Decentralised Learning with Random Features and Distributed Gradient Descent

A. Remarks

In this section we give a number of remarks relating to content within the main body of the paper.

Remark 1 (Sketching and Communication Savings) We highlight that the Random Feature framework considered also
incorporates a number of sketching techniques. For instance, when ¢ (z,w) = x T w where w ~ N (0, I) and the associated
kernel is simply linear as E[t)(x,w)(2',w)|E[zTww 2] = 2 "Elww |z = 272", The case M < D then represents a
simple setting in which communication savings can be achieved, as agents in this case would only need to communicate
an M dimensional vector instead of D. A natural future direction would be to investigate whether there exists particular
sketches/Random Features tailored to the objective of communication savings, in a similar manner to Orthogonal Random
Features (Yu et al., 2016), Fast Food (Le et al., 2013) or Low-precision Random Features (Zhang et al., 2019). Although, as
noted in (Carratino et al., 2018), some of these methods sample the features in a correlated manner, and thus, do not fit
within the assumptions of this work.

Remark 2 (Previous Literature Decentralised Kernel Methods) This remark highlights two previous works for Decen-
tralised Kernel Methods. The work (Forero et al., 2010) considers decentralised Support Vector Machines with potentially
high-dimensional finite feature spaces that could approximate a non-linear kernel. They develop a variant of the Alternating
Direction Method of Multiplers (ADMM) to target the augmented optimisation problem. In this case, the high-dimensional
constraints across the agents are approximated so the agents local estimated functions are equal on a subset of chosen
points. Meanwhile (Koppel et al., 2018) consider online stochastic optimisation with penalisation between neighbouring
agents. The penalisation introduced is an expectation with respect to a newly sampled data point and not in the norm of
the Reproducing Kernel Hilbert Space. In both of these cases, the original optimisation problem is altered to facilitate a
decentralised algorithm, but no guarantee is given on how these approximation impact statistical performance.

Remark 3 (Concurrent Work) The concurrent work (Xu et al., 2020) consider the homogeneous setting where a network
of agents have data from the same distribution and wish to learn a function within a RKHS that performs well on unseen data.
The consensus optimisation formulation of the single machine explicitly penalised kernel learning problem is considered,
and the challenges of decentralised kernel learning (as described in Section 2.1 in the main body of the manuscript) are
overcome by utilising Random Fourier Features. An ADMM method is developed to solve the consensus optimisation
problem, and, provided hyper-parameters are tuned appropriately, optimisation guarantees are given. Due to considering
the consensus optimisation formulation of a single machine penalised problem, the Generalisation Error is decoupled from
the Optimisation Error. Therefore, while optimisation results for ADMM applied to consensus optimisation objectives (Shi
et al., 2014) are applied, the statistical setting is not leveraged to achieve speed-ups. It is then not clear how the network
connectivity, number of samples held by agents and finer statistical assumptions (source and capacity) impacts either
generalisation or optimisation performance. This is in contrast to our work, where we directly study the Generalisation
Error of Distributed Gradient Descent with Implicit Regularisation, and show how the number of samples held by agents,
network topology, step size and number of iterations can impact Generalisation Error.

B. Analysis Setup

This section provides the setup for the analysis. We adopt the notation of (Carratino et al., 2018), which is included here
for completeness. Section B.1 introduces additional auxiliary quantities required for the analysis. Section B.2 introduces
notation for the operators required for the analysis. Section B.3 introduces the error decomposition.

B.1. Additional Auxiliary Sequences

We begin by introducing some auxiliary sequences that will be useful in the analysis. Begin by defining {v, };>1 initialised
at v; = 0 and updated for ¢ > 1 and updated

Vg1 = v — 1 /X (s b1 (@) — fru(2)) br (2)dpx ()
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Further for A > 0 let
~ . 2
s = avgminczoe [ ((0,030(2)) — Fu(@))*dpx (@) + M,
X

Uy = argminue]_-/x ((u, ¢(2)) — y)*dp(z,y) + Allul?,

where (F, ¢) are feature space and feature map associated to the kernel k. As described previously, it will be useful to work
with functions in L?(X, px), therefore define the functions

g = (i o)), ga = (Ux, om (), gx = (uar, ¢()).

The quantities introduced here in this section will be useful in analysing the Statistical Error term.

B.2. Notation
Let F be the feature space corresponding to the kernel k£ given by Assumption 2.

Given ¢ : X — F (feature map), we define the operator S : F — L?(X, px) as
(Sw)(*) ={w,d(-))r, YweF.
If S™* is the adjoint operator of S, we let C' : F — F be the linear operator C' = S*S, which can be written as
¢ = [ o) ® o(a)dpx (o).
X

We also define the linear operator L : L?(X, px) — L?(X, px) such that L = SS*, that can be represented as

LN = [ (66e). 60N S @)dox(e). VF € (X, p).
We now define the analog of the previous operators where we use the feature map ¢, instead of ¢. We have Sy, : RM —
L?(X, px) defined as
(Smv)(-) = (v, opr()rnr, Yo € RM

together with Cjy : RM — RMand Ly, : L3(X, px) — L*(X, px) defined as Cpy = S3;Sy and Ly = Sy Sy,
respectively. For v € RM note we have the equality

1Saro]2 = /X (v, 6r1(2)) dpx ()

- / v P (7) ® par(z)vdpx (z)
X

= UTCMU
= ||l )
where we have denoted the standard Euclidean norm as || - ||. Define the empirