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Abstract
We investigate the generalisation performance of
Distributed Gradient Descent with Implicit Reg-
ularisation and Random Features in the homoge-
nous setting where a network of agents are given
data sampled independently from the same un-
known distribution. Along with reducing the
memory footprint, Random Features are partic-
ularly convenient in this setting as they provide
a common parameterisation across agents that
allows to overcome previous difficulties in imple-
menting Decentralised Kernel Regression. Under
standard source and capacity assumptions, we es-
tablish high probability bounds on the predictive
performance for each agent as a function of the
step size, number of iterations, inverse spectral
gap of the communication matrix and number of
Random Features. By tuning these parameters,
we obtain statistical rates that are minimax opti-
mal with respect to the total number of samples
in the network. The algorithm provides a lin-
ear improvement over single machine Gradient
Descent in memory cost and, when agents hold
enough data with respect to the network size and
inverse spectral gap, a linear speed-up in compu-
tational runtime for any network topology. We
present simulations that show how the number of
Random Features, iterations and samples impact
predictive performance.

1. Introduction
In supervised learning, an agent is given a collection of
training data to fit a model that can predict the outcome
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of new data points. Due to the growing size of modern
data sets and complexity of many machine learning models,
a popular approach is to incrementally improve the model
with respect to a loss function that measures the performance
on the training data. The complexity and stability of the
resulting model is then controlled implicitly by algorithmic
parameters, such as, in the case of Gradient Descent, the step
size and number of iterations. An appealing collection of
models in this case are those associated to the Reproducing
Kernel Hilbert Space (RKHS) for some positive definite
kernel, as the resulting optimisation problem (originally
over the space of functions) admits a tractable form through
the Kernel Trick and Representer Theorem, see for instance
(Schölkopf et al., 2001).

Given the growing size of data, privacy concerns as well as
the manner in which data is collected, distributed computa-
tion has become a requirement in many machine learning
applications. Here training data is split across a number
of agents which alternate between communicating model
parameters to one another and performing computations on
their local data. In centralised approaches (effective star
topology), a single agent is typically responsible for collect-
ing, processing and disseminating information to the agents.
Meanwhile for many applications, including ad-hoc wireless
and peer-to-peer networks, such centralised approaches are
unfeasible. This motivates decentralised approaches where
agents in a network only communicate locally within the
network i.e. to neighbours at each iteration.

Many problems in decentralised multi-agent optimisation
can be phrased as a form of consensus optimisation (Tsit-
siklis et al., 1986; Tsitsiklis, 1984; Johansson et al., 2007;
Nedic & Ozdaglar, 2009; Nedić et al., 2009; Johansson et al.,
2009; Lobel & Ozdaglar, 2011; Matei & Baras, 2011; Boyd
et al., 2011; Duchi et al., 2012; Shi et al., 2015; Mokhtari
& Ribeiro, 2016). In this setting, a network of agents wish
to minimise the average of functions held by individual
agents, hence “reaching consensus” on the solution of the
global problem. A standard approach is to augment the
original optimisation problem to facilitate a decentralised
algorithm. This typically introduces additional penalisa-
tion (or constraints) on the difference between neighbouring
agents within the network, and yields a higher dimensional
optimisation problem which decouples across the agents.
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This augmented problem can then often be solved using stan-
dard techniques whose updates can now be performed in a
decentralised manner. While this approach is flexible and
can be applied to many consensus optimisation problems, it
often requires more complex algorithms which depend upon
the tuning of additional hyper parameters, see for instance
the Alternating Direction Method of Multiplers (ADMM)
(Boyd et al., 2011).

Many distributed machine learning problems, in particu-
lar those involving empirical risk minimisation, can been
framed in the context of consensus optimisation. As dis-
cussed in (Bouboulis et al., 2017; Koppel et al., 2018), for
the case of Decentralised Kernel Regression it is not imme-
diately clear how the objective ought to be augmented to
facilitate both a decentralised algorithm and the Representer
Theorem. Specifically, so the problem decouples across
the network and agents have a common represention of the
estimated function. Indeed, while distributed kernel regres-
sion can be performed in the one-shot Divide and Conquer
setting (Star Topology) (Zhang et al., 2015; Lin et al., 2017;
Guo et al., 2017; Mücke & Blanchard, 2018; Dobriban &
Sheng, 2020) where there is a fusion center to combine the
resulting estimators computed by each agent, in the decen-
tralised setting there is no fusion center and agents must
communicate for multiple rounds. A number of works have
aimed to tackle this challenge (Forero et al., 2010; Mitra
& Bhatia, 2014; Gao et al., 2015; Chouvardas & Draief,
2016; Bouboulis et al., 2017; Koppel et al., 2018), although
these methods often include approximations whose impact
on statistical performance is not clear1. Most relevant to our
work is (Bouboulis et al., 2017) where Distributed Gradient
Descent with Random Fourier Features is investigated in
the online setting. In this case regret bounds are proven, but
it is not clear how the number of Random Fourier Features
or network topology impacts predictive performance in con-
junction with non-parametric statistical assumptions2. For
more details on the challenges of the developing a Decen-
tralised Kernel Regression algorithm see Section 2.1.

1.1. Contributions

In this work we give statistical guarantees for a simple
and practical Decentralised Kernel Regression algorithm.
Specifically, we study the learning performance (General-
isation Error) of full-batch Distributed Gradient Descent
(Nedic & Ozdaglar, 2009) with implicit regularisation
(Richards & Patrick, 2020; Richards & Rebeschini, 2019)
and Random Features (Rahimi & Recht, 2008; Rudi &

1Additional details on some of these works have been included
within Remark 2 in the Appendix

2We note the concurrent work (Xu et al., 2020) which also
investigates Random Fourier Features for decentralised non-
parametric learning. The differences from our work have been
highlighted in Remark 3 in the Appendix.

Rosasco, 2017). Random Features can be viewed as a form
of non-linear sketching or shallow neural networks with
random initialisations, and have be utilised to facilitate the
large scale application of kernel methods by overcoming
the memory bottle-neck. In our case, they both decrease the
memory cost and yield a simple Decentralised Kernel Re-
gression algorithm. While previous approaches have viewed
Decentralised Kernel Regression with explicit regularisation
as an instance of consensus optimisation, where the speed-
up in runtime depends on the network topology (Duchi
et al., 2012; Scaman et al., 2017). We build upon (Richards
& Rebeschini, 2019) and directly study the Generalisation
Error of Distributed Gradient Descent with implicit regu-
larisation. This allows linear speed-ups in runtime for any
network topology to be achieved by leveraging the statistical
concentration of quantities held by agents. Specifically, our
analysis demonstrates how the number of Random Features,
network topology, step size and number of iterations im-
pact Generalisation Error, and thus, can be tuned to achieve
minimax optimal statistical rates with respect to all of the
samples within the network (Caponnetto & De Vito, 2007).
When agents have sufficiently many samples with respect
to the network size and topology, and the number of Ran-
dom Features equal the number required by single machine
Gradient Descent, a linear speed-up in runtime and linear
decrease memory useage is achieved over single machine
Gradient Descent. Previous guarantees given in consensus
optimisation require the number of iterations to scale with
the inverse spectral gap of the network (Duchi et al., 2012;
Scaman et al., 2017), and thus, a linear speed-up in runtime
is limited to well connected topologies. We now provide a
summary of our contributions.

• Decentralised Kernel Regression Algorithm: By
leveraging Random Features we develop a simple, prac-
tical and theoretically justified algorithm for Decen-
tralised Kernel Regression. It achieves a linear re-
duction in memory cost and, given sufficiently many
samples, a linear speed-up in runtime for any graph
topology (Theorem 1, 2). This required extending the
theory of Random Features to the decentralised setting
(Section 4).

• Refined Statistical Assumptions: Considering the at-
tainable case in which the minimum error over the
hypothesis class is achieved, we give guarantees that
hold over a wider range of complexity and capacity as-
sumptions. This is achieved through a refined analysis
of the Residual Network Error term (Section 4.4).

• Bounds in High Probability: All guarantees hold in
high probability, where previous results (Richards &
Rebeschini, 2019) for the decentralised setting only
held in expectation. This is achieved through refined
analysis of the Population Network Error (Section 4.3).
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This work is structured as follows. Section 2 introduces the
notation and Random Features. Section 3 presents the main
theoretical results. Section 4 provides the error decompo-
sition and a sketch proof of the refined analysis. Section 5
presents simulation results. Section 6 gives the conclusion.

2. Setup
This section introduces the setting. Section 2.1 introduces
Decentralised Kernel Regression and the challenges in devel-
oping a decentralised algorithm. Section 2.2 introduces the
link between Random Features and kernel methods. Section
2.3 introduces Distributed Gradient Descent with Random
Features.

2.1. Challenges of Decentralised Kernel Regression

We begin with the single machine case then go on to the
decentralised case.

Single Machine Consider a standard supervised learning
problem with squared loss. Given a probability distribution
⇢ over X ⇥ R, we wish to solve

min
f

E(f), E(f) =

Z
(f(x)� y)2d⇢(x, y), (1)

given a collection of independently and identically dis-
tributed (i.i.d.) samples drawn from ⇢, here denoted
(xi, yi)mi=1 2 (X ⇥ Rm). Kernel methods are non-
parametric approaches defined by a kernel k : X ⇥X !

