
Decentralised Learning with Random Features and Distributed Gradient Descent

A. Remarks
In this section we give a number of remarks relating to content within the main body of the paper.

Remark 1 (Sketching and Communication Savings) We highlight that the Random Feature framework considered also
incorporates a number of sketching techniques. For instance, when  (x,!) = x>! where ! ⇠ N (0, I) and the associated
kernel is simply linear as E[ (x,!) (x0,!)]E[x>!!>x] = x>E[!!>]x = x>x0. The case M < D then represents a
simple setting in which communication savings can be achieved, as agents in this case would only need to communicate
an M dimensional vector instead of D. A natural future direction would be to investigate whether there exists particular
sketches/Random Features tailored to the objective of communication savings, in a similar manner to Orthogonal Random
Features (Yu et al., 2016), Fast Food (Le et al., 2013) or Low-precision Random Features (Zhang et al., 2019). Although, as
noted in (Carratino et al., 2018), some of these methods sample the features in a correlated manner, and thus, do not fit
within the assumptions of this work.

Remark 2 (Previous Literature Decentralised Kernel Methods) This remark highlights two previous works for Decen-
tralised Kernel Methods. The work (Forero et al., 2010) considers decentralised Support Vector Machines with potentially
high-dimensional finite feature spaces that could approximate a non-linear kernel. They develop a variant of the Alternating
Direction Method of Multiplers (ADMM) to target the augmented optimisation problem. In this case, the high-dimensional
constraints across the agents are approximated so the agents local estimated functions are equal on a subset of chosen
points. Meanwhile (Koppel et al., 2018) consider online stochastic optimisation with penalisation between neighbouring
agents. The penalisation introduced is an expectation with respect to a newly sampled data point and not in the norm of
the Reproducing Kernel Hilbert Space. In both of these cases, the original optimisation problem is altered to facilitate a
decentralised algorithm, but no guarantee is given on how these approximation impact statistical performance.

Remark 3 (Concurrent Work) The concurrent work (Xu et al., 2020) consider the homogeneous setting where a network
of agents have data from the same distribution and wish to learn a function within a RKHS that performs well on unseen data.
The consensus optimisation formulation of the single machine explicitly penalised kernel learning problem is considered,
and the challenges of decentralised kernel learning (as described in Section 2.1 in the main body of the manuscript) are
overcome by utilising Random Fourier Features. An ADMM method is developed to solve the consensus optimisation
problem, and, provided hyper-parameters are tuned appropriately, optimisation guarantees are given. Due to considering
the consensus optimisation formulation of a single machine penalised problem, the Generalisation Error is decoupled from
the Optimisation Error. Therefore, while optimisation results for ADMM applied to consensus optimisation objectives (Shi
et al., 2014) are applied, the statistical setting is not leveraged to achieve speed-ups. It is then not clear how the network
connectivity, number of samples held by agents and finer statistical assumptions (source and capacity) impacts either
generalisation or optimisation performance. This is in contrast to our work, where we directly study the Generalisation
Error of Distributed Gradient Descent with Implicit Regularisation, and show how the number of samples held by agents,
network topology, step size and number of iterations can impact Generalisation Error.

B. Analysis Setup
This section provides the setup for the analysis. We adopt the notation of (Carratino et al., 2018), which is included here
for completeness. Section B.1 introduces additional auxiliary quantities required for the analysis. Section B.2 introduces
notation for the operators required for the analysis. Section B.3 introduces the error decomposition.

B.1. Additional Auxiliary Sequences

We begin by introducing some auxiliary sequences that will be useful in the analysis. Begin by defining {vt}t�1 initialised
at v1 = 0 and updated for t � 1 and updated

vt+1 = vt � ⌘

Z

X

�
hvt,�M (x)i � fH(x)

�
�M (x)d⇢X(x)
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Further for � > 0 let

eu� = argminu2RM

Z

X

�
hu,�M (x)i � fH(x)

�2
d⇢X(x) + �kuk2,

u� = argminu2F

Z

X

�
hu,�(x)i � y)2d⇢(x, y) + �kuk2,

where (F ,�) are feature space and feature map associated to the kernel k. As described previously, it will be useful to work
with functions in L2(X, ⇢X), therefore define the functions

gt = hvt,�M (·)i, eg� = heu�,�M (·)i, g� = hu�,�(·)i.

The quantities introduced here in this section will be useful in analysing the Statistical Error term.

B.2. Notation

Let F be the feature space corresponding to the kernel k given by Assumption 2.

Given � : X ! F (feature map), we define the operator S : F ! L2(X, ⇢X) as

(S!)(·) = h!,�(·)iF , 8! 2 F .

If S? is the adjoint operator of S, we let C : F ! F be the linear operator C = S?S, which can be written as

C =

Z

X
�(x)⌦ �(x)d⇢X(x).

We also define the linear operator L : L2(X, ⇢X) ! L2(X, ⇢X) such that L = SS?, that can be represented as

(Lf)(·) =

Z

X
h�(x),�(·)iFf(x)d⇢X(x), 8f 2 L2(X, ⇢X).

We now define the analog of the previous operators where we use the feature map �M instead of �. We have SM : RM
!

L2(X, ⇢X) defined as

(SMv)(·) = hv,�M (·)iRM , 8v 2 RM

together with CM : RM
! RMand LM : L2(X, ⇢X) ! L2(X, ⇢X) defined as CM = S?

MSM and LM = SMS?
M

respectively. For v 2 RM note we have the equality

kSMvk2⇢ =

Z

X
hv,�M (x)i2d⇢X(x)

=

Z

X
v>�M (x)⌦ �M (x)vd⇢X(x)

= v>CMv

= kC1/2
M vk2 (7)

where we have denoted the standard Euclidean norm as k · k. Define the empirical counterpart of the previous operators for
each agent. For each agent v 2 V define the operator bS(v)

M : RM
! Rm as

bS(v)>
M =

1
p
m
(�M (x1,v), . . . ,�M (xm,v)),

and with bC(v)
M : RM

! RM and bL(v)
M : Rm

! Rm are defined as bC(v)
M = bS(v)>

M
bS(v)
M and bL(v)

M = bS(v)
M

bS(v)>
M respectively.

Moreover, define the empirical operators associated to all of the samples held by agents in the network. To do so index the
agents in V between 1 and n, so xi,j is the ith data point held by agent j. Then, define the operator bSM : RM

! Rnm as

bS>

M =
1

p
nm

(�M (x1,1), . . . ,�M (xm,1),�M (x1,2), . . . ,�M (xm,2), . . . ,�M (x1,n), . . . ,�M (xm,n))

=
1
p
n
(bS(1)>

M , . . . , bS(n)>
M )
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and with bCM : RM
! RM and bLM : Rnm

! Rnm are defined as bCM = bS>

M
bSM and bLM = bSM

bS>

M respectively. From
the above it is clear that we have bCM = 1

n

P
w2V

bS(w)>
M

bS(w)
M = 1

n

P
w2V C(w)

M . For some number � > 0 we let the
operator plus the identity times � be denoted L� = L+ �I , and similarly for bL�, as well as CM,� = CM + �I and bCM,�.

Remark 4 Let P : L2(X, ⇢X) ! L2(X, ⇢X) be the projection operator whose range is the closure of the range of L. Let
f⇢ : X ! R be defined as

f⇢(x) =

Z
yd⇢(y|x).

If there exists fH 2 H such that

inf
f2H

E(f) = E(fH)

then

Pf⇢ = SfH.

or equivalently, there exists g 2 L2(X, ⇢X) such that

Pf⇢ = L1/2g.

In particular, we have R := kfHkH = kgkL2(X,⇢X). The above condition is commonly relaxed in approximation theory as

Pf⇢ = Lrg

with 1/2  r  1.

With the operators introduced above and the above remark, we can rewrite the auxiliary objects respectively as

bv1 = 0; bvt+1 = (I � ⌘ bCM )bvt + ⌘ bS>

Mby
ev1 = 0; evt+1 = (I � ⌘CM )evt + ⌘S?

Mf⇢

v1 = 0; vt+1 = (I � ⌘CM )vt + ⌘S?
MPf⇢

where the vector of all nm responses are by> = (nm)�1/2(y1,1, . . . , y1,m, y2,m, . . . , yn,m) = (n)�1/2(by1, . . . , byn), and
each agents responses are, for i = 1, . . . , n, denoted byv = (m)�1/2(yi,1. . . . , yi,m). We then denote

eu� = S?
ML�1

M,�Pf⇢

u� = S?L�1
� Pf⇢.

Inductively the three sequences can be written as

bvt+1 =
tX

k=1

⌘(I � ⌘ bCM )t�k bS>

Mby

evt+1 =
tX

k=1

⌘(I � ⌘CM )t�kS?
Mf⇢

vt+1 =
tX

k=1

⌘(I � ⌘CM )t�kS?
MPf⇢

B.3. Error Decomposition

We can now write the deviation bft+1,v � fH using the operators

bft+1,v � fH = SM b!t+1,v � SMbvt| {z }
Network Error

+SMbvt � Pf⇢| {z }
Statistical Error

(8)

where the first term aligns with the network error and the second with the statistical error. Each of these will be analysed in
it own section.
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C. Statistical Error
In this section we summarise the analysis for the Statistical Error which has been conducted within (Carratino et al., 2018).
Here we provided the proof for completeness. Firstly, we further decompose the statistical error into the following terms

kSMbvt+1 � Pf⇢k⇢ kSMbvt+1 � SMevt+1 + SMevt+1 � SMvtk⇢| {z }
Sample Error

+ kSMvt+1 � LML�1
M,�Pf⇢k⇢

| {z }
Gradient Descent and Ridge Regression

(9)

+ kLML�1
M,�Pf⇢ � LL�1

� Pf⇢k⇢
| {z }

Random Features Error

+ kLL�1
� Pf⇢ � Pf⇢k⇢| {z }

Bias

Each of the terms have been labelled to help clarity. The first term, sample error includes the difference between the
empirical iterations with sampled data bvt, as well as iterates under the population measure vt. The second term Gradient
Descent and Ridge Regression is the difference between the population variants of the Gradient Descent vt and ridge
regression LML�1

M,�Pf⇢ solutions. The third term Random Feature Error accounts for the error introduced from using
Random Features. Finally the Bias term accounts for the bias introduced due to the regularisation. Each of these terms will
be bounded within their own sub-section, except the Bias term which will be bounded when bounds for all of the terms are
brought together.

The remainder of this section is then as follows. Section C.1, C.2 and C.3 give the analysis for the Sample Error, Gradient
Descent and Ridge Regression and Random Feature Error error respectively. Section C.4 bounds the Bias and combines
bounds for the previous terms.

C.1. Sample Error

The bound for this term is summarised within the following Lemma which itself comes from Lemma 1 and 6 in (Carratino
et al., 2018).

Lemma 1 (Sample Error) Under assumptions 2, 4 and 3 , let � 2 (0, 1), ⌘ 2 (0,�2). When

M �
�
4 + 18⌘t

�
log

12⌘t

�

for all t � 1 with probability atleast 1� 3�

kSMbvt � SMevt + SMevt � SMvtk⇢  4
⇣
R2r

⇣
1 +

r
9

M
log

M

�

�p
⌘t _ 1

�⌘
+

p

B
⌘

⇥
�
12 + 4 log(t) +

p

2⌘
�⇣p⌘t

nm
+

q
2
p
pq0N (

2

⌘t )
p
nm

⌘
log

4

�

where q0 = max
�
2.55, 22

kLk

�

Proof 1 Apply Lemma 1 in (Carratino et al., 2018) to say kSMevt � SMvtk⇢ = 0, meanwhile Lemma 6 in the same work to
bound kSMbvt � SMevtk with ✓ = 0 and T = t.

C.2. Gradient Descent and Ridge Regression

This term is controlled by Lemma 9 in (Carratino et al., 2018).

Lemma 2 (Gradient Descent and Ridge Regression) Under Assumption 3 the following holds with probability 1� � for
� = 1

⌘t for t � 1

kSMvt+1 � LML�1
M,�Pf⇢k⇢  8R2r

⇣ log 2
�

Mr
+

vuutN
�

1
⌘t

�2r�1
log 2

�

M(⌘t)2r�1

⌘
log1�r �112⌘t

�
+

2R

(⌘t)r

when

M � (4 + 18⌘t) log
�82⌘t

�

�
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C.3. Random Features Error

The following Lemma is from Lemma 8 of (Rudi & Rosasco, 2017; Carratino et al., 2018).

Lemma 3 Under assumption 2 and 3 for any � > 0, � 2 (0, 1/2], when

M �
�
4 +

182

�

�
log

82

��

the following holds with probability at least 1� 2�

kLML�1
M,�Pf⇢ � LL�1

� Pf⇢k⇢  4R2r
 
log 2

�

Mr
+

s
�2r�1N (�)2r�1 log 2

�

M

!
q1�r

where q = log 112

�

C.4. Combined Error Bound

The following Lemma combines the error bounds.

Lemma 4 Under assumption 1 to 4, let � 2 (0, 1) and ⌘ 2 (0,�2) when

M � (4 + 18⌘t2) log
602⌘t

�

the following holds with probability greater than 1� �

kSMbvt+1 � Pf⇢k
2
⇢  c21

⇣
1 _

(⌘t _ 1) log 3M
�

M

⌘⇣ ⌘t

(nm)2
_

N ( 1
⌘t )

nm

⌘
log2(t) log2

12

�

+ c22

⇣ 1

M2r
_

N ( 1
⌘t )

2r�1

M(⌘t)2r�1

⌘
log2(1�r)(112⌘t) log2

�6
�

�
+

c23
(⌘t)2r

where the constants

c1 = 8⇥ 12⇥ 15
�p

B _ (R2r)
�
(1 _

q
2
p
pq0)

c2 = 24R2r

c3 = 3R

Proof 2 (Lemma 1) Begin fixing � = 1
⌘t and bounding the bias from Lemma 5 of (Rudi & Rosasco, 2017) as

kLL�1
� Pf⇢ � Pf⇢k⇢  R�r.

Now use Lemma 1 to bound the Sample Error, Lemma 2 for the Gradient Descent and Ridge Regression Term, and 3 for
the Random Features Error. With a union bound, note that the conditions on M for each of these Lemmas is satisfied by
M � (4 + 18⌘t2) log 602⌘t

� . Cleaning up constants and squaring then yields the bound.

D. Network Error
In this section we the proof of the following bound on the network error, which improves upon (Richards & Rebeschini,
2019). This section is then structured as follows. Section D.1 provides the error decomposition for the Network Error.
Section D.2 introduces a number of prelimary lemmas utilised within the analysis. Section D.3, D.4, D.5, D.6 and D.7 then
provides bounds for each of the error terms that arise within the decomposition.
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D.1. Error Decomposition

Recall the vector of observations associated to agent v 2 V is denoted byv = 1
p
m
(y1,v, . . . , ym,v). Using the previously

introduced notation note that we can write the Distributed Gradient Descent iterates as for t � 1 and v 2 V

b!t+1,v =
X

w2V

Pvw

⇣
b!t,w � ⌘ bC(w)

M b!t,w + ⌘ bS(w)>
M byw

⌘

Centering the iterates around the population sequence evt we have from the doubly stochastic property of P

b!t+1,v � evt+1 =
X

w2V

Pvw

⇣
b!t,w � evt + ⌘

�
(CMevt � S?

Mf⇢)� ( bC(w)
M b!t,w + bS(w)>

M byw)
 ⌘

=
X

w2V

Pvw

⇣
(I � bC(w)

M )(b!t,w � evt) + ⌘
�
(CMevt � S?

Mf⇢)� ( bC(w)
M evt + bS(w)>

M byw)
 

| {z }
Nt,w

⌘

=
X

w2V

Pvw

⇣
(I � bC(w)

M )(b!t,w � evt) + ⌘Nt,w

⌘

where we have defined the error term

Nt,w := (CMevt � S?
Mf⇢)� ( bC(w)

M evt + bS(w)?
M byw) 8s � 1w 2 V.

Note that a similar set of calculation can be performed for the iterates bvt leading to the recursion for v 2 V initialised at
bv1,v = 0 and updated for t � 1

bvt+1,v � evt+1 =
X

w2V

1

n

⇣
(I � bC(w)

M )(bvt,w � evt) + ⌘Nt,w

⌘

For a path indexed from time step t to k such that 1  k  t as wt:k = (wt, wt�1, . . . , wk) 2 V t�k+1, let the product of
operators be denoted

⇧(wt:k) = (I � bC(wt)
M )(I � bC(wt�1)

M ) . . . (I � bC(wk)
M ) (10)

Meanwhile for k > t we say ⇧(wt:k) = I . Unravelling the sequences b!t+1,v � evt+1 and bvt+1 � evt+1 with the above
notation and taking the difference we then have

b!t+1,v � bvt+1 =
tX

k=1

⌘
X

wt:k2V t�k+1

�
Pvwt:k �

1

nt�k+1

�
⇧(wt:k+1)Nk,wk

=
tX

k=1

⌘
X

wt:k2V t�k+1

�(wt:k)⇧(wt:k+1)Nk,wk

where we have introduced the notation where we have denoted
�
Pvwt:k �

1
nt�k+1

�
= �(wt:k) 2 R. Introduce notation for

the difference between the product of operators indexed by the paths and the population equivalent

⇧�(wt:k+1) := ⇧(wt:k+1)� (I � ⌘CM )t�k.

Fixing some t? 2 N and supposing that t > 2t? � 2, observe that we can then write, for k  t� t? � 1,

⇧�(wt:k+1)

= ⇧(wt:k+1)�⇧(wt:k+t?+1)(I � ⌘CM )t
?

+⇧(wt:k+t?+1)(I � ⌘CM )t
?

� (I � ⌘CM )t�k

= ⇧(wt:k+t?+1)⇧
�(wk+t?:k+1) +⇧�(wt:k+t?+1)(I � ⌘CM )t

?
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where we have replaced the first t? operators in ⇧(wt:k) with the population variant (I � ⌘CM ). Plugging this in then yields

b!t+1,v � bvt+1 =
tX

k=1

⌘
X

wt:k2V t�k+1

�(wt:k)(I � ⌘CM )t�kNk,wk

+
tX

k=t�2t?

⌘
X

wt:k2V t�k+1

�(wt:k)⇧
�(wt:k+1)Nk,wk

+
t�2t?�1X

k=1

⌘
X

wt:k2V t�k+1

�(wt:k)⇧(wt:k+t?+1)⇧
�(wk+t?:k+1)Nk,wk

+
t�2t?�1X

k=1

⌘
X

wt:k2V t�k+1

�(wt:k)⇧
�(wt:k+t?+1)(I � ⌘CM )t

?

Nk,wk

where we split the series off for paths shorter than 2t?. Note for the first and last term above, elements in the series can be
simplified by summing over the nodes in the path. Defining for s � 1 and v, w 2 V the difference �s(v, w) = P s

vw �
1
n ,

we get for the first term when k < t
X

wt:k2V t�k+1

�(wt:k)(I � ⌘CM )t�kNk,wk =
X

wk2V

⇣ X

wt:k+12V t�k

�(wt:k)
⌘
(I � ⌘CM )t�kNk,wk

=
X

w2V

�t�k(v, w)(I � ⌘CM )t�kNk,w

where
P

wt:k+12V t�k �(wt:k) =
P

wt:k+12V t�k Pvwt:k �
P

wt:k+12V t�k
1

nt�k+1 = P t�k
vw �

1
n = �t�k(v, w). Meanwhile

for the last term we can sum over the last t? nodes in the path wt:k, that is with
X

wk+t?:k+12V t?

�(wt:k) =
X

wk+t?:k+12V t?

Pvwt:k �
1

nt�k+1

= Pvwt:k+t?+1

X

wk+t?:k+12V t?

Pwk+t?+1:k
�

X

wk+t?:k+12V t?

1

nt�k+1

= Pvwt:k+t?+1
(P t?)wk+t?+1wk �

1

nt�t?�k+1

= Pvwt:k+t?+1
((P t?)wk+t?+1wk �

1

n
) +

1

n
(Pvwt:k+t?+1

�
1

nt�k�t?
)

= Pvwt:k+t?+1
�t?(wk+t?+1, wk) +

1

n
�(wt:k+t?+1)

Plugging this in we get for 1  k  t� 2t? � 1
X

wt:k2V t�k+1

�(wt:k)⇧
�(wt:k+t?+1)(I � ⌘CM )t

?

Nk,wk

=
X

wk2V

X

wt:k+t?+12V t�t?�k

⇣ X

wk+t?:k+12V t?

�(wt:k)
⌘
⇧�(wt:k+t?+1)(I � ⌘CM )t

?

Nk,wk

=
X

wk2V

X

wt:k+t?+12V t�t?�k

Pvwt:k+t?+1
�t?(wk+t?+1, wk)⇧

�(wt:k+t?+1)(I � ⌘CM )t
?

Nk,wk

+
1

n

X

wk2V

X

wt:k+t?+12V t�t?�k

�(wt:k+t?+1)⇧
�(wt:k+t?+1)(I � ⌘CM )t

?

Nk,wk

=
X

wk2V

X

wt:k+t?+12V t�t?�k

Pvwt:k+t?+1
�t?(wk+t?+1, wk)⇧

�(wt:k+t?+1)(I � ⌘CM )t
?

Nk,wk

+
X

wt:k+t?+12V t�t?�k

�(wt:k+t?+1)⇧
�(wt:k+t?+1)(I � ⌘CM )t

?

Nk
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where at the end for the second term we have
1

n

X

wk2v

Nk,wk = Nk = (CMevt � S
?
Mf⇢)� ( bCMevt + bS>

Mby) 8k � 1.

Plugging the above in, using the isometry property (7) and triangle inequality we get

kSM (b!t+1,v � bvt+1)k⇢ 

tX

k=1

⌘
X

w2V

|�t�k(v, w)|kC1/2
M (I � ⌘CM )t�kNk,wk

+
tX

k=t�2t?

⌘
X

wt:k2V t�k+1

|�(wt:k)|kC
1/2
M ⇧�(wt:k+1)Nk,wkk

+
t�2t?�1X

k=1

⌘
X

wt:k2V t�k+1

|�(wt:k)|kC
1/2
M ⇧(wt:k+t?+1)⇧

�(wk+t?:k+1)Nk,wkk

+
t�2t?�1X

k=1

⌘
X

wk2V

X

wt:k+t?+12V t�t?�k

|Pvwt:k+t?+1
�t?(wk+t?+1, wk)|

⇥ kC1/2
M ⇧�(wt:k+t?+1)(I � ⌘CM )t

?

Nk,wkk

+
t�2t?�1X

k=1

⌘
���

X

wt:k+t?+12V t�t?�k

�(wt:k+t?+1)C
1/2
M ⇧�(wt:k+t?+1)(I � ⌘CM )t

?

Nk

���

= E1 +E2 +E3 +E4 +E5 (11)

where we have respectively labelled the error terms Ei for i = 1, . . . , 5. We will aim to construct high probability bounds
for each of these error terms within the following sections. This will rely on utilising the mixing properties of P to control
the deviations �s(v, w) for some s � 1 and v, w 2 V , the contractive property of operators C1/2

M (I � ⌘CM )k for some
k 2 N+ as well as concentration of the error terms Nk,w and Nk for k � 1 and w 2 V . These are summarised within the
following section.

D.2. Preliminary Lemmas

In this section we provide some Lemmas that will be useful for later. We begin with the following that bounds the deviation
�s(v, w) in terms of the second largest eigenvalue in absolute value of P .

Lemma 5 (Spectral Bound) Let s � 1, v 2 V . Then the following holds
X

w2V

|�s(v, w)|  2(
p
n�s

2 ^ 1)

Proof 3 (Lemma 5) Let ev 2 Rn denoting the standard basis with a 1 in the place associated to agent v. Observe that we
can write the deviation in terms of the `1 norm

P
w2V |�s(v, w)| = ke>v P

s
�

1
n1k1. We immediately have an upper bound

from triangle inequality that
P

w2V |�s(v, w)|  kke>v P
s
k1 + k

1
n1k1 = 2. Meanwhile, we can also go to the `2 norm

and bound

ke>v P
s
�

1

n
1k1 

p
nke>v P

s
�

1

n
1k2 

p
n�s

2.

