n strong labeled examples drawn from the
marginal PX,Y. Typically, n� m.

We then use the weak labels to learn an embedding in a
latent space Z ⊆ Rs. In particular, we assume that there
exists an unknown “good” embedding Z = g0(X) ∈ Z ,
using which a linear predictor A∗ can determine W, i.e.,
A∗Z = A∗g0(X) = W in the regression case, and
σ(A∗g0(X)) = W in the classification setting, where σ
is the sigmoid function. The g0 assumption holds, for ex-
ample, whenever W is a deterministic function of X. This
assumption is made to simplify the exposition; if it does
not hold exactly then one can still obtain a generalization
guarantee by introducing an additive term to the final gener-
alization bound equal to the smallest error attainable by any
measurable hypothesis, reflecting the inherent noise in the
problem of predicting W from X.

Using the latent space Z , we define two function classes:
strong predictors F ⊂ { f : X × Z → Y}, and weak
feature maps G ⊂ {g : X → Z}. Later we will assume
that class F is parameterized, and identify functions f in F
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Figure 1. Schema for weakly supervised learning using Algo-
rithm 1. The dotted lines denote the flow of strong data, and
the solid lines the flow of weak data.

with parameter vectors. We then learn a predictor f ∈ F by
replacing the latent vector Z with an embedding ĝ(X) ∈ Z
that we learn from weakly labeled data. Corresponding
to each of these function classes we introduce two loss
functions.

First, ` : Y × Y → R+ measures loss of the strong predic-
tor; we assume this loss to be continuously differentiable in
its first argument. We will equivalently write ` f (x, z, y) :=
`( f (x, z), y) for predicting from a latent vector z ∈ Z ; sim-
ilarly, for predicting from an estimate ẑ = g(x), we write
the loss as ` f (·,g)(x, y) := `( f (x, g(x)), y).

Second, `weak :W×W → R+ measures loss for the weak
task. This loss also applies to measuring loss of feature maps
g : X → Z , by using the best possible downstream lin-
ear classifier, i.e., `weak

g (x, w) = `weak(A>g g(x), w) where
Ag ∈ arg minA∈R|Y|×s E`weak(Ag(X), W). In the classifi-
cation case, for notational simplicity, we fold the softmax
function into `weak to convert numeric predictions to a prob-
ability distribution.

Our primary goal is to learn a model ĥ = f̂ (·, ĝ) : X → Y
that achieves low risk E[`ĥ(X, Y)].

To that end, we seek to bound the excess risk:

EP[`ĥ(X, Y)− `h∗(X, Y)], (1)

for h∗ = f ∗(·, g∗) where g∗ and f ∗ are given by

g∗ ∈ argming∈GE[`weak
g (X, W)],

f ∗ ∈ argmin f∈FE[` f (·,g∗)(X, Y)].

The comparison of ĥ to h∗ based on the best embedding g∗

for the weak task is the most natural one for the pretrain-
finetune algorithm that we analyze (see Algorithm 1).

We are interested in studying the rate at which the excess
risk (1) goes to zero. Specifically, we are interested in
studying the learning rate parameter γ for which the excess
risk is O(n−γ). We refer to γ ≤ 1/2 as a slow rate, and
γ ≥ 1 as a fast rate (possibly ignoring logarithmic factors,
i.e., Õ(1/n)). When 1/2 < γ < 1 we have intermediate
rates.

Algorithm 1 Pretrain-finetune meta-algorithm

1: input Dweak
m , Dstrong

n , F , G
2: Obtain weak embedding ĝ← Algm(G, PX,W)
3: Form dataset Daug

n = {(xi, zi, yi)}n
i=1 where zi := ĝ(xi) for

(xi, yi) ∈ D
strong
n

4: Define distribution P̂(X, Z, Y) = P(X, Y)1{Z = ĝ(X)}
5: Obtain strong predictor f̂ ← Algn(F , P̂)
6: return ĥ(·) := f̂ (·, ĝ(·))

2.1. Pretrain-finetune meta-algorithm

The algorithm we analyze solves two supervised learning
problems in sequence. The first step runs an algorithm,

ĝ← Algm(G, PX,W)

on m i.i.d. observations from PX,W , and outputs a feature
map ĝ ∈ G. Using the resulting ĝ we form an augmented
dataset Daug

n = {(xi, zi, yi)}n
i=1, where zi := ĝ(xi) for

(xi, yi) ∈ Dstrong
n . Therewith, we have n i.i.d. samples from

the distribution P̂(X, Z, Y) := P(X, Y)1{Z = ĝ(X)}.
The second step then runs an algorithm,

f̂ ← Algn(F , P̂)
on n i.i.d samples from P̂, and outputs a strong predictor
f̂ ∈ F . The final output is then simply the composition
ĥ = f̂ (·, ĝ). This procedure is summarized in Algorithm 1
and the high level schema in Figure 1.

Algorithm 1 is generic because in general the two supervised
learning steps can use any learning algorithm. Our analysis
treats the case where Algn(F , P̂) is empirical risk mini-
mization (ERM) but is agnostic to the choice of learning
algorithm Algm(G, PX,W). Our results use high level prop-
erties of these two steps, in particular their generalization
error, which we introduce next.

We break the generalization analysis into two terms depend-
ing on the bounds for each of the two supervised learning
steps. We introduce here the notation Rate(·) to enable
a more convenient discussion of these rates. We describe
our notation in the format of definitions to expedite the
statement of the theoretical results in Section 3.
Definition 1 (Weak learning). Let Ratem(G, PX,W ; δ) be
such that a (possibly randomized) algorithm Algm(G, PX,W)
that takes as input a function class G and m i.i.d. obser-
vations from PX,W , returns a weak embedding ĝ ∈ G for
which,

EP`
weak
ĝ (X, W) ≤ Ratem(G, PX,W ; δ),

with probability at least 1− δ.

We are interested in two particular cases of loss function
`weak: (i) `weak(w, w′) = 1{w 6= w′} whenW is a cate-
gorical space; and (ii) `weak(w, w′) =

∥∥w− w′
∥∥ (for some

norm‖·‖ onW) whenW is a continuous space.
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Definition 2 (Strong learning). Let Raten(F , Q; δ) be such
that a (possibly randomized) algorithm Algn(F , Q) that
takes as input a function space F , and n i.i.d. observations
from a distribution Q(X × Z × Y), returns a strong pre-
dictor f̂ ∈ F for which,

EU∼Q

[
` f̂ (U)− ` f ∗(U)

]
≤ Raten(F , Q; δ)

with probability at least 1− δ.

Henceforth, we drop δ from the rate symbols, for example
writing Ratem(G, PX,W) instead of Ratem(G, PX,W ; δ).

It is important to note that the algorithms Algm(G, PX,W)
and Algn(F , Q) can use any loss functions during train-
ing. In particular, even though we assume `weak to be a
metric, it is possible to use non-metric losses such as cross
entropy during training. This is because the only require-
ment we place on these algorithms is that they imply gener-
alization bounds in terms of the losses `weak and ` respec-
tively. For concreteness, our analysis focuses the case where
Algn(F , Q) is ERM using loss `.

3. Excess Risk Analysis
In this section we analyze Algorithm 1 with the objective
of obtaining high probability excess risk bounds (see (1))
for the strong predictor ĥ = f̂ (·, ĝ). Informally, the main
theorem we prove is the following.

Theorem 3 (Informal). Suppose that Ratem(G, PX,W) =
O(m−α) and that Algn(F , P̂) is ERM. Under suitable as-
sumptions on (`, P,F ), Algorithm 1 obtains excess risk,

O
(αβ log n + log(1/δ)

n
+

1
nαβ

)
with probability 1− δ, when m = Ω(nβ) forW discrete,
or m = Ω(n2β) forW continuous.

For the prototypical scenario where Algm(G, PX,W) =
O(1/√m), one obtains fast rates when m = Ω(n2), and
m = Ω(n4), in the discrete and continuous cases, respec-
tively. More generally, if αβ < 1 then O(n−αβ) is the
dominant term and we observe intermediate or slow rates.

In order to obtain any such result, it is necessary to quantify
how the weak and strong tasks relate to one another – if they
are completely unrelated, then there is no reason to expect
the representation ĝ(X) to benefit the strong task. The next
subsection addresses this question.

3.1. Relating weak and strong tasks

Next, we formally quantify the relaship between the weak
and strong task, via two concepts. First, we assume that the
two tasks share a mutual embedding Z = g0(X). Alone,
this is not enough, since otherwise one could simply take the

trivial embedding X = g0(X), which will not inform the
strong task. The central condition that we introduce in this
section quantifies how the embedding makes the strong task
“easy”. Second, we assume a shared stability via a “relative
Lipschitz” property: small perturbations to the feature map
g that do not hurt the weak task, do not affect the strong
prediction loss much either.

Definition 4. We say that f is L-Lipschitz relative to G if
for all x ∈ X , y ∈ Y , and g, g′ ∈ G,

|` f (·,g)(x, y)− ` f (·,g′)(x, y)| ≤ L`weak(β>g g(x), β>g′g
′(x))).

We say the function class F is L-Lipschitz relative to G, if
every f ∈ F is L-Lipschitz relative to G.

The Lipschitz terminology is justified since the do-
main uses the pushforward pseudometric (z, z′) 7→
`weak(A>g z, A>g′z

′), and the range is a subset of R+. In
the special case where Z = W , g(X) is actually an esti-
mate of the weak label W and relative Lipschitzness reduces
to conventional Lipschitzness of `( f (x, w), y) in w.

The central condition is well-known to yield fast rates for
supervised learning (van Erven et al., 2015); it directly im-
plies that we could learn a map (X, Z) 7→ Y with Õ(1/n)
excess risk. The difficulty with this naive view is that at test
time we would need access to the latent value Z = g0(X),
an implausible requirement. To circumnavigate this hurdle,
we replace g0 with ĝ by solving the supervised problem
(`, P̂,F ), for which we will have access to data.

But it is not clear whether this surrogate problem would
continue to satisfy the central condition. One of our main
theoretical contributions is to show that (`, P̂,F ) indeed
satisfies a weak central condition (Theorems 7 and 8), and
to show that this weak central condition still enables strong
excess risk guarantees (Theorem 9).

We are now ready to define the central condition. In essence,
this condition requires that (X, Z) is highly predictive of
Y, which, combined with the fact that g0(X) = Z has zero
risk on W, links the weak and strong tasks together.

Definition 5 (The Central Condition). A learning problem
(`, P,F ) on U := X × Z × Y is said to satisfy the ε-
weak η-central condition if there exists an f ∗ ∈ F such that

EU∼P(U )[e
−η(` f (U)−` f ∗ (U))] ≤ eηε,

for all f ∈ F . The 0-weak central condition is known as
the strong central condition.

We assume that the strong central condition holds for our
weakly supervised problem (`, P,F ) with P = PU =
PX,Z,Y where Z = g0(X). A concrete but general exam-
ple of a class of weakly supervised problems satisfying
the shared embedding assumption and central condition
are those where weak and strong labels share a common
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latent embedding Z, and Y is a logistic model on Z. In
detail let Z = g0(X) be an arbitrary embedding of in-
put X, and let W be a deterministic function of Z. Sup-
pose also that Y = σ(A∗Z) = f ∗(Z) for some matrix
A∗, where σ denotes the Softmax function. Then, as ob-
served by Foster et al. (2018), the learning problem (`, P,F )
is Vovk mixable, and hence the central condition holds
(van Erven et al., 2015), where ` is the logistic loss, and
F = {Z 7→ σ(AZ) : A ∈ R|Y|×s} .

It is important to note that if one knows that a problem
(`, P,F ) on U := X × Z × Y satisfies the central con-
dition, then it is not a priori clear if one can construct a
hypothesis set F̃ ⊆ {X → Y} such that (`, PX,Y, F̃ ) satis-
fies the central condition. In the standard supervised setting
with samples only from PX,Y this is likely impossible in
general. This is because in the later case the feature Z is
no longer an input to the model and so potentially valuable
predictive features are lost. However, one perspective on
the analysis in this section is that we show that with the
added support of samples from PX,W , the hypothesis class
F̃ = { f (·, ĝ(·)) : f ∈ F}, where ĝ(X) is learned using
the weak labeled samples, does indeed satisfy the central
condition with a slightly larger ε.

The central condition and related literature. The cen-
tral condition unifies many well-studied conditions known
to imply fast rates (van Erven et al., 2015), including Vap-
nik and Chervonenkis’ original condition, that there is an
f ∗ ∈ F with zero risk (Vapnik & Chervonenkis, 1971;
1974). The popular strong-convexity condition (Kakade &
Tewari, 2009; Lecué et al., 2014) is also a special case, as
is (stochastic) exponential concavity, which is satisfied by
density estimation: where F are probability densities, and
` f (u) = − log f (u) is the logarithmic loss (Audibert et al.,
2009; Juditsky et al., 2008; Dalalyan et al., 2012). Another
example is Vovk mixability (Vovk, 1990; 1998), which holds
for online logistic regression (Foster et al., 2018), and also
holds for uniformly bounded functions with the square loss.
A modified version of the central condition also generalizes
the Bernstein condition and Tsybakov’s margin condition
(Bartlett & Mendelson, 2006; Tsybakov et al., 2004).

As noted earlier, Z is not observable at train or test time, so
we cannot simply treat the problem as a single supervised
learning problem. Therefore, obtaining fast or intermediate
rates is a nontrivial challenge. We approach this challenge
by splitting the learning procedure into two supervised tasks
(Algorithm 1). In its second step, Algorithm 1 replaces
(`, P,F ) with (`, P̂,F ). Our strategy to obtain generaliza-
tion bounds is first to guarantee that (`, P̂,F ) satisfies the
weak central condition, and then to show that the weak cen-
tral condition implies the desired generalization guarantees.

The rest of this section develops the theoretical machinery

needed for obtaining our bounds. We summarize the key
steps of our argument below.

1. Decompose the excess risk into two components: the
excess risk of the weak predictor and the excess risk
on the learning problem (`, P̂,F ) (Proposition 6).

2. Show that the learning problem (`, P̂,F ) satisfies a
relaxed version of the central condition - the “weak
central condition” (Propositions 7 and 8).

3. Show that the ε-weak central condition yields excess
risk bounds that improve as ε decreases (Prop. 9).

4. Combine all previous results to obtain generalization
bounds for Algorithm 1 (Theorem 10).

3.2. Generalization Bounds for Weakly Supervised
Learning

The first item on the agenda is Proposition 6 which ob-
tains a generic bound on the excess risk in terms of
Ratem(G, PX,W) and Raten(F , P̂).

Proposition 6 (Excess risk decomposition). Suppose that
f ∗ is L-Lipschitz relative to G. Then the excess risk
E[`ĥ(X, Y)− `h∗(X, Y)] is bounded by,

2LRatem(G, PX,W) + Raten(F , P̂).

The first term corresponds to excess risk on the weak task,
which we expect to be small since that environment is data-
rich. Hence, the problem of obtaining excess risk bounds
reduces to bounding the second term, Raten(F , P̂). This
second term is much more opaque; we spend the rest of the
section primarily analyzing it.

We now prove that if (`, P,F ) satisfies the ε-weak central
condition, then the artificial learning problem (`, P̂,F ) ob-
tained by replacing the true population distribution P with
the estimate P̂ satisfies a slightly weaker central condition.
We consider the categorical and continuousW-space cases
separately, obtaining an improved rate in the categorical
case. In both cases, the proximity of this weaker central
condition to the ε-weak central condition is governed by
Ratem(G, PX,W), but the dependencies are different.

Proposition 7 (Categorical weak label). Suppose that
`weak(w, w′) = 1{w 6= w′} and that ` is bounded by
B > 0, F is Lipschitz relative to G, and that (`, P,F )
satisfies the ε-weak central condition. Then (`, P̂,F ) satis-

fies the ε +O
(

eBRatem(G, PX,W)
)

-weak central condition
with probability at least 1− δ.

Next, we consider the norm induced loss. In this case it is
also possible to obtain obtain the weak central condition for
the artificially augmented problem (`, P̂,F ).
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Proposition 8 (Continuous weak label). Suppose that
`weak(w, w′) =

∥∥w− w′
∥∥ and that ` is bounded by B > 0,

F is L-Lipschitz relative to G, and that (`, P,F ) satis-
fies the ε-weak central condition. Then (`, P̂,F ) satisfies

the ε+O
(√

LeBRatem(G, PX,W)
)

-weak central condition
with probability at least 1− δ.

For both propositions, a slight modification of the proofs
easily eliminates the eB term when Ratem(G, PX,W) ≤
O(e−B). Since we typically consider the regime where
Ratem(G, PX,W) is close to zero, Propositions 7 and 8 es-
sentially say that replacing P by P̂ only increases the weak
central condition parameter slightly.

The next, and final, step in our argument is to obtain a gener-
alization bound for ERM under the ε-weak central condition.
Once we have this bound, one can obtain good generaliza-
tion bounds for the learning problem (`, P̂,F ) since the pre-
vious two propositions guarantee that it satisfies the weak
central condition from some small ε. Combining this ob-
servation with the results from the previous section finally
allows us to obtain generalization bounds on Algorithm 1
when Raten(F , P̂) is ERM.

For this final step, we assume that our strong predictor class
F is parameterized by a vector in Rd, and identify each f
with this parameter vector. We also assume that the param-
eters live in an L2 ball of radius R. By Lagrangian duality
this is equivalent to our learning algorithm being ERM with
L2-regularization for some regularization parameter.

Proposition 9. Suppose (`, Q,F ) satisfies the ε-weak cen-
tral condition, ` is bounded by B > 0, each F is L′-
Lipschitz in its parameters in the `2 norm, F is con-
tained in the Euclidean ball of radius R, and Y is com-
pact. Then when Algn(F , Q) is ERM, the excess risk
EQ[` f̂ (U)− ` f ∗(U)] is bounded by,

O
(

V
d log(RL′/ε) + log(1/δ)

n
+ Vε

)
,

with probability at least 1− δ, where V = B + ε.

Any parameterized class of functions that is continuously
differentiable in its parameters satisfies the L′-Lipschitz
requirement since we assume the parameters live in a closed
ball of radius R. The Y compactness assumption can be
dropped in the case where y 7→ `(y, ·) is Lipschitz.

Observe that the bound in Proposition 9 depends linearly
on d, the number of parameters of F . Since we consider
the regime where n is small, the user might use only a
small model (e.g., a shallow network) to parameterize F ,
so d may not be too large. On the other hand, the bound is
independent of the complexity of G. This is important since
the user may want to use a powerful model class for g to
profit from the bountiful amounts of weak labels.

Proposition 9 gives a generalization bound for any learning
problem (`, Q,F ) satisfying the weak central condition,
and may therefore be of interest in the theory of fast rates
more broadly. For our purposes, however, we shall apply
it only to the particular learning problem (`, P̂,F ). In this
case, the ε shall depend on Ratem(G, PX,W), yielding strong
generalization bounds when ĝ has low excess risk.

Combining Proposition 9 with both of the two previous
propositions yields fast rates guarantees (Theorem 10) for
the double estimation algorithm (Algorithm 1) for ERM.
The final bound depends on the rate of learning for the weak
task, and on the quantity of weak data available m.