R which is symmetric and positive definite. The space
of functions considered will be the Reproducing Kernel
Hilbert Space associated to the kernel k, that is, the func-
tion space H defined as the completion of the linear span
{K(x, ·) : x 2 X} with respect to the inner prod-
uct hK(x, ·),K(x0, ·)iH := K(x, x0) (Aronszajn, 1950).
When considering functions that minimise the empirical
loss with explicit regularisation � � 0

min
f2H

n 1

m

mX

i=1

(f(xi)� yi)
2 + �kfk2

H

o
(2)

we can appeal to the Representer Theorem (Schölkopf
et al., 2001), and consider functions represented in terms
of the data points, namely bf(x) =

Pm
i=1 ↵ik(xi, x) where

↵ = (↵1, . . . ,↵m) 2 Rm are a collection of weights. The
weights are then often written in terms of the gram-matrix
K 2 Rm⇥m whose i, jth entry is Kij = k(xi, xj).

Decentralised Consider a connected network of n agents
G = (V,E) |V | = n, joined by edges E ✓ V ⇥V , that wish
to solve (1). Each agent v 2 V has a collection of m i.i.d.
training points (xi,v, yi,v)mi=1 2 (X ⇥R)m sampled from ⇢.
Following standard approaches in consensus optimisation

we arrive at the optimisation problem

min
fv2H,v2V

n 1

nm

X

v2V

mX

i=1

(fv(xi,v)� yi,v)
2 + �kfvk

2
H

o

fv = fw (v, w) 2 E,

where a local function for each agent fv is only evaluated
at the data held by that agent (xi,v, yi,v)mi=1, and a con-
straint ensures agents that share an edge are equal. This
constrained problem is then often solved by considering the
dual problem (Scaman et al., 2017) or introducing penal-
isation (Jakovetić et al., 2015). In either case, the objec-
tive decouples so that given {fv}v2V it can be evaluated
and optimised in a decentralised manner. As discussed by
(Bouboulis et al., 2017; Koppel et al., 2018), it is not imme-
diately clear whether a representation for {fv}v2V exists in
this case that respects the gram-matrices held by each agent.
Recall, in the decentralised setting, only agent v can access
the data (xi,v, yi,v)mi=1 and the kernel evaluated at their data
points k(xi,v, xj,v) for i, j = 1, . . . ,m.

2.2. Feature Maps and Kernel Methods

Consider functions parameterised by ! 2 RM and written
in the following form

f(x) = h!,�M (x)i, 8x 2 X,

where �M : X ! RM ,M 2 N, denotes a family of fi-
nite dimensional feature maps that are identical and known
across all of the agents. Feature maps in our case take a
data point x to a (often higher dimensional) space where
Euclidean inner products approximate the kernel. That is,
informally, k(x, x0) ⇡ h�M (x),�M (x0)i. One now classi-
cal example is Random Fourier Features (Rahimi & Recht,
2008) which approximate the Gaussian Kernel.

Random Fourier Features If k(x, x0) = G(x � x0),
where G(z) = e�

1
2�2 kzk2

, for � > 0 then we have

G(x� x0) =
1

2⇡Z

Z Z 2⇡

0
p

2 cos(!>x+ b)
p

2 cos(!>x0 + b)e�
�2

2 k!k
2

d!db

where Z is a normalizing factor. Then, for the
Gaussian kernel, �M (x) = M�1/2(

p
2 cos(!>

1 x +
b1), . . . ,

p
2 cos(!>

Mx + bM )), where !1, . . . ,!M and
b1, . . . , bM sampled independently from 1

Z e��2
k!k

2/2 and
uniformly in [0, 2⇡], respectively.

More generally, this motivates the strategy in which we
assume the kernel k can be expressed as

k(x, x0) =

Z
 (x,!) (x0,!)d⇡(!), 8x, x0

2 X, (3)



Decentralised Learning with Random Features and Distributed Gradient Descent

where (⌦,⇡) is a probability space and  : X ⇥ ⌦ ! R
(Reed, 2012). Random Features can then be seen as Monte
Carlo approximations of the above integral.

2.3. Distributed Gradient Descent and Random
Features

Since the functions are now linearly parameterised by
! 2 RM , agents can consider the simple primal method
Distributed Gradient Descent (Nedic & Ozdaglar, 2009).
Initialised at b!1,v = 0; for v 2 V , agents update their
iterates for t � 1

b!t+1,v =
X

w2V

Pvw (4)

⇥

⇣
b!t,w �

⌘

m

mX

i=1

�
hb!t,w,�M (xi,w)i � yi,w

�
�M (xi,w)

⌘
,

where P 2 Rn⇥n is a doubly stochastic matrix sup-
ported on the network i.e. Pij 6= 0 only if (i, j) 2 E,
and ⌘ is a fixed stepsize. The above iterates are a com-
bination of two steps. Each agent performing a local
Gradient Descent step with respect to their own data i.e.
b!t,w �

⌘
m

Pm
i=1

�
hb!t,w,�M (xi,w)i � yi,w

�
�M (xi,w) for

agent w 2 V . And a communication step where agents
average with their neighbours as encoded by the summa-
tion

P
w2V Pvwaw, where aw is the quantity held by agent

w 2 V . The performance of Distributed Gradient Descent
naturally depends on the connectivity of the network. In our
case it is encoded by the second largest eigenvalue of P in
absolute value, denoted �2 2 [0, 1). In particular, it arises
through the inverse spectral gap 1/(1��2), which is known
to scale with the network size for particular topologies, that
is O

�
1/(1��2)

�
= O(n�) where � = 2 for a cycle, � = 1

for a grid and � = 0 for an expander, see for instance (Duchi
et al., 2012). Naturally, more “connected” topologies have
larger spectral gaps, and thus, smaller inverses.

Notation For a, b 2 R we denote a _ b as the maximum
between a and b and a ^ b the minimum. We say a ' b if
there exists a constant c independent of n,m,M, (1��2)�1

up-to logarithmic factors such that a = cb. Similarly we
write a . b if a  bc and a & b if a � cb.

3. Main Results
This section presents the main results of this work. Section
3.1 provides the results under basic assumptions. Section
3.2 provides the results under more refined assumptions.

3.1. Basic Result

We begin by introducing the following assumption related
to the feature map.

Assumption 1 Let (⌦,⇡) be a probability space and define
the feature map  : X ⇥ ⌦ ! R for all x 2 X such that
(3) holds. Define the family of feature maps for M > 0

�M (x) :=
1

p
M

( (x,!1), . . . , (x,!M ))

where (!j)Mj=1 2 ⌦ are sampled independently from ⇡.

The above assumption states that the feature map is made of
M independent features  (x,!i) for i = 1, . . . ,M . This
is satisfied for a wide range of kernels, see for instance Ap-
pendix E of (Rudi & Rosasco, 2017). The next assumption
introduces some regularity to the feature maps.

Assumption 2 The function  is continuous and there ex-
ists  � 1 such that | (x,!)|   for any x 2 X,! 2 ⌦.

This implies that the kernel considered is bounded
|k(x, x0)|  2 which is a common assumption in statis-
tical learning theory (Cucker & Zhou, 2007; Steinwart &
Christmann, 2008). The following assumption is related to
the optimal predictor.

Assumption 3 Let H be the RKHS with kernel k. Suppose
there exists fH 2 H such that E(fH) = inff2H E(f).

It states that the optimal predictor is within the interior of
H. Moving beyond this assumption requires considering
the non-attainable case, see for instance (Dieuleveut et al.,
2016), which is left to future work. Finally, the following
assumption is on the response moments.

Assumption 4 For any x 2 X
Z

y2`d⇢(y|x)  `!B`p, 8` 2 N

for constants B 2 (0,1) and p 2 (1,1), ⇢X�almost
surely.

This assumption is satisfied if the response is bounded or
generated from a model with independent zero mean Gaus-
sian noise.

Given an estimator bf , its excess risk is defined as E( bf) �
E(fH). Let the estimator held by agent v 2 V be denoted by
bft,v = hb!t,v,�M (·)i, where b!t,v is the output of Distributed
Gradient Descent (4) for agent v. Given this basic setup, we
state the prediction bound prescribed by our theory.

Theorem 1 (Basic Case) Let n,m,M 2 N+, � 2 (0, 1),
t � 4, ⌘2  1 and ⌘ ' 1. Under assumptions 1 to 4, the
following holds with high probability for any v 2 V

E( bft+1,v)� E(fH) . 1
p
nm

when
m & n3

(1� �2)4
, M '

p
nm, and t =

p
nm. (5)
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Theorem 1 demonstrates that Distributed Gradient Descent
with Random Features achieves optimal statistical rates, in
the minimax sense (Caponnetto & De Vito, 2007; Blanchard
& Mücke, 2018), with respect to all nm samples when three
conditions are met. The first m & n3/(1 � �2)4 ensures
that the network errors, due to agents communicating locally
on the network, are sufficiently small from the phenomena
of concentration. The second M '

p
nm ensures that the

agents have sufficiently many Random Features to control
the kernel approximation. It aligns with the number required
by single machine Gradient Descent with all nm samples
(Carratino et al., 2018). Finally t =

p
nm is the number of

iterations required to trade off the bias and variance error
terms. This is the number of iterations required by single
machine Gradient Descent with all nm samples, and thus,
due to considering a distributed algorithm, gives a linear
speed-up in runtime. We now discuss the runtime and space
complexity of Distributed Gradient Descent with Random
Features when the covariates take values in RD for some
D > 0. Remark 1 in Appendix A shows how, with linear
features, Random Features can yield communication savings
when D > M .

Pre-processing + Space Complexity After a pre-
processing step which costs O(DMm) = O(Dm3/2pn),
Distributed Gradient Descent has each agent store a m ⇥

M = m⇥
p
nm matrix. Single machine Gradient Descent

performs a O(DMnm) = O(D(nm)3/2) pre-processing
step and stores a nm⇥M = nm⇥

p
nm matrix. Distributed

Gradient Descent thus gives a linear order n improvement
in pre-processing time and memory cost.

Time Complexity Suppose one gradient computation
costs 1 unit of time and communicating with neighbours
costs ⌧ . Given sufficiently many samples m & n3/(1��2)4

then Single Machine Iterations = Distributed Iterations and
the speed-up in runtime for Distributed Gradient Descent
over single machine Gradient Descent is

Speed-up :=
Single Machine Runtime

Distributed Runtime

=
Single Machine Iteration Time

Distributed Iteration Time
Single Machine Iters.

Distributed Iters.| {z }
=1

=
nm

m+ ⌧ +MDeg(P )
' n

where the final equality holds when the communication
delay and cost of aggregating the neighbours solutions is
bounded ⌧ + MDeg(P ) . m. This observation demon-
strates a linear speed-up in runtime can be achieved for any
network topology. This is in contrast to results in decen-
tralised consensus optimisation where the speed-up in run-
time usually depends on the network topology, with a linear
improvement only occurring for well connected topologies

i.e. expander and complete, see for instance (Duchi et al.,
2012; Scaman et al., 2017).

3.2. Refined Result

Let us introduce two standard statistical assumptions re-
lated to the underlying learning problem. With the marginal
distribution on covariates ⇢X(x) :=

R
R ⇢(x, y)dy and the

space of square integrable functions L2(X, ⇢X) = {f :
X ! R : kfk2⇢ =

R
|f |2d⇢X < 1}, let L : L2(X, ⇢X) !

L2(X, ⇢X) be the integral operator defined for x 2 X as
Lf(x) =

R
k(x, x0)f(x0)d⇢X(x0), 8f 2 L2(X, ⇢X). The

above operator is symmetric and positive definite. The as-
sumptions are then as follows.

Assumption 5 For any � > 0, define the effective dimen-
sion as N (�) := Tr

��
L + �I)�1L

�
, and assume there

exists Q > 0 and � 2 [0, 1] such that N (�)  Q2��� .
Moreover, assume there exists 1 � r � 1/2 and g 2

L2(X, ⇢X) such that fH(x) = (Lrg)(x).

The above assumptions will allow more refined bounds on
the Generalisation Error to be given. The quantity N (�)
is the effective dimension of the hypothesis space, and As-
sumption 5 holds for � > 0 when the ith eigenvalue of L
is of the order i�1/� , for instance. Meanwhile, the second
condition for 1 � r � 1/2 determines which subspace the
optimal predictor is in. Here larger r indicates a smaller
sub-space and a stronger condition. The refined result is
then as follows.

Theorem 2 (Refined) Let n,m,M 2 N+, � 2 (0, 1), t �
2t? � 4, ⌘2  1 and ⌘ ' 1. Under assumptions 1 to 5
with r + � > 1, the following holds with high probability
for any v 2 V

E(b!t+1,v)� E(fH) . (nm)
�2r
2r+�

when we let t? ' 1/(1� �2) and have

m &
⇣
(t?)

(1+�)(2r+�)
2(r+��1) n

r+1
r+��1

⌘
_

⇣
(t?)2_(2r+�)n

2r
�

⌘

| {z }
Sufficiently Many Samples

M ' (nm)
1+�(2r�1)

2r+�

| {z }
Single Machine Random Features

t = (nm)
1

2r+�

| {z }
Single Machine Iterations

Once again, the statistical rate achieved (nm)�
2r

2r+� is the
minimax optimal rate with respect to all of the samples
within the network (Caponnetto & De Vito, 2007), and both
the number of Random Features as well as the number of
iterations match the number required by single machine
Gradient Descent when given sufficiently many samples m.
When r = 1/2 and � = 1 we recover the basic result given
in Theorem 1, with the bounds now adapting to complexity
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of the predictor as well as capacity through r and �, respec-
tively. In the low dimensional setting when � = 0, we note
our guarantees do not offer computational speed-ups over
single machine Gradient Descent. While counter-intuitive,
this observation aligns with (Richards & Rebeschini, 2019),
which found the easier the problem (larger r, smaller �) the
more samples required to achieve a speed-up. This is due to
network error concentrating at fixed rate of 1/m while the
optimal statistical rate is (nm)�

2r
2r+� . An open question is

then how to modify the algorithm to exploit regularity and
achieve a speed-up runtime, similar to how Leverage Score
Sampling exploits additional regularity (Bach, 2013; Avron
et al., 2017; Rudi et al., 2018; Li et al., 2019).

To provide insight into how the conditions in Theorem 2
arise, the following theorem gives the leading order error
terms which contribute to the conditions in Theorem 2.

Theorem 3 (Leading Order Terms) Let n,m,M 2 N+,
� 2 (0, 1), t � 2t? � 4, ⌘2  1 and ⌘ ' 1. Under
assumptions 1 to 5 with r+ � > 1, the following holds with
high probability when t? '

1
1��2

for any v 2 V

E( bft+1,v)� E(fH) . ⌘�

m(1� �2)�
+

(⌘t)2(⌘t?)1+�

m2

| {z }
Network Error

⇣ ⌘t
M

+1
⌘ (⌘t)�

nm
+

1

M(⌘t)(1��)(2r�1)
+

� 1

⌘t

�2r

| {z }
Statistical Error

+H.O.T.

where H.O.T. denotes Higher Order Terms.

Theorem 3 decomposes the Generalisation Error into two
terms. The Statistical Error matches the Generalisation Er-
ror of Gradient Descent with Random Features (Carratino
et al., 2018) and consists of Sample Variance, Random
Feature and Bias errors. The Network Error arises from
tracking the difference between the Distributed Gradient
Descent b!t+1,v and single machine Gradient Descent iter-
ates. The primary technical contribution of our work is in
the analysis of this term, in particular, building on (Richards
& Rebeschini, 2019) in two directions. Firstly, bounds are
given in high probability instead of expectation. Secondly,
we give a tighter analysis of the Residual Network Error,
here denoted in the second half of the Network Error as
(⌘t)2(⌘t?)1+�/m2. Previously this term was of the order
(⌘t)2+�/m2 and gave rise to the condition of r + �/2 � 1,
whereas we now require r + � � 1. Our analysis can
ensure it is decreasing with the step size ⌘, and thus, be
controlled by taking a smaller step size. While not explored
in this work, we believe our approach would be useful for
analysing the Stochastic Gradient Descent variant (Lin &
Rosasco, 2017) where a smaller step size is often chosen.

4. Error Decomposition and Proof Sketch
In this section we give a more detailed error decomposition
as well as a sketch of the proof. Section 4.1 gives the error
decomposition into statistical and network terms. Section
4.2 decomposes the network term into a population and a
residual part. Section 4.3 and 4.4 give sketch proofs for
bounding the population and residual parts respectively.

4.1. Error Decomposition

We begin by introducing the iterates produced by a single
machine Gradient Descent with nm samples as well as an
auxiliary sequence associated to the population. Initialised
at bv1 = ev1 = 0, we define, for t � 1

bvt+1=bvt�
⌘

nm

X

w2V

mX

i=1

�
hbvt,w,�M (xi,w)i�yi,w

�
�M (xi,w),

evt+1 = evt � ⌘

Z

X

�
hevt,�M (x)i � y)�M (x)d⇢(x, y).

We work with functions in L2(X, ⇢X), thus we define
bgt = hbvt,�M (·)i, egt = hevt,�M (·)i. Since the prediction
error can be written in terms of the L2(X, ⇢X) as follows
E( bft,v)� E(fH) = k bft,v � fHk

2
⇢ we have the decomposi-

tion bft,v � fH = bft,v � bgt + bgt � fH. The term bgt � fH
that we call the Statistical Error is studied within (Carratino
et al., 2018). The primary contribution of our work is in the
analysis of bft,v � bgt which we call the Network Error, and
go on to describe in more detail next.

4.2. Network Error

To accurately describe the analysis for the network error we
introduce some notation. Begin by defining the operator
SM : RM

! L2(X, ⇢X) so that (SM!)(·) = h!,�M (·)i
as well as the covariance CM : RM

! RM defined
as CM = S?

MSM , where S?
M is the adjoint of SM in

L2(X, ⇢X). Utilising an isometry property (see (7) in the
Appendix) we have for ! 2 RM the following kSM!k⇢ =

kC1/2
M !k, that is going from a norm in L2(X, ⇢X) to Eu-

clidean norm. The empirical covariance operator of the co-
variates held by agent v 2 V is denoted bC(v)

M : RM
! RM .

For t � 1 and a path wt:1 = (wt, wt�1, . . . , w1) 2 V t

denote the collection of contractions

⇧(wt:1) = (I � ⌘ bC(wt)
M )(I � ⌘ bC(wt�1)

M ) . . . (I � ⌘ bC(w1)
M )

as well as the centered product ⇧�(wt:1) = ⇧(wt:1)� (I�
⌘CM )t. For w 2 V k � 1 let Nk,w 2 RM denote a col-
lection of zero mean random variables that are independent
across agents w 2 V but not index k � 1.

For v, w 2 V and s � 1 define the difference �s(v, w) :=
P s
vw �

1
n , where we apply the power then index i.e.
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(P s)vw = P s
vw. For wt:k 2 V t�k denote the devi-

ation along a path �(wt:k) = Pvwt:k �
1

nt�k where
we have written the probability for a path Pvwt:k =
PvwtPwtwt�1 . . . Pwk+1wk .