The bound is arrived at by taking the maximum between the two upper bounds.

The following Lemma bonds the norm of contractions

Lemma 6 (Contraction) Let L be a compact, positive operator on a separable Hilbert Space H . Assume that ⌘kLk  1.
For t 2 N, a > 0 and any non-negative integer k  t� 1 we have

k(I � ⌘L)t�k
L
a
k 

✓
1

⌘(t� k)

◆a

.
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Proof 4 (Lemma 6) The proof in Lemma 15 of (Lin & Rosasco, 2017) considers this result with a = r. The proof for more
general a > 0 follows the same steps.

The following remark will summarise how the above Lemma is applied to control series of contractions.

Remark 5 (Lemma 6) Lemma 6 will be applied to control series of the form ⌘
Pt

k=1 k(I � ⌘L)t�k
L
a
k for some t � 3,

most notably with powers a = 1, 1/2. In the case a = 1 we immediately have the bound

⌘
tX

k=1

k(I � ⌘L)t�k
Lk = ⌘

t�1X

k=1

k(I � ⌘L)t�k
Lk+ ⌘kLk

 ⌘
t�1X

k=1

1

⌘(t� k)
+ ⌘kLk

 5 log(t)

where we have bounded the series
Pt�1

k=1
1

t�k  4 log(t) and ⌘kLk  1. Similarly for a = 1/2 we have

⌘
tX

k=1

k(I � ⌘L)t�k
L
1/2

k  ⌘
t�1X

k=1

1p
⌘(t� k)

+ ⌘kL1/2
k

 3
p
⌘t+

p
⌘

 5
p
⌘t

where we have bounded the series
Pt�1

k=1
1p
t�k)

 4
p
t, see for instance Lemma 23 in (Richards & Rebeschini, 2019) with

q = 0, as well as the bound that p⌘kL1/2
k  1.

Now for � > 0 define the effective dimension associated the feature map �M , that is

NM (�) := Tr
��
LM + �I)�1LM

�
.

Given this, the following Lemma summarises the concentration results used within our analysis.

Lemma 7 (Concentration of Error) Let � 2 (0, 1], n,m,M 2 N+, � > 0 and ⌘2  1. Under assumption 2,3 and 4 we
have with probability greater than 1� � for 1  k  t

max
w2V

kC�1/2
M,� (CM � bC(w)

M )k  2
⇣ 2

m
p
�
+

r
NM (�)

m

⌘
log

6n

�

max
w2V

kC�1/2
M,� Nk,wk  2

p

B
⇣ 
p
�m

+

r
2
p
pNM (�)

m

⌘
log

6n

�

+ 4
⇣ 2

m
p
�
+

r
NM (�)

m

⌘⇣
1 +

r
9

M
log

3Mn

�

�p
⌘t _ 1

�⌘
log

6n

�

Meanwhile, under the same assumptions with probability greater than 1� � for k � 1

kC�1/2
M,� (CM � bCM )k  2

⇣ 2

nm
p
�
+

r
NM (�)

nm

⌘
log

2

�

kC�1/2
M,� Nkk  2

p

B
⇣ 
p
�nm

+

r
2
p
pNM (�)

nm

⌘
log

6

�

+ 4
⇣ 2

nm
p
�
+

r
NM (�)

nm

⌘⇣
1 +

r
9

M
log

3M

�

�p
⌘t _ 1

�⌘
log

6

�
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The proof for this result is given in Section F.1. Lemma 7 will be used extensively within the following analysis. To save on
the burden of notation we define the following two functions for � > 0, K 2 N+ and � 2 (0, 1]

g(�,K) = 2
⇣ 2

K
p
�
+

r
NM (�)

K

⌘

f(�,K, �) = 2
p

B
⇣ 
p
�K

+

r
2
p
pNM (�)

K

⌘

+ 4
⇣ 2

K
p
�
+

r
NM (�)

K

⌘⇣
1 +

r
9

M
log

3M

�

�p
⌘t _ 1

�⌘
.

Looking to Lemma 7 we note the function g is associated to the high probability bound on the difference between the
covariance operators, for instance C�1/2

M,� (CM � bCM ), meanwhile f is associated to the bound on the error terms, for
instance C�1/2

M,� Nk.

D.3. Bounding E1

The bound for E1 is then summarised within the following Lemma.

Lemma 8 (Bounding E1) Let � 2 (0, 1], n,m,M 2 N+ and ⌘2  1 and t � 2t? � 2 and �,�0 > 0. Under assumption
2,3 and 4 we have with probability greater than 1� �

E1 

⇣
kC1/2

M,�0k�t?

2 t�1f(�0,m, �/(2n)) + 20 log(t?)(1 _
p
�⌘t?)f(�,m, �/(2n))

⌘
log

12n

�

Proof 5 (Lemma 8) Splitting the series at 1  k  t� t? we have the following

E1 

⇣
max

1kt,w2V
kNk,wk

⌘ t�t?X

k=1

⌘
X

w2V

|�t�k(v, w)|kC1/2
M (I � ⌘CM )t�k

k

| {z }
E11

+
⇣

max
1kt,w2V

kC�1/2
M,� Nk,wk

⌘ tX

k=t�t?+1

⌘
X

w2V

|�t�k(v, w)|kC1/2
M (I � ⌘CM )t�kC1/2

M,�k

| {z }
E12

To bound E11 utilise the mixing properties of the matrix P through Lemma 5. With ⌘2  1 ensuring that ⌘kC1/2
M (I �

⌘CM )t�k
k  ⌘kC1/2

M k 
p
⌘  �1, we arrive at the bound

E11  �1
t�t?X

k=1

�t�k
2  �t?

2 t�1.

Meanwhile to bound E12 utilise the contraction of the gradients, that is Lemma 6 remark with a = 1/2 and L = CM . WithP
w2V |�t�k(v, w)|  2 this allows us to say

E12  2⌘
tX

k=t�t?+1

kCM (I � ⌘CM )t�k
k+ 2⌘

p

�
tX

k=t�t?+1

kC1/2
M (I � ⌘CM )t�k

k

 20 log(t?)(1 _
p
�⌘t?).

Bounding max1kt,w2V kNk,wk  kC1/2
M,�0kmax1kt,w2V kC�1/2

M,�0 Nk,wk and plugging in high probability bounds for

both max1kt,w2V kC�1/2
M,�0 Nk,wk and max1kt,w2V kC�1/2

M,� Nk,wk from Lemma 7 yields the result.
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D.4. Bounding E2

The bound for this term utilises the following Lemma to bound operator kC1/2
M ⇧�(wt:k)k. To save on national burden, we

define the following random quantity for � > 0

�� := max
v2V

kC�1/2
M (CM � bC(v)

M )k.

We begin with the following Lemma which rewrites the norm of ⇧�(wt:1) for any path wt:1 as a series of contractions.

Lemma 9 Let N 2 RM and wt:1 2 V t and ⌘2  1. Then for u 2 [0, 1/2]

kC1/2�u
M ⇧�(wt:1)Nk  2⌘��kNk

tX

`=1

kC1/2�u
M (I � ⌘CM )t�`C1/2

M,�k

Given this Lemma we present the high probability bound for E2.

Lemma 10 (Bounding E2) Let � 2 (0, 1], n,m,M 2 N+ and ⌘2  1 and t � 2t? � 2 and �,�0 > 0. Under assumption
2,3 and 4 we have with probability greater than 1� �

E2  40kC1/2
M,�0k⌘t? log(t)(1 _

p
�⌘t) log2

12n

�
g(�,m)f(�0,m, �/(2n))

Proof 6 (Lemma 10) Using Lemma 9 with u = 0 we have for any t � k � t� 2t? and wt:k 2 V t�k+1

kC1/2
M ⇧�(wt:k+1)Nk,wkk  2⌘��kNk,wkk

t�kX

`=1

kC1/2
M (I � ⌘CM )t�k�`C1/2

M,�k

 2⌘��kNk,wkk

⇣ t�kX

`=1

kCM (I � ⌘CM )t�k�`
k+

p

�
t�kX

`=1

kC1/2
M (I � ⌘CM )t�k�`

k

⌘

 20⌘��kNk,wkk log(t)(1 _
p
�⌘t)

where we applied Lemma 6 remark 5 to the bound the series of contractions. The case k = t the above quantity is zero. WithP
wt:k2V t�k+1 |�(wt:k)|  2 this leads to the error term being bounded

E2  40�� log(t)(1 _
p
�⌘t)⌘t?

⇣
max

1kt,w2V
kNk,wk

⌘
.

The final bound is arrived at by bounding for �0 > 0 the error term in the brackets as max1kt,w2V kNk,wk 

kC1/2
M,�0kmax1kt,w2V kC�1/2

M,�0 Nk,wk, and plugging in high probability bounds for max1kt,w2V kC�1/2
M,�0 Nk,wk and

�� from Lemma 7, with a union bound.

D.5. Bounding E3

The bound for this error term is similar to E2 and will be presented within the following Lemma.

Lemma 11 (Bounding E3) Let � 2 (0, 1], n,m,M 2 N+ and ⌘2  1 and t � 2t? � 2 and �,�0 > 0. Under assumption
2,3 and 4 we have with probability greater than 1� �

E3  24kC1/2
M kkC1/2

M,�0k(⌘t)
p
⌘t?

�
1 _

p
�⌘t?

�
log2

12n

�
g(�,m)f(�0,m, �/(2n))

Proof 7 (Lemma 11) For 1  k  t � 2t? � 1 and wt:k 2 V t�k+1 use Lemma 9 with u = 1/2 as well as ⌘2  1 to
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bound with � > 0

kC1/2
M ⇧(wt:k+t?+1)⇧

�(wk+t?:k+1)Nk,wkk

 kC1/2
M kk⇧�(wk+t?:k+1)Nk,wkk

 2⌘kC1/2
M k��kNk,wkk

t?X

`=1

k(I � ⌘CM )t
?
�`C1/2

M,�k

 2kC1/2
M k��kNk,wkk

⇣
⌘

t?X

`=1

k(I � ⌘CM )t
?
�`C1/2

M k+
p

�⌘t?
⌘

 12kC1/2
M k��kNk,wkk

p
⌘t?(1 _

p
�⌘t?)

where we have bounded the series of contractions using Lemma 6 remark 5 once again. With
P

wt:k2V t�k+1 |�(wt:k)|  2,
plugging in the above yields the bound for E3

E3  24kC1/2
M k(⌘t)

p
⌘t?��(1 _

p
�⌘t?)

⇣
max

1kt,w2V
kNk,wk

⌘
.

The final bound is arrived at by bounding �� and
⇣
max1kt,w2V kNk,wk

⌘
in an identical manner to Lemma 10 for error

term E2.

D.6. Bounding E4

This term will be controlled through the convergence of P t? to the stationary distribution. It is summarised within the
following Lemma.

Lemma 12 (Bounding E4) Let � 2 (0, 1], n,m,M 2 N+ and ⌘2  1 and t � 2t? � 2 and � > 0. Under assumption
2,3 and 4 we have with probability greater than 1� �

E4  4kC1/2
M,�k

�p
n�t?

2 ^ 1
�
(⌘t) log

6n

�
f(�,m, �/n)

Proof 8 (Lemma 12) Begin by bounding for t� 2t? � 1 � k � 1 , wk 2 V and wt:k+t?+1 2 V t�t?�k the following

kC1/2
M ⇧�(wt:k+t?+1)(I � ⌘CM )t

?

Nk,wkk  2kC1/2
M kkNk,wkk.

Furthermore, we can bound the summation over paths by the deviation of the form
P

w2V |�t?(v, w)| and use Lemma 5
thereafter to arrive at
X

wk2V

X

wt:k+t?+12V t�t?�k

|Pvwt:k+t?+1
�t?(wk+t?+1, wk)| =

X

wt:k+t?+12V t�t?�k

|Pvwt:k+t?+1
|

⇣ X

wk2V

|�t?(wk+t?+1, wk)|
⌘

 max
u2V

⇣ X

w2V

|�t?(u,w)|
⌘⇣ X

wt:k+t?+12V t�t?�k

|Pvwt:k+t?+1
|

⌘

= max
u2V

⇣ X

w2V

|�t?(u,w)|
⌘

 2
�p

n�t?

2 ^ 1
�
.

Bringing everything together yields the following bound for E4

E4  2
�p

n�t?

2 ^ 1
�
(⌘t)

⇣
max

1kt,w2V
kNk,wk

⌘
(12)

Plugging in high probability bounds for max1kt,w2V kNk,wk following Lemma 10 for error term E2 then yields the
bound.
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D.7. Bounding E5

The summation over paths in this case is decoupled from the error. This allows for a more sophisticated bound to be applied,
which considers the deviation of the iterates from the average. The following Lemma effectively bounds the norm ofP

wt:12V t �(wt:1)⇧�(wt:1), which involves a sum over the paths wt:1.

Lemma 13 Let N 2 RM , wt:1 2 V t and �i � 0 for i 2 {1, 2, 3}. Then,

k

X

wt:12V t

�(wt:1)C
1/2
M ⇧�(wt:1)Nk  4⌘��1kNk

tX

k=1

kC1/2
M (I � ⌘ bCM )t�kC1/2

M,�1
k(�t�k+1

2 ^ 1)

+ 8⌘2��2��3kNk

tX

k=2

k�1X

`=1

kC1/2
M (I � ⌘ bCM )t�kC1/2

M,�2
kk(I � ⌘ bCM )k�1�`C1/2

M,�3
k(�k�`

2 ^ 1)

The bound for this error term is then summarised within the following Lemma.

Lemma 14 (Bounding E5) Let � 2 (0, 1], n,m,M 2 N+ and ⌘2  1 and t � 2t? � 2 and �0,�i > 0 for i = 1, . . . , 3.
Under assumption 2,3 and 4 and if 92

M log M
�  �i for i = 1, 2 then with probability greater than 1� 8�

E5  E51 + E52

where

E51  84kC1/2
M C1/2

M,�1
kkC1/2

M,�0k⌘t(1 _ �t?

2 ⌘t _ �1⌘t
?)⇥ g(�1,m)f(�0, nm, �) log(t) log2

6n

�

E52  160kC1/2
M,�0kkC

1/2
M,�3

k(⌘t)(1 _ �2⌘t)(�
t?

2 ⌘t _ ⌘t
?)⇥ g(�2,m)g(�3,m)f(�0, nm, �) log(t) log3

6n

�

Proof 9 (Lemma 14) Applying for 1  k  t� 2t? � 1 Lemma 13 with N = (I � ⌘CM )t
?

Nk = N 0

k, and wt:k+t?+1 2

V t�t?�k to elements within the series of E5 we arrive at

E5  4
t�2t?�1X

k=1

⌘2��1kN
0

kk

t�t?�kX

`=1

kC1/2
M (I � ⌘ bCM )t�t?�k�`C1/2

M,�1
k
�
�t�t?�k�`+1
2 ^ 1

�

+ 8
t�2t?�1X

k=1

⌘3��2��3kN
0

kk

t�t?�kX

`=2

`�1X

j=1

kC1/2
M (I � ⌘ bCM )t�t?�k�`C1/2

M,�2
k

⇥ k(I � ⌘ bCM )`�j�1C1/2
M,�3

k(�`�j
2 ^ 1)

= E51 + E52

where we have labelled the remaining error terms E51,E52. Each of these terms are now bounded.

To bound the first term E51, begin by for 1  k  t� 2t? � 1 splitting the series at 1  `  t� 2t? � k to arrive at

⌘
t�t?�kX

`=1

kC1/2
M (I � ⌘ bCM )t�t?�k�`C1/2

M,�1
k
�
�t�t?�k�`+1
2 ^ 1

�

 kC1/2
M C1/2

M,�1
k⌘

t�2t?�kX

`=1

�
�t�t?�k�`+1
2 ^ 1

�
+ ⌘

t�t?�kX

`=t�2t?�k

kC1/2
M (I � ⌘ bCM )t�t?�k�`C1/2

M,�1
k

 kC1/2
M C1/2

M,�1
k⌘

t�2t?�kX

`=1

�
�t�t?�k�`+1
2 ^ 1

�
+ ⌘kC1/2

M
bC�1/2
M,�1

kk bC�1/2
M,�1

C1/2
M,�1

k

t�t?�kX

`=t�2t?�k

k bC1/2
M,�1

(I � ⌘ bCM )t�t?�k�` bC1/2
M,�1

k

 kC1/2
M C1/2

M,�1
k�t?

2 ⌘t+ 10kC1/2
M

bC�1/2
M,�1

kk bC�1/2
M,�1

C1/2
M,�1

k log(t)(1 _ �1⌘t
?)
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where for the first series used that �t�t?�k�`+1
2  �t?

2 from `  t� 2t? � k meanwhile for the second series

⌘
t�t?�kX

`=t�2t?�k

k bC1/2
M,�1

(I � ⌘ bCM )t�t?�k�` bC1/2
M,�1

k  ⌘
t�t?�kX

`=t�2t?�k

k bCM (I � ⌘ bCM )t�t?�k�`
k+ ⌘�1

t�t?�kX

`=t�2t?�k

k(I � ⌘ bCM )t�t?�k�`
k

 5 log(t) + 5�1⌘t
?

to which we applied Lemma 6 remark 5 to bound the series of contractions. This leads to the bound for E51

E51  4��1⌘t
⇣
kC1/2

M C1/2
M,�1

k�t?

2 ⌘t+ 10kC1/2
M

bC�1/2
M,�1

kk bC�1/2
M,�1

C1/2
M,�1

k log(t)(1 _ �1⌘t
?)
⌘�

max
1kt

kN 0

kk
�
.

Provided 92

M log M
�  �1 we have from Lemma 3 in (Carratino et al., 2018) that with probability greater than 1� �

kC1/2
M

bC�1/2
M,�1

kk bC�1/2
M,�1

C1/2
M,�1

k  k bC�1/2
M,�1

C1/2
M,�1

k
2
 2.

Meanwhile for �0 > 0, we can bound max1kt kN 0

kk  kC1/2
M,�0kmax1kt kC

�1/2
M,�0 N 0

kk 

kC1/2
M,�0kmax1kt kC

�1/2
M,�0 Nkk. The bound is arrived at by also plugging in high probability bounds for kC�1/2

M,�0 Nkk and
��1 from Lemma 7.

Finally to bound E52. Begin by bounding for 1  k  t� 2t? � 1 as well as 2  `  t? the series as

`�1X

j=1

k(I � ⌘ bCM )`�jC1/2
M,�3

k(�`�j
2 ^ 1)  kC1/2

M,�3
kt?.

Meanwhile for t? + 1  `  t� t? � k we can split the series as 1  j  `� t?

`�1X

j=1

k(I � ⌘ bCM )`�jC1/2
M,�3

k(�`�j
2 ^ 1)

 kC1/2
M,�3

k

`�t?X

j=1

(�`�j
2 ^ 1) +

`�1X

j=`�t?+1

k(I � ⌘ bCM )`�jC1/2
M,�3

k

 kC1/2
M,�3

k(�t?

2 t+ t?)

where for the first series we applied j  `� t? to say �`�j
2  �t?

2 , and for the second simply summed up the t? terms after
bounding k(I � ⌘ bCM )`�jC1/2

M,�3
k  kC1/2

M,�3
k. Plugging in the above bound for all 2  `  t� t? � k we arrive at the

following bound for E52

E52  8��2��3

�
max
1kt

kN 0

kk
�
kC1/2

M,�3
k(�t?

2 ⌘t+ ⌘t?)
t�2t?�1X

k=1

⌘2
t�t?�kX

`=2

kC1/2
M (I � ⌘ bCM )t�t?�k�`C1/2

M,�2
k

For 1  k  t� 2t? � 1 the series of contractions over ` can be bounded using Lemma 6 remark 5 in a similar manner to
previously as

⌘
t�t?�kX

`=2

kC1/2
M (I � ⌘ bCM )t�t?�k�`C1/2

M,�2
k  kC1/2

M
bC�1/2
M,�2

kk bC�1/2
M,�2

C1/2
M,�2

k10 log(t)(1 _ �2⌘t).

Summing up the remaining series for over k, using that kC1/2
M

bC�1/2
M,�2

kk bC�1/2
M,�2

C1/2
M,�2

k  2 from 92

M log M
�  �2, plugging

in high probability bounds for max1kt kN 0

kk from the the error term E51, as well as high probability bounds for ��2 ,��3

from Lemma 7 yields the bound.

E. Final bounds
In this section we bring together the high probability bounds for the Statistical Error and Distributed Error. This section is
then as follows. Section E.1 provides the proof for Theorem 1. Section E.2 gives the proof for Theorem 1.
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E.1. Refined Bound (Theorem 2)

In this section we give conditions under which we obtained a refined bound.

Proof 10 (Theorem 2) Fixing � 2 (0, 1] and a constant cunion > 1, assume that

⌘t = (nm)
1

2r+�

M �

⇣
(nm)

1+�(2r�1)
2r+�

⌘
_

⇣
⌘t log

60n2(⌘t _M)cunion

�

⌘

t? � 2
log(nmt)

1� �2

m �

⇣
(1 _ (⌘t?))2r+�n2r/�

⌘
_

⇣
(1 _ (⌘t?))2n

⌘
_

⇣
(1 _ ⌘t?)

(1+�)(2r+�)
2(r+��1) n

(r+1)
(r+��1)

⌘

Now, consider the error decomposition given (8), to arrive at the bound

E(ft+1,v)� E(fH)  2 kSM b!t+1,v � SMbvtk2⇢| {z }
(Network Error)2

+2 kSMbvt � Pf⇢k
2
⇢| {z }

(Statistical Error)2

.

Begin by bounding the statistical error by using Lemma 4. Using Assumption 5 to bound N ( 1
⌘t )  Q2(⌘t)� , and noting that

M � (4 + 18⌘t2) log 602⌘t
� is satisfied, allows us to upper bound with probability greater than 1� �

kSMbvt � Pf⇢k
2
⇢  (nm)�2r/(2r+�)

⇣
c21

⇣
1 _

(⌘t) log 3M
�

M

⌘
(1 _Q2) log2(t) log2

⇣12
�

⌘
+ c23

⌘

+ c22

⇣ 1

M2r
_

Q2

M(nm)(1��)(2r�1)/(2r+�)

⌘
log2(1�r)(112⌘t) log2

�6
�

�

The quantity within the brackets for second term is then upper bounded 1
M(nm)(1��)(2r�1)/(2r+�)  (nm)�2r/(2r+�) provided

M � (nm)
1+�(2r�1)

2r+� , which is satisfied as an assumption in the Theorem. This results in an upper bound on the statistical
error that is, up to log factors, decreasing as (nm)�2r/(2r+�) in high probability.

We now proceed to bound the Network Error Term. Begin by considering error decomposition given in (11) into the terms
E1,E2,E3,E4,E5, in particular by applying the inequality (a+ b)2  2a2 + 2b2 multiple times we get

kSM b!t+1,v � SMbvtk2⇢  2E2
1 + 4E2

2 + 8E2
3 + 16E2

4 + 32E2
5,

and thus it is sufficient to show each of these terms is decreasing as (nm)�2r/(2r+�) in high probability. Before doing so we
note Lemma 4 in (Carratino et al., 2018) states for any � > 0 that if

M �
�
4 +

182

�

�
log

122

��

then with probability greater than 1� � we have NM (�)  qN (�) where q = max
�
2.55, 22

kLk

�
. We note this is satisfied

with both � = (⌘t)�1, (1 _ (⌘t?))�1 by the assumptions within the Theorem, and as such, we can interchange from NM (�)
to N (�) with at most a constant cost of q.

We begin by bounding E2
1 by considering Lemma 8 with �0 = 2 and � = (1 _ ⌘t?)�1, which leads to with probability

greater than 1� �

E2
1 

⇣
2kC1/2

M,�0k
2�2t?

2 t2�2(f(�0,m, �/(2n)))2 + 40 log2(t?)(f(�,m, �/(2n)))2
⌘
log2

12n

�

Now due to t? �
2 log(nmt)

1��2
�

2 log(nmt)
� log(�2)

(the second inequality arising from log(x) � 1 � x�1 for x � 0) we have
�t?
2  (tnm)�2. As such with the fact that f(2,m, �/(2n)) . m�1/2 in high probability, the first term above is

decreasing, upto logarithmic factors, as (nm)�2r/(2r+�). Meanwhile for the second term we have that

f((1 _ ⌘t?)�1,m, �/2)2  a21
� (1 _ ⌘t?)

m2
_

(1 _ ⌘t?)�

m

��
1 _

3(⌘t _ 1)

M
log

6Mn

�

�
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for the constant a1 = 64
⇣p

B( _
pp

pq)
⌘
_
�
 _

p
q
�
. For E2

1 to be decreasing at the rate (nm)�2r/(2r+�), up to

logarithmic factors, we then require (1_⌘t?)�

m  (nm)�2r/(2r+�) which is satisfied when m � (1 _ (⌘t?))2r+�n2r/� .

Proceed to bound E2
2 by considering Lemma 10 with � = 1/(⌘t) and �0 = 2 to arrive at with probability greater than

1� �

E2
2  4022kC1/2

M,�0k
2 log2(t)(⌘t?)2(g(�,m))2(f(�0,m, �/(2n)))2 log4

12n

�

As discussed previously, we have with high probability that (f(2,m, �/(2n)))2 . 1/m, meanwhile

g((⌘t)�1,m)2  a22
� ⌘t
m2

_
(⌘t)�

m

�

where a2 = 8( _
p
q). As such for E2

2 to be decreasing at the rate (nm)�2r/(2r+�) we require (⌘t)�(1_⌘t?)2

m2 

(nm)�2r/(2r+�) which, plugging in ⌘t = (nm)1/(2r+�) is satisfied when m � (1 _ ⌘t?)2n.

Bounding E3 using Lemma 11 with � = (1 _ (⌘t?))�1 and �0 = 2 we have with probability greater than 1� �

E2
3  242kC1/2

M k
2
kC1/2

M,�0k
2(⌘t)2(⌘t?)(g(�,m))2(f(�0,m, �/(2n)))2 log4

12n

�
.

Following the steps for E2, we have with high probability that f(2,m, �/(2n))2 . 1/m, meanwhile g((1_(⌘t?))�1,m) .
(1_⌘t?)�/m. As such for E2

3 to be decreasing with the rate (nm)�2r/(2r+�) we require (⌘t)2(1_⌘t?)1+�

m2  (nm)�2r/(2r+�),

which is satisfied when r + � > 1 and m � (1 _ ⌘t?)
(1+�)(2r+�)
2(r+��1) n

(r+1)
(r+��1) .

Now to bound E4 we consider Lemma 12 with � = 2 to arrive at with probability greater than 1� �

E2
4  16kC1/2

M,�k
2(n�2t?

2 ^ 1)(⌘t)2 log2
⇣6n
�

⌘
(f(�,m, �/n))2.

Following the previous analysis we know with high probability (f(�,m, �/n))2 = eO(1/m) and that t? is such that
�t?
2  (tnm)�2. Combining these two facts we have that E2

4 is of the order (nm)�2r/(2r+�) with high probability.

The bound for E2
5 is naturally split across the terms E51,E52 from Lemma 14. In particular we have that

E2
5  2E2

51 + 2E2
52

The remainder of the proof then shows each of the terms above are decreasing at the rate (nm)�2r/(2r+�) in high probability
by using the bounds provided within Lemma 14. We note the condition 92

M log M92

�  �i for i = 1, 2 is satisfied for
�1 = (1 _ (⌘t?))�1 and �2 = (⌘t)�1 by the assumptions.

Consider the bound for E51 with �1 = (1 _ (⌘t?))�1 and �0 = 2, so we have with probability greater than 1� �

E2
51  842kC1/2

M C1/2
M,�1

k
2
kC1/2

M,�0k
2(⌘t)2(1 _ �2t?

2 (⌘t)2)(g(�1,m))2(f(�0, nm, �/8))2 log2(t) log4
48n

�
.

From previously we have that t? so that �t?
2  (tnm)�2 and thus �t?

2 ⌘t  1. Meanwhile following steps from previously
we have (g(�1,m))2 . (1 _ (⌘t?))�/m as well as with high probability (f(�0, nm, �))2 . (nm)�1. As such we require
(⌘t)2(1_(⌘t?))�

m(nm)  (nm)�2r/(2r+�) which is satisfied when r + � > 1 and m � n
2��

2(r+��1) (1 _ (⌘t?))
�(2r+�)
2(r+��1) . This is then

implied by the assumption that m � (1 _ ⌘t?)
(1+�)(2r+�)
2(r+��1) n

(r+1)
(r+��1) and r + � � 1.

Finally to bound E52 consider the bound given with �2 = (⌘t)�1, and �3 = �0 = 2 to arrive at with probability greater
than 1� �

E2
52  1602kC1/2

M,�0k
2
kC1/2

M,�3
k
2(⌘t)2

�
�t?

2 ⌘t _ (⌘t?)2
�
g(�2,m)g(�3,m)f(�0, nm, �/8) log2(t) log6

48n

�
.

Once again �t?
2  (tnm)�2 ensures �t?

2 ⌘t  (1_ ⌘t?). Meanwhile we have (g(�2,m))2 . (⌘t)�/m, (g(�3,m))2 . 1/m
and with high probability (f(�0, nm, �/8))2 . 1/(nm). As such to ensure this term is sufficiently small we require
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(⌘t)2+�(1_⌘t?)2

m2(nm)  (nm)�2r/(2r+�), which satisfied if m � n
1

2r+� (1 _ (⌘t?))
2r+�

2r+��1 . This then being implied by m �

(1 _ ⌘t?)
(1+�)(2r+�)
2(r+��1) n

(r+1)
(r+��1) since r+1

r+��1 �
1

2r+� and (1+�)(2r+�)
2(r+��1) �

2r+�
2r+��1 . The second inequality arising from the

observation that 1
2(r+��1) �

1
2(r+��1)+1�� = 1

2r+��1 .

Each of the bounds for E2
i for i = 1, . . . , 5 hold in high probability, and as such, can be combined with a union bound. This

incurs at most a logarithmic factor in the bound, with the number of unions applied being upper bounded by the constant
cunion > 1 chosen at the start.

E.2. Worst Case (Theorem 1)

Consider the refined bound in Theorem 2 with r = 1/2 and � = 1.

E.3. Leading Order Error Terms (Theorem 3)

Follow the proof of Theorem 2, where the error is decomposed into the following terms

E(ft+1,v)� E(fH)  (Network Error)2 + (Statistical Error)2.

The statistical error follows (Carratino et al., 2018) and, in our work, is summarised within Lemma 4 to be upto logarithmic
factors in high-probability

(Statistical Error)2 .
�
1 _

⌘t

M

� (⌘t)�

nm| {z }
Sample Variance

+
1

M(⌘t)(1��)(2r�1)

| {z }
Random Fourier Error

+
1

(⌘t)2r| {z }
Bias

.

Meanwhile the network error is bounded into terms

(Network Error)2 . E2
1 + E2

2 + E2
3 + E2

4 + E2
5

where high-probability bounds from Section D are used. In particular, the bounds each term are, up to logarithmic factors, in
high probability

E2
1 . (⌘t?)�

m

E2
2 . (⌘t?)2(⌘t)�

m2

E2
3 . (⌘t)2(⌘t?)1+�

m2

E2
4 . n�2t?

2 (⌘t)2

m

E2
5 . (⌘t)2(1 _ (⌘t?))�

m(nm)
+

(⌘t)2+�(1 _ ⌘t?)2

m2(nm)

The leading order terms are then defined as E2
1 and E2

3.

F. Proofs of Auxiliary Lemmas
In this section we provide the proofs of the auxiliary lemmas. This section is then as follows. Section F.1 provides the proof
for Lemma 7. Section F.2 provides the proof of Lemma 9. Section F.3 provides the proof of Lemma 13.

