
Fast Learning Using Weak Supervision

A. Section 3 Proofs
We begin by obtaining the decomposition that is instrumental in dividing the excess risk into two pieces that
can be then studied separately. Throughout, if W is categorical we fold the sigmoid function σ into the loss
for notational convenience.
Proposition A.1 (Proposition 6). Suppose that f ∗ is L-Lipschitz relative to G. Then the excess risk
E[`ĥ(X, Y)− `h∗ (X, Y)] bounded by,

2LRatem(G, PX,W) + Raten(F , P̂).

Proof of Proposition 6. Let us split the excess risk into three parts

E
[
`ĥ(X, Y)− `h∗ (X, Y)

]
=E

[
` f̂ (·,ĝ)(X, Y)− ` f ∗(·,ĝ)(X, Y)

]
+ E

[
` f ∗(·,ĝ)(X, Y)− ` f ∗(·,g0)(X, Y)

]
+ E

[
` f ∗(·,g0)(X, Y)− ` f ∗(·,g∗)(X, Y)

]
.

By definition, the first term is bounded by Raten(F , P̂). The relative Lipschitzness of f ∗ delivers the following
bound on the second and third terms respectively,

E
[
` f ∗(·,ĝ)(X, Y)− ` f ∗(·,g0)(X, Y)

]
≤ LEP`

weak
(

Aĝ ĝ(X), Ag0 g0(X)
)

,

E
[
` f ∗(·,g0)(X, Y)− ` f ∗(·,g∗)(X, Y)

]
≤ LEP`

weak
(

Ag0 g0(X), Ag∗ g∗(X)
)

.

Since g∗ attains minimal risk, and W = Ag0 g0(X), the sum of these two terms can be bounded by,

2LEP`
weak

(
Aĝ ĝ(X), W

)
≤ 2LRatem(G, PX,W).

Combining this with the bound on the first term yields the claim.

The next two propositions show, for the two cases of `weak of interest, that the weak central condition is
preserved (with a slight weakening in the constant) when replacing the population distribution P by the
distribution P̂ obtained by replacing the true weak label W by the learned weak estimate ĝ(X).

Proposition A.2 (Proposition 7). Suppose that `weak(w, w′) = 1{w 6= w′} and that ` is bounded by B > 0,
F is Lipschitz relative to G, and that (`, P,F ) satisfies the ε-weak central condition. Then (`, P̂,F ) satisfies

the ε +O
(

Ratem(G, PX,W)
)

-weak central condition with probability at least 1− δ.

Proof of Proposition 7. Note first that

1
η

log EP̂ exp
(
− η(` f − ` f ∗ )

)
=

1
η

log EP exp
(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
where we recall that we have overloaded the loss ` to include both ` f and `h. To prove (`, P̂,F ) satisfies

the central condition we therefore need to bound 1
η log EP exp

(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
above by some

constant. We begin bounding (line by line explanations are below),

1
η

log EP exp
(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
=

1
η

log EP

[
exp

(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
1{Aĝ ĝ(X) = W}

]

+
1
η

log EP

[
exp

(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
1{Aĝ ĝ(X) 6= W}

]

=
1
η

log EP

[
exp

(
− η(` f (·,g0) − ` f ∗(·,g0))

)
1{Aĝ ĝ(X) = W}

]

+
1
η

log EP

[
exp

(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
1{Aĝ ĝ(X) 6= W}

]
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where the second line follows from the fact that for any f in the event {Aĝ ĝ(X) = W} we
have ` f (·,ĝ) = ` f (·,g0) and ` f ∗(·,ĝ) = ` f ∗(·,g0). This is because |` f (·,ĝ)(X, Y) − ` f (·,g0)(X, Y)| ≤
L`weak(Aĝ ĝ(X), Ag0 g0(X)) = L`weak(W, W) = 0.

Dropping the indicator 1{Aĝ ĝ(X) = W} from the integrand yields 1
η log EP

[
e−η(` f−` f ∗ )

]
which is upper

bounded by ε by the weak central condition. We may therefore upper bound the second term by,

1
η

log EP

[
exp

(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
1{Aĝ ĝ(X) 6= W}

]
≤ 1

η
log EP

[
exp (ηB)1{Aĝ ĝ(X) 6= W}

]

≤ exp (ηB)
η

PP(Aĝ ĝ(X) 6= W)

=
exp (ηB)

η
Rate(G,Dweak

m ).

The first inequality uses the fact that ` is bounded by B, the second line uses the basic fact log x ≤ x, and the
final equality holds with probability 1− δ by assumption. Combining this bound with the ε bound on the first
term yields the claimed result.

Proposition A.3 (Proposition 8). Suppose that `weak(w, w′) =
∥∥w− w′

∥∥ and that ` is bounded by B > 0, F
is L-Lipschitz relative to G, and that (`, P,F ) satisfies the ε-weak central condition. Then (`, P̂,F ) satisfies

the ε +O
(√

LRatem(G, PX,W)
)

-weak central condition with probability at least 1− δ.

Proof of Proposition 8. For any δ > 0 we can split the objective we wish to bound into two pieces as follows,

1
η

log EP̂ exp
(
− η(` f − ` f ∗ )

)
=

1
η

log EP̂

[
exp

(
− η(` f − ` f ∗ )

)
1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ ≤ δ

L

}]
︸ ︷︷ ︸

=: I

+
1
η

log EP̂

[
exp

(
− η(` f − ` f ∗ )

)
1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ >

δ

L

}]
︸ ︷︷ ︸

=: II

.

We will bound each term separately. The first term can be rewritten as,

I =
1
η

log EP

[
exp

(
− η(` f (·,ĝ) − ` f ∗(·,ĝ))

)
1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ ≤ δ

L

}]

Let us focus for a moment specifically on the exponent, which we can break up into three parts,

` f (·,ĝ) − ` f ∗(·,ĝ) = (` f (·,g0) − ` f ∗(·,g0)) + (` f (·,ĝ) − ` f (·,g0)) + (` f ∗(·,g0) − ` f ∗(·,ĝ)).

In the event that

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ ≤ δ

L

}
the second and third terms can be bounded using the Lipschitzness

of `, and the relative Lipschitzness of F with respect to G,

|` f (·,ĝ)(X, Y)− ` f (·,g0)(X, Y)|+ |` f ∗(·,g0)(X, Y)− ` f ∗(·,ĝ)(X, Y)| ≤ L
∥∥∥Aĝ ĝ− Ag0 g0

∥∥∥+ L
∥∥∥Aĝ ĝ− Ag0 g0

∥∥∥
= 2L

∥∥∥Aĝ ĝ−W
∥∥∥

≤ 2δ.

Plugging this upper bound into the expression for I, we obtain the following bound
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I ≤ 1
η

log EP

[
exp

(
− η(` f − ` f ∗ )

)
1

{∥∥∥Aĝ Aĝ(X)−W
∥∥∥ ≤ δ

L

}]

+
1
η

log EP

[
exp (2ηδ)1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ ≤ δ

L

}]

≤ 1
η

log EP

[
exp

(
− η(` f − ` f ∗ )

)]
+ 2δ

≤ ε + 2δ

where in the second line we have simply dropped the indicator function from both integrands, and for the
third line we have appealed to the ε-weak central condition. Next we proceed to bound the second term (line
by line explanations are below) II by,

1
η

log EP̂

[
exp

(
− η(` f − ` f ∗ )

)
1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ >

δ

L

}]
≤ 1

η
log EP̂

[
exp (ηB)1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ >

δ

L

}]

≤ exp (ηB)
η

EPX,W

[
1

{∥∥∥Aĝ ĝ(X)−W
∥∥∥ >

δ

L

}]

=
exp (ηB)

η
PPX,W

(∥∥∥Aĝ ĝ(X)−W
∥∥∥ >

δ

L

)

≤ L exp (ηB)
δη

EP

∥∥∥Aĝ ĝ(X)−W
∥∥∥

≤ L exp (ηB)
δη

Ratem(G, PX,W)

where the first line follows since ` is bounded by B, the second line since log x ≤ x, the fourth line is
an application of Markov’s inequality, and the final inequality holds by definition of Ratem(G, PX,W) with
probability 1− δ. Collecting these two results together we find that

1
η

log EP̂ exp
(
− η(` f − ` f ∗ )

)
= I + II ≤ ε + 2δ +

L exp (ηB)
δη

Ratem(G, PX,W).

Since this holds for any δ > 0 we obtain the bound,

1
η

log EP̂ exp
(
− η(` f − ` f ∗ )

)
≤ ε + min

δ>0

{
2δ +

L exp (ηB)
δη

Ratem(G, PX,W)

}

= ε + 2
√

2

√
L exp (ηB)

η

√
Ratem(G, PX,W).

The minimization is a simple convex problem that is solved by picking δ to be such that the two terms are
balanced.

The next proposition shows that the weak central condition is sufficient to obtain excess risk bounds. This
result generalizes Theorem 1 of (Mehta, 2016), which assumes the strong central condition holds. In contrast,
we make only need the weaker assumption that the weak central condition holds.

Proposition A.4 (Proposition 9). Suppose (`, Q,F ) satisfies the ε-weak central condition, ` is bounded by
B > 0, each F is L′-Lipschitz in its parameters in the `2 norm, F is contained in the Euclidean ball of radius
R, and Y is compact. Then when Algn(F , Q) is ERM, the excess risk EQ[` f̂ (U)− ` f ∗ (U)] is bounded by,

O
(

V
d log RL′

ε + log 1
δ

n
+ Vε

)
.

with probability at least 1− δ, where V = B + ε.
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Proof of Proposition 9. Before beginning the proof in earnest, let us first introduce a little notation, and
explain the high level proof strategy. We use the shorthand ∆ f = ` f − ` f ∗ . Throughout this proof we are
interested in the underlying distribution Q. So, to avoid clutter, throughout the proof we shall write E and P
as short hand for EU∼Q and PU∼Q.

Our strategy is as follows: we wish to determine an a > 0 for which, with high probability, ERM does not
select a function f ∈ F such that E∆ f ≥ a

n . Defining Fβ = { f ∈ F : E∆ f ≥ β} this is equivalent to
showing that, with high probability, ERM does not select a function f ∈ Fβn where βn = a

n . In turn this can
be re-expressed as showing with high probability that,

1
n

n

∑
j=1

∆ f (Uj) > 0 (2)

for all f ∈ Fβn , where the random variables {Uj}j are i.i.d samples from Q. In order to prove this we
shall take a finite cover { f1, f2, . . . , fs} of our function class Fβn and show that, with high probability
1
n ∑n

j=1 ∆ f (Uj) > c for all fi for some constant c > 0 depending on the radius of the balls. To do this,
we use the central condition, and two important tools from probability whose discussion we postpone until
Appendix Section B, to bound the probability of selecting each fi, then apply a simple union bound. This
result, combined with the fact that every element of Fβn is close to some such fi allows us to derive equation
(2) for all members of the class Fβn .

With the strategy laid out, we are now ready to begin the proof in detail. We start by defining the required
covering sets. Specifically, let Fβn ,ε be an optimal proper1 ε/L′s-cover of Fβn in the `2-norm, where we will
pick s later. It is a classical fact (see e.g. (Carl & Stephani, 1990) ) that the d-dimensional `2-ball of radius
R has ε-covering number at most ( 4R

ε )d. Since the cardinality of an optimal proper ε-covering number is at
most the ε/2-covering number, and F is contained in the the d-dimensional `2-ball of radius R, we have
|Fβn ,ε| ≤ ( 8RL′s

ε )d. Furthermore, since ` is continously differentiable, Y is compact and f is Lipschitz in its
parameter vector, we have that f 7→ ` f is L′s-Lipschitz in the `2 norm in the domain and `∞-norm in the
range (for some s, which we have now fixed). Therefore the proper ε/L′s-cover of Fβn pushes forward to a
proper ε-cover of {` f : f ∈ Fβn} in the `∞-norm.

We now tackle the key step in the proof, which is to upper bound the probability that ERM selects an element
of Fβn ,ε. To this end, fix an f ∈ Fβn ,ε. Since (`, P̂,F ) satisfies the ε-weak central condition, we have

E
[
e−η∆ f

]
≤ eηε. Rearranging yields,

E
[

exp
(
− η(∆ f + ε)

)]
≤ 1.

Lemma B.1 implies that for any 0 < γ < a there exists a modification ∆̃ f + ε of ∆ f + ε, and an η ≤ η f ≤ 2η

such that ∆̃ f ≤ ∆ f , almost surely, and,

E
[

exp
(
− η f (∆̃ f + ε)

)]
= 1 and E∆̃ f ≥

a− γ

n
. (3)

Since ∆̃ f + ε belongs to the shifted interval [−V, V] where V = B + ε, Corollaries 7.4 and 7.5 from (van
Erven et al., 2015) imply2 that,

log E
[

exp
(
− η f /2(∆̃ f + ε)

)]
≤ − 0.18

(V ∨ 1/η f )

(
a− γ

n
+ ε

)
≤ − 0.18(a− γ)

(V ∨ 1/η f )n
.

where we define a′ = a− γ. By Cramér-Chernoff (Lemma B.2) with t = ca′ε (where c will also be chosen
later) and the η in the lemma being η f /2, we obtain

P

(
1
n

n

∑
j=1

(
∆̃ f (Uj) + ε

)
≤ ca′ε

)
≤ exp

(
− 0.18

V ∨ 1/η f
a′ +

nη f ca′ε
2

)

≤ exp

(
− 0.18

V ∨ 1/η
a′ + nηca′ε

)
= exp(−Ca′)

1For a metric space (M, ρ), let S ⊆ M. A set E ⊆ M is an ε-cover for S, if for every s ∈ S there is an e ∈ E such that ρ(s, e) ≤ ε.
An ε-cover is optimal if it has minimal cardinality out of all ε-covers. E is known as a proper cover if E ⊆ S.

2Note that although the Corollaries in (van Erven et al., 2015) are stated specifically for ∆ f , the claims hold for any random variable
satisfying the hypotheses, including our case of ∆ f + ε.
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where C := 0.18
B∨1/η − nηcε, and the second inequality follows since η ≤ η f ≤ 2η. Let us now pick c so as to

make C bigger than zero, and in particular so that C = 0.09
B∨1/η . That is, let c = 1

nε
0.09

Vη∨1 . Using the fact that

a′ − 2/c ≤ a′, and a union bound over f ∈ Fβn ,ε we obtain a probability bound on all of Fβn ,ε,

P

(
∃ f ∈ Fβn ,ε :

1
n

n

∑
j=1

∆̃ f (Uj) ≤ (ca′ − 1)ε

)
≤
(

8RL′s
ε

)d

exp

(
− 0.09

B ∨ 1
η

(a′ − 2/c)

)
.

Define the right hand side to equal 0 < δ < 1. Note that we are allowed to do this thanks to the fact C > 0,
which implies that the right hand side goes to zero as a′ → ∞ . This makes it possible to pick a sufficiently
large a′ for which the right hand side is less than 1. Solving for a = a′ + γ we choose,

a =
V ∨ 1/η

0.09

(
d log

8RL′s
ε

+ log
1
δ

)
+ 2/c + γ.

Therefore, with probability at least 1− δ we have for all f ∈ Fβn ,ε that 1
n ∑n

j=1 ∆̃ f (Uj) > (ca′ − 1)ε.
Therefore, for any f ′ ∈ Fβn we can find f ∈ Fβn ,ε such that ‖` f − ` f ′‖∞ ≤ ε.

Finally, since ca ≥ 2 for sufficiently small ε by construction, and ∆ f ≥ ∆̃ f almost surely, we find that
1
n ∑n

j=1 ∆ f ′ (Uj) ≥ 1
n ∑n

j=1 ∆ f (Uj)− ε ≥ 1
n ∑n

j=1 ∆̃ f (Uj)− ε ≥ (ca− 1)ε− ε > 0. We have proven that

with probability at least 1− δ that 1
n ∑n

j=1 ∆ f ′ (Uj) > 0 for all f ′ ∈ Fβn . Therefore, with high probability,
ERM will not select any element of Fβn . Finally, the bound described in the theorem comes from substituting
in the choice of c, and rounding up the numerical constants, recognizing that since the claim holds for all
γ > 0 , we may take the limit as γ→ 0+ to obtain,

a ≤ 12(V ∨ 1/η)

(
d log

8RL′s
ε

+ log
1
δ

)
+ 12(Vη ∨ 1)nε + 1.

The heavy lifting has now been done by the previous propositions and theorems. In order to obtain the main
result, all that remains now is to apply each result in sequence.
Theorem A.5 (Theorem 10). Suppose that (`, P,F ) satisfies the central condition and that
Ratem(G, PX,W) = O(1/mα). Then when Algn(F , P̂) is ERM we obtain excess risk EP[`ĥ(X, Y) −
`h∗ (X, Y)] that is bounded by,

O
(

dαβ log RL′n + log 1
δ

n
+

L
nαβ

)
with probability at least 1− δ, if either of the following conditions hold,

1. m = Ω(nβ) and `weak(w, w′) = 1{w 6= w′} (discreteW-space).

2. m = Ω(n2β) and `weak(w, w′) =
∥∥w− w′

∥∥ (continuousW-space).

Proof of Theorem 10. Case 1: We have m = Ω(nβ), and Ratem(G, PX,W) = O(1/mα), together impling
that Rate(G,Dweak

m ) = O(1/nαβ). We apply Proposition 7 to conclude that (`, P̂,F ) satisfies theO(1/nαβ)-
weak central condition with probability at least 1− δ.

Proposition 9 therefore implies that Raten(F , P̂) = O
(

dαβ log 8RL′n+log 1
δ

n + 1
nαβ

)
.

Combining these two bounds using Proposition 6 we conclude that

E[`ĥ(Z)− `h∗ (Z)] ≤ O
(

dαβ log 8RL′n + log 1
δ

n
+

L
nαβ

)
.

Case 2: The second case is proved almost identically, however note that since in this case we have m =
Ω(n2β), that now Ratem(G, PX,W) = O(1/n2αβ). The factor of two is cancelled our by the extra square
root factor in Proposition 8. The rest of the proof is exactly the same as case 1.
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B. Probabilistic Tools
In this section we present two technical lemmas that are key tools used to prove Proposition 9. The first
allows us to take a random variable ∆ such that Ee−η∆ ≤ 1 and perturb downwards it slightly to some
∆̃ ≤ ∆ so that the inequality becomes an equality (for a slightly different η) and yet the expected value
changes by an arbitrarily small amount.

Lemma B.1. Suppose η > 0 and ∆ is an absolutely continuous random variable on the probability space
(Ω, P) such that ∆ is almost surely bounded, and Ee−η∆ ≤ 1. Then for any ε > 0 there exists an
η ≤ η′ ≤ 2η and another random variable ∆̃ (called a “modification”) such that,

1. ∆̃ ≤ ∆ almost surely,

2. Ee−η′∆̃ = 1, and
3. |E[∆− ∆̃]| ≤ ε.

Proof. We may assume that Ee−η∆ < 1 since otherwise we can simply take ∆̃ = ∆ and η = η′. Due to
absolute continuity, for any δ > 0 there is a measurable set Aδ ⊂ Ω such that P(Aδ) = e−1/δ. Now define
∆̃ : Ω→ R by,

∆̃(ω) =

∆(ω) if ω /∈ Aδ

− 1
2δη if ω ∈ Aδ

(4)

We now prove that as long as δ is small enough, all three claimed properties hold.

Property 1: Since ∆ is almost surely bounded, there is a V > 0 such that |∆| ≤ V almost surely. Taking δ

small enough that − 1
2δη ≤ −V we guarantee that ∆̃ ≤ ∆ almost surely.

Property 2: We can lower bound the 2η case,

Ee−2η∆̃ ≥ e−2η(− 1
2ηδ )P(Aδ) = e1/δP(Aδ) = e1/δe−1/δ = 1.

We can similarly upper bound the η case,

Ee−η∆̃ =
∫

e−η∆̃(ω)1{ω ∈ Aδ}P(dω) +
∫

e−η∆̃(ω)1{ω /∈ Aδ}P(dω)

= e1/2δP(Aδ) +
∫

e−η∆(ω)1{ω /∈ Aδ}P(dω)

≤ e−1/2δ +
∫

e−η∆(ω)P(dω)

≤ e−1/2δ + Ee−η∆.

Recall that by assumption Ee−η∆ < 1, so we may pick δ sufficiently small so that e−1/2δ + Ee−η∆ < 1.
Using these two bounds, and observing that boundedness of ∆ implies continuity of η 7→ E

[
e−η∆

]
, we can

guarantee that there is an η ≤ η′ ≤ 2η such that E
[
e−η′∆̃

]
= 1.

Property 3: Since ∆ and ∆̃ only disagree on Aδ,

E|∆̃− ∆| =
∫
|∆̃(ω)− ∆(ω)|1{w ∈ Aδ}P(dω) ≤

(
1

2δη
+ V

)
P(Aδ) =

(
1

2δη
+ V

)
e−1/δ

which converges to 0 as δ→ 0+. We may, therefore, make the difference in expectations smaller than ε by
taking δ to be sufficiently close to 0.
The second lemma is a well known Cramér-Chernoff bound that is used to obtain concentration of measure
results. A proof was given, for example, given in (van Erven et al., 2015). However, since the proof is short
and simple we include it here for completeness.