Theorem 10 (Main result). Suppose the assumptions of
Proposition 9 hold, (`, P,F ) satisfies the central condi-
tion, and that Ratem(G, PX,W) = O(m−α). Then, when
Algn(F , P̂) is ERM we obtain excess risk EP[`ĥ(X, Y)−
`h∗(X, Y)] that is bounded by,

O
(dαβ log RL′n + log 1

δ

n
+

L
nαβ

)
,

with probability at least 1− δ, if either of the following
conditions hold,

1. m = Ω(nβ) and `weak(w, w′) = 1{w 6= w′} (dis-
creteW-space).

2. m = Ω(n2β) and `weak(w, w′) =
∥∥w− w′

∥∥ (contin-
uousW-space).

To reduce clutter we absorb the dependence on B into the
big-O. The key quantities governing the ultimate learning
rate are α, the learning rate on the weak task, and β, which
determines the amount of weak labels relative to strong.

4. Experiments
We experimentally study two types of weak labels: noisy,
and coarse. We study two cases: when the amount of weak
data grows linearly with the amount of strong data, and
when the amount of weak data grows quadratically with
the amount of strong data (plus a baseline). Note that in
a log-log plot the negative of the gradient is the learning
rate γ such that excess risk is O(n−γ). All image-based
experiments use either a ResNet-18 or ResNet-34 for the
weak feature map g (see Appendix C for full details).

4.1. Noisy Labels
We simulate a noisy labeler who makes labelling mistakes
in a data dependent way (as opposed to independent random
noise) by training an auxiliary deep network on a held out
dataset to classify at a certain accuracy - for our CIFAR-10
experiments we train to 90% accuracy. This is intended
to mimic human annotators working on a crowd sourcing
platform. The predictions of the auxiliary network are used
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Figure 2. Generalization error on CIFAR-10 using noisy weak labels for different growth rates of m. Left
hand diagram is for simulated “noisy labeler”, the right hand picture is for random noise.
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Figure 3. Coarse labels. Generalization error on various datasets using coarse weak label grouping for different
growth rates of m. Datasets left to right: MNIST, SVHN, and CIFAR-10.

as weak labels. We also run experiments using indepen-
dent random noise, flipping each label randomly with 10%
chance. See Figure 2 for results.

In each case, both the generalization error when using ad-
ditional weak data is lower, and the learning rate itself is
higher. Indeed, the learning rate improvement is significant.
For simulated noisy labels, γ = 0.44 when m = 0, and
γ = 0.92 for m = Ω(n2). Random noisy labels has a
similar result with γ = 0.45 and γ = 0.81 for m = 0, and
m = Ω(n2) respectively. The experimental results are in
line with our theoretical result that the learning rate should
double when β doubles.

4.2. Coarse labels
We also consider fine tuning on a small subset CIFAR-100
with one of 100 categories. For weak pretraining we use
a larger dataset of examples labeled with 20 semantically
meaningful “super-categories”. Each super category con-
tains exactly 5 of the 100 fine grained categories. For ex-
ample, the categories“maple”, “oak”, “palm”, “pine”, and
“willow” are all part of the super-category“trees”. The results
are presented in Figure 4. In the natural language domain

we consider the TREC fast-based question categorization
dataset. Similarly to CIFAR-100, examples are naturally
divided up into six coarse groups of questions concerning
numerics, humans, locations etc. They are further divided
up into 50 fine grained classes, used as strong labels. Since
we observed the natural language experiments to be much
noisier than the vision tasks, we ran 20 repeats to get a
reliable average to observe the central tendency.

Again, generalization error is consistently lower, and learn-
ing rate constantly high for larger m growth rate. The dif-
ferences are generally very significant, e.g. for CIFAR-100
where top-5 accuracy learning rate is γ = 0.40 for m = 0,
and γ = 0.82 for m = Ω(n2), and for MNIST γ = 0.89
and γ = 1.52 for m = 0 and m = Ω(n2) respectively. The
contrast is slightly less pronounced on the TREC experi-
ments, but the same broad trend is observed.