F.1. Concentration of Error terms (Lemma 7)

Proof 11 (Lemma 7) Fix w 2 V . We begin by collecting the necessary concentration results. Following Lemma 18 in (Lin
& Cevher, 2018) with T⇢, Tx swapped for CM , bC(w)

M respectively (or Proposition 5 in (Rudi & Rosasco, 2017)) we have
with probability greater than 1� �

kC�1/2
M,� (CM � bC(w)

M )k  2
⇣ 2

m
p
�
+

r
NM (�)

m

⌘
log

2

�
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From Lemma 2 in (Carratino et al., 2018) under assumptions 2 and 3 we have with probability greater than 1� � for all
t � 1

kevt+1k  2R2r�1
⇣
1 +

r
92

M
log

M

�
max

⇣
p
⌘t,�1

⌘⌘
.

Meanwhile from Lemma 6 in (Rudi & Rosasco, 2017) under assumption 2 and 4 we have with probability greater than 1� �

kC�1/2
M,� (bS(w)>

M by � S?
Mf⇢)k  2

p

B
⇣ 
p
�m

+

r
2
p
pNM (�)

m

⌘
log

2

�

Considering kC�1/2
M,� Nk,wk, using triangle inequality and plugging the above bounds with a union bound, we have with

probability greater than 1� �

kC�1/2
M,� Nk,wk  kC�1/2

M,� (CM � bC(w)
M )kkevt+1k+ kC�1/2

M,� (bS(w)?
M by � S?

Mf⇢)k

 2
⇣ 2

m
p
�
+

r
NM (�)

m

⌘
log

6

�

⇣
1 +

r
92

M
log

3M

�
max

⇣
p
⌘t,�1

⌘⌘

+ 2
p

B
⇣ 
p
�m

+

r
2
p
pNM (�)

m

⌘
log

6

�
.

Now a bound over the maximum maxw2V kC�1/2
M,� Nk,wk is obtained by taking a union bound over w 2 V . Meanwhile, an

identical set of steps with bC(w)
M , bS(w),>

M swapped for bCM , bSM yields the bound for kC�1/2
M,� Nkk and kC�1/2

M,� (CM � bCM )k.

F.2. Difference between Product of Empirical and Population Operators (Lemma 9)

In this section we provide the proof for Lemma 9.

Proof 12 (Lemma 9) Begin by writing the quantity ⇧�(wt:1)N using two auxiliary sequences. Initialized at �1 = �01 = N
and updated for t � s � 1 we have

�0s+1 = (I � ⌘ bC(ws)
M )�0s = ⇧(ws:1)N

�s+1 = (I � ⌘CM )�s = (I � ⌘CM )sN

We can then write the difference as between these two sequences as the recursion

�0s+1 � �s+1 = (I � ⌘CM )(�0s � �s) + ⌘
�
CM � bC(ws)

M

 
�0s

= (I � ⌘CM )s(�01 � �1) +
sX

`=1

⌘(I � ⌘CM )s�`
�
CM � bC(w`)

M

 
�0`

=
sX

`=1

⌘(I � ⌘CM )s�`
�
CM � bC(w`)

M

 
�0`.

We then have

kC1/2�u
M ⇧�(wt:1)Nk = kC1/2�u

M (�0t+1 � �t+1)k

= k

tX

`=1

⌘C1/2�u
M (I � ⌘CM )t�`

�
CM � bC(w`)

M

 
�0`k



tX

`=1

⌘kC1/2�u
M (I � ⌘CM )t�`C1/2

M,�kkC
�1/2
M,� (CM � bC(w`)

M )kk�0`k

 ��kNk

tX

`=1

⌘kC1/2�u
M (I � ⌘CM )t�`C1/2

M,�k

where we have taken out the maximum over the w` 2 V for kC�1/2
M,� (CM,� � bC(w`)

M )k and simply bounded k�0`k =

k(I � ⌘ bC(w`�1)
M )�0`�1k  k�0`�1k  kNk from ⌘2  1.
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F.3. Convolution of Difference between Product of Empirical and Population Operators (Lemma 13)

This section provides the proof of Lemma 13.

Proof 13 (Lemma 13) Begin by observing that this quantity can be written as
X

wt:12V t

�(wt:1)⇧
�(wt:1)N =

X

wt:12V t

�(wt:1)⇧(wt:1)N �

X

wt:12V t

�(wt:1)(I � ⌘CM )tN

=
X

wt:12V t

�(wt:1)⇧(wt:1)N

since
P

wt:12V t �(wt:1) = 0. Now introduce the following auxiliary variables. Initialized as �1,w = �01,w = N for all
w 2 V we update the sequences for t � s � 1

�s+1,v =
X

w2V

Pvw(I � ⌘ bC(w)
M )�s,w =

X

ws:12V s

Pvws:1⇧(ws:1)N (13)

�0s+1,v =
X

w2V

1

n
(I � ⌘ bC(w)

M )�0s,w =
X

ws:12V s

1

ns
⇧(ws:1)N.

The quantity bounded within Lemma 13 can then be seen as the difference

kC1/2
M (�t+1,v � �0t+1,v)k =

���
X

wt:12V t

�(wt:1)C
1/2
M ⇧(wt:1)N

���.

Introducing the auxiliary sequence {�0s}s�1 independent of the agents. Also initialised �01,w = N =: �01 for all w 2 V we
have due to averaging over all of the agents uniformly �02,w = �02 = (I � ⌘ bCM )N for all w 2 V . Applying this recursively
we have for s � 1 and v 2 V

�0s+1,v = �0s+1 = (I � ⌘ bCM )sN.

Combined with the fact that the iterates {�s,v}s2[t],v2V can be written and unravelled

�t+1,v =
X

w2V

Pvw

�
(I � ⌘ bCM )�t,w + ⌘

� bCM � bC(w)
M

 
�t,w

�

= (I � ⌘ bCM )tN + ⌘
tX

k=1

X

w2V

(P t�k+1)vw(I � ⌘ bCM )t�k
� bCM � bC(w)

M

 
�k,w,

means the difference is written as

�t+1,v � �0t+1,v = ⌘
tX

k=1

X

w2V

(P t�k+1)vw(I � ⌘ bCM )t�k
� bCM � bC(w)

M

 
�k,w.

To analyse the difference �t+1,v � �0t+1,v we then consider the following decomposition where we denote the network
averaged iterates �t =

1
n

P
w2V �t,w

kC1/2
M (�t+1,v � �0t+1,v)k  kC1/2

M (�t+1,v � �t+1)k| {z }
Term 1

+ kC1/2
M (�t+1 � �0t+1)k| {z }

Term 2

(14)

It is clear the network average can be written using the fact that the communication matrix P is doubly stochastic i.e.P
v2V P t�k+1

vw = 1 as follows

�t+1 � �0t+1 =
1

n

X

v2V

�t+1,v � �0t+1 = ⌘
tX

k=1

1

n

X

w2V

(I � ⌘ bCM )t�k
� bCM � bC(w)

M

 
�k,w.
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When taking the difference we then arrive at

�t+1,v � �0t+1 � (�t+1 � �0t+1) = ⌘
tX

k=1

X

w2V

((P t�k+1)vw �
1

n
)(I � ⌘ bCM )t�k

� bCM � bC(w)
M

 
�k,w

We can then bound Term 1 with �1 > 0
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2 ^ 1)

where we have used that k�s+1,vk 
P

w2V Pvwk(I � ⌘ bC(w)
M )�s,wk 

P
w2V Pvwk�s,wk  kNk as well as

kC�1/2
M,�1

( bCM � bC(w)
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in addition to Lemma 5 to bound
P

w2V |(P t�k+1)vw �
1
n | =

P
w2V |�t�k+1(v, w)|.

To bound Term 2 we note that we can rewrite

�t+1 � �0t+1 = ⌘
tX
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where 1
n

P
w2V (I � ⌘ bCM )t�k

� bCM � bC(w)
M

 
�k = 0 for k � 1. Applying triangle inequality as well as similar step to

previously, we get with �2,�3 � 0
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where we plugged in the bound from Term 1 for the deviation k�k,w � �kk for k � 2.