Lemma B.2 (Cramér-Chernoff (van Erven et al., 2015) ). Let ∆, ∆1, . . . , ∆n be i.i.d. and define Λ∆(η) =
log E[e−η∆]. Then, for any η > 0 and t ∈ R,

P

(
1
n

n

∑
i=1

∆i ≤ t

)
≤ exp

(
ηnt + nΛ∆(η)

)
.
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Proof. Note that since x 7→ exp(−ηx) is a bijection, we have,

P

(
1
n

n

∑
i=1

∆i ≤ t

)
= P

(
exp

(
− η

n

∑
i=1

∆i

)
≥ exp(−ηnt)

)
.

Applying Markov’s inequality to the right hand side of the equality yields the upper bound,

exp(ηnt)E
[

exp(−η
n

∑
i=1

∆i)
]
= exp(ηnt)

[
E exp(−η∆)

]n
= exp

(
ηnt + nΛ∆(η)

)
.

C. Hyperparameter and Architecture Details
All models were trained using PyTorch (Paszke et al., 2019) and repeated from scratch 4 times (20 for TREC)
to give error bars. All layers were initialized using the default uniform initialization.

Architecture For the MNIST experiments we used the ResNet-18 architecture as a deep feature extractor
for the weak task (He et al., 2016), followed by a single fully connected layer to the output. For the
strong model, we used a two hidden layer fully connected neural network as a feature extractor with ReLU
activations. The first hidden layer has 2048 neurons, and the second layer has 1024. This feature vector
is then concatenated with the ResNet feature extractor, and passed through a fully connected one hidden
layer network with 1024 hidden neurons. For all other datasets (SVHN, CIFAR-10, CIFAR-100) the exact
same architecture was used except for replacing the ResNet-18 feature extractor by ResNet-34. We also ran
experiments using smaller models for the weak feature map, and obtained similar results. That is, the precise
absolute learning rates changed, but the comparison between the learning rates remained the similar. The
backbone of the weak model for the TREC language understanding problem was the concatenation of three
convolutional networks with filter sizes 2, 3, 4.

Optimization We used Adam (Kingma & Ba, 2015) with initial learning rate 0.0001, and β1 = 0.5, and
β2 = 0.999. We used batches of size 100, except for MNIST, for which we used 50. We used an exponential
learning rate schedule, scaling the learning rate by 0.97 once every two epochs.

Data pre-processing For CIFAR-10, CIFAR-100, and SVHN we used random cropping and hori-
zontal image flipping to augment the training data. We normalized CIFAR-100 color channels by sub-
tracting the dataset mean pixel values (0.5071, 0.4867, 0.4408) and dividing by the standard deviation
(0.2675, 0.2565, 0.2761). For CIFAR-10 and SVHN we normalize each pixel to live in the interval [−1, 1] by
channel-wise subtracting (0.5, 0.5, 0.5) and dividing by (0.5, 0.5, 0.5). For MNIST the only image processing
was to normalize each pixel to the range [0, 1]. For the TREC language understanding task used GloVe input
word embeddings with a vocabulary size of 25000.

Number of training epochs The weak networks were trained for a number of epochs proportional to
1/m. For example, for all CIFAR-10 experiments the weak networks were trained for 500000/m epochs.
This was sufficient to train all models to convergence.

Once the weak network was finished training, we stopped all gradients passing through that module, thereby
keeping the weak network weights fixed during strong network training. To train the strong network, we used
early stopping to avoid overfitting. Specifically, we tested model accuracy on a holdout dataset once every 5
epochs. The first time the accuracy decreased we stopped training, and measured the final model accuracy
using a test dataset.

Dataset size The amount of strong data is clearly labeled on the figures. For the weak data, we used the
following method to compute the amount of weak data to use:

m(1)
i = c1ni

m(2)
i = c2n2

i

where m(1)
i is the amount of weak data for the linear growth, m(2)

i for quadratic growth, and n1, n2, . . . , n7
are the different strong data amounts. For MNIST we took (c1, c2) = (4, 0.02), for SVHN we took
(c1, c2) = (4.8, 0.0024) and for CIFAR-10, for CIFAR-100 we took (c1, c2) = (4, 0.002) and for TREC we

took (c1, c2) = (0.7652, 0.0019). The main design choice is that in each case we have m(1)
1 = m(2)

1 , i.e.
weak and quadratic growth begin with the same amount of weak labels.