5. Related Work
Weakly supervised learning. There exists previous work
on the case where one only has weak labels. Khetan et al.
(2018) consider crowd sourced labels and use an EM-style
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Figure 4. Left and middle: Generalization error on CIFAR-100 using coarse weak labels for different growth rates of m. Left diagram is
top-1 accuracy, and middle diagram is top-5 accuracy. Right: top-1 error for the TREC question sentiment analysis task.

algorithm to model the quality of individual workers. An-
other approach proposed by Ratner et al. (2016; 2019) uses
correlation between multiple different weak label sources
to estimate the ground truth label. A different approach is
to use pairwise semantic (dis)similarity as a form of weak
signal about unlabeled data (Arora et al., 2019; Bao et al.,
2018) or to use complementary labels, which give you a
label telling you a class that the input is not in (Xu et al.,
2019; Ishida et al., 2017).

Fast rates. There is a large body of work studying a va-
riety of favorable situations under which it is possible to
obtain rates better than slow-rates. From a generalization
and optimization perspective, strongly convex losses en-
able fast rates for generalization and for fast convergence of
stochastic gradient (Kakade & Tewari, 2009; Hazan et al.,
2007; Foster & Syrgkanis, 2019). These works are special
cases of exponentially concave learning, which is itself a
special case of the central condition. There are completely
different lines of work on fast rates, such as developing data
dependent local Rademacher averages (Bartlett et al., 2005);
and herding, which has been used to obtain fast rates for
integral approximation (Welling, 2009).

Learning with a nuisance component. The two-step es-
timation algorithm we study in this paper is closely related
to statistical learning under a nuisance component (Cher-
nozhukov et al., 2018; Foster & Syrgkanis, 2019). In that
setting one wishes to obtain excess risk bounds for the model
f̂ (·, g0(·)) where W = g0(X) is the true weak predictor.
The analysis of learning in such settings rests crucially on
the Neyman orthogonality assumption (Neyman & Scott,
1965). Our setting has the important difference of seeking
excess risk bounds for the compositional model f̂ (·, ĝ(·)).
Self-supervised learning. In self-supervised learning the
user artificially constructs pretext learning problems based
on attributes of unlabeled data (Doersch et al., 2015; Gidaris
et al., 2018). In other words, it is often possible to construct
a weakly supervised learning problem where the choice of
weak labels are a design choice of the user. In line with
our analysis, the success of self-supervised representations
relies on picking pretext labels that capture useful informa-

tion about the strong label such as invariances and spacial
understanding (Noroozi & Favaro, 2016; Misra & van der
Maaten, 2019). Conversely, weakly supervised learning can
be viewed as a special case of self-supervision where the
pretext task is selected from some naturally occurring label
source (Jing & Tian, 2019).

6. Discussion
Our work focuses on analyzing weakly supervised learn-
ing. We believe, however, that the same framework could
be used to analyze other popular learning paradigms. One
immediate extension of our analysis would be to multiple in-
consistent sources of weak labels as by Khetan et al. (2018).

Other important extensions would be to include self-
supervised pretraining. Cases where the marginal P(X)
does not shift fall within the scope of our analysis. How-
ever, a key technical difference between our setting and
approaches such as image super-resolution (Ledig et al.,
2017), solving jigsaw puzzles (Noroozi & Favaro, 2016),
and image inpaining (Pathak et al., 2016) is that in the lat-
ter, the marginal distribution of features P(X) is potentially
different on the pretext task as compared to the downstream
tasks of interest. Because of this difference our analysis
doesn’t immediately transfer over to these settings, leaving
an interesting avenue for future work.

Another option is to use our representation transfer analysis
to study multi-task or meta-learning settings where one
wishes to reuse an embedding across multiple tasks with
shared characteristics with the aim of obtaining certified
performance across all tasks.

A completely different direction, based on the observation
that our analysis is predicated on the idea of “cheap” weak
labels and “costly” strong labels, is to ask how best to al-
locate a finite budget for label collection when faced with
varying quality label sources.
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