Following (Richards & Rebeschini, 2019), center the dis-
tributed !t+1,v and the single machine iterates bvt+1 around
the population iterates evt. Apply the isometry property to
k bft,v�bgtk⇢ = kC1/2

M (b!t+1,v�bvt)k and following the steps
in Appendix D.1 we arrive at

kC1/2
M (b!t+1,v � bvt+1)k 

tX

k=1

⌘
X

w2V

|�t�k(v, w)|kC1/2
M (I � ⌘CM )t�kNk,wk

| {z }
Population Network Error

tX

k=1

⌘
��

X

wt:k2V t�k+1

�(wt:k)C
1/2
M ⇧�(wt:k+1)Nk,wk

��.

| {z }
Residual Network Error

The two terms above can be associated to the two terms
in the network error of Theorem 3, with the Population
Network Error decreasing as 1/m and the Residual Net-
work Error as 1/m2. We now analyse each of these terms
separately.

4.3. Network Error: Population

Our contribution for analysing the Population Network
Error is to give bounds it in high probability, where as
(Richards & Rebeschini, 2019) only gave bounds in expec-
tation. Choosing some t � 2t? � 2 and splitting the series
at k = t� t? we are left with two terms. For 1  k  t� t?

we utilise that the sum over the difference |�s(v, w)| can
be written in terms of euclidean `1 norm and this is bounded
by the second largest eigenvalue of P in absolute value i.e.P

w2V |�t�k(v, w)| = ke>v P
t�k

�
1
n1k1 

p
n�t�k

2 
p
n�t?

2 , where ev is the standard basis vector in Rn with
a 1 aligning with agent v 2 V and 1 is a vector of all 1’s.
Meanwhile for t � k � t � t?, we follow (Richards &
Rebeschini, 2019) and utilise the contraction of the gradient
updates i.e. C1/2

M (I � ⌘CM )t�k alongside that Nk,wk is an
average of m i.i.d. random variables, and thus, concentrate
at 1/

p
m in high probability. This leads to the bound in

high probability

Population Network Error .
p
n�t?

2 t
p
m| {z }

Well Mixed Terms

+
(⌘t?)�/2
p
m

.

| {z }
Poorly Mixed Terms

The first term Well Mixed, decays exponentially with the
second largest eigenvalue of P in absolute value, and repre-
sents the information from past iterates that has now fully
propagated around the network. The term Poorly Mixed

represents error from the most recent iterates that is yet to
fully propagate through the network. It grows at the rate
(t?)�/2 due to utilising the contractions of the gradients as
well as the assumptions 5. The quantity t? is now chosen to
trade off these terms. Note by writing �t?

2 = e�t? log(1/�2)

that, up to logarithmic factors, the first can be made small
by taking t? & 1

1��2
�

1
� log(�2)

.

4.4. Network Error: Residual

The primary technical contribution of our work is in the
analysis of this term. The analysis builds on insights from
(Richards & Rebeschini, 2019), specifically that ⇧�(wt:1)
is a product of empirical operators minus the population, and
thus, can be written in terms of the differences bC(w)

M � CM

which concentrate at 1/
p
m. Specifically, for N 2 RM ,

the bound within (Richards & Rebeschini, 2019) was of the
following order with high probability for any wt:1 2 V t

kC1/2
M ⇧�(wt:1)Nk . kNk

(⌘t)�/2
p
m

. (6)

The bound for Residual Network Error within (Richards
& Rebeschini, 2019) is arrived at by applying triangle in-
equality over the series

P
wt:k2V t�k+1 , plugging in (6) for

kC1/2
M ⇧�(wt:k+1)Nk,wkk alongside kNk,wkk . 1/

p
m

see Lemma 7 in Appendix. Summing over 1  k  t
yields the bound of order (⌘t)1+�/2/m in high proba-
bility. The two key insights of our analysis are as fol-
lows. Firstly, noting that the error for bounding the con-
traction ⇧�(wt:1) grows with the length of the path, and
as such, we should aim to apply the bound (6) to short
paths. Secondly, note for N 2 RM quantities of the form
kC1/2

M

P
wt:12V t �(wt:1)⇧�(wt:1)Nk concentrate quickly

(Lemma 13 in Appendix).

To apply the insights outlined previously, we decompose
the deviation ⇧�(wt:2) into two terms that only replace the
final t? operators with the population, that is

⇧�(wt:2)=⇧(wt:t?+2)⇧
�(wt?+1:1)+⇧

�(wt:t?+2)(I�⌘CM)t
?

.

Plugging in the above then yields, for the case k = 1,
X

wt:12V t

�(wt:1)C
1/2
M ⇧�(wt:2)Nk,w1

=
X

wt:12V t

�(wt:1)C
1/2
M ⇧(wt:t?+2)⇧

�(wt?+1:1)| {z }
t?contraction

Nk,w1

+
X

wt:12V t

�(wt:1)C
1/2
M ⇧�(wt:t?+2)(I � ⌘CM )t

?

Nk,w1| {z }
Independent of wt?+1:1

Note that the first term above only contains a contraction
⇧�(wt?+1:1) of length t?, and as such, when applying a
variant of (6) will only grow at length (⌘t?)(1+�)/2/

p
m.
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When summing over 1  k  t this will result in the lead-
ing order term for the residual error of (⌘t)(⌘t?)(1+�)/2/m.
For the second term, note the highlighted section is in-
dependent of the final t? steps of the path wt:1, namely
wt?+1:1. Therefore we can sum the deviation �(wt:1) over
path wt?+1:1 and, if t? & 1

1��2
, replace Nk,w1 by the av-

erage 1
n

P
w2V Nk,w. This has impact of decoupling the

summation over the remainder of the path wt:t? allowing
the second insight from previously to be used. For details
on this step we point the reader to Appendix Section D.1.

5. Experiments
For our experiments we consider subsets of the SUSY data
set (Baldi et al., 2014), as well as single machine and Dis-
tributed Gradient Descent with a fixed step size ⌘ = 1. Cy-
cle and grid network topologies are studied, with the matrix
P being a simple random walk. Random Fourier Features
are used  (x,!) = cos(⇠ ⇥ w>x + q), with ! := (w, q),
w sampled according to the normal distribution, q sampled
uniformly at random between 0 and 2⇡, and ⇠ is a tuning pa-
rameter associated to the bandwidth (fixed to ⇠ = 10�1/2).
For any given sample size, topology or network size we
repeated the experiment 5 times. Test size of 104 was used
and classification error is minimum over iterations and max-
imum over agents i.e. mint maxv2V EApprox(b!t,v), where
EApprox is approximated test error. With the response of the
data being either 1 or 0 and the predicted response by, the
predicted classification is the indicator function of by > 1/2.
The classification error is the proportion of mis-classified
samples.

We begin by investigating the number of Random Features
required with Distributed Gradient Descent to match the
single machine performance. Looking to Figure 1, observe
that for a grid topology, as well as small cycles (n = 9, 25),
that the classification error aligns with a single machine
beyond approximately

p
nm Random Features. For larger

more poorly connected topologies, in particular a cycle with
n = 49 agents, we see that the error does not fully decrease
down that of single machine Gradient Descent.

Figure 1. Classification Error (if y and by are the true and predicted
response respectively, error calculated is 0-1 loss) against number
of Random Features M , with total sample size and maximum num-
ber of iterations t = nm = 103. Vertical line in plots indicatesp
nm. Left: Cycle topology, Right: Grid Topology.

Our theory predicts that the sub-optimality of more poorly
connected networks decreases as the number of samples
held by each agent increases. To investigate this, we re-
peat the above experiment for cycles and grids of sizes
n = 25, 49, 100 while varying the dataset size. Looking
to Figure 2, we see that approximately nm ⇡ 103 samples
are sufficient for a cycle topology of size n = 49 to align
with a single machine, meanwhile 104 samples are required
for a larger n = 100 cycle. For a grid we see a similar
phenomena, although with fewer samples required due to
being better connected topology.

Figure 2. Plots of Classification Error (computed as in Figure 1)
against total number of samples nm, with M = 300. Run for at
most t = 104 iterations, each point is an average of 20 sub-subsets
of the SUSY, which Distributed Gradient Descent with Random
Features is run on 5 times.

Our theory predicts that, given sufficiently many samples,
the number of iterations for any network topology scales
as those of single machine Gradient Descent. We look to
Figure 3 where the number of iterations required to achieve
the minimum classification error (optimal stopping time)
is plotted against the sample size. Observe that beyond
approximately 103 samples both grid and cycles of sizes
n = 25, 49, 100 have iterates that scale at the same order
as a single machine. Observe that the number of iterations
required by the grid and cycle topologies is initially decreas-
ing with the sample size up to 103. While not supported by
our theory for a constant step size, this suggests quantities
held by agents become similar as agents hold more data,
reducing the need for additional iterations in order to prop-
agate information around the network. An analysis of this
phenomena we leave to future work.

6. Conclusion
In this work we considered the performance of Distributed
Gradient Descent with Random Features on the Generalisa-
tion Error, this being different from previous works which
focused on training loss. Our analysis allowed us to under-
stand the role of different parameters on the Generalisation
error, and, when agents have sufficiently many samples with
respect to the network size, achieve a linear speed-up in
runtime time for any network topology.

Moving forward, it would be natural to extend our analysis
to stochastic gradients (Lin & Rosasco, 2017) or stochastic
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Figure 3. Optimal Stopping Time (Number of iterations required)
against sample size nm (log� log axis), with M = 300. Left:
Cycle Topology, Right: Grid topology. Each point is averaged
over 20 sub-subsets of the SUSY. Distributed Gradient Descent
with Random Features was repeated 5 times, with at most 104

iterations.

communication at each iteration (Shah, 2009).
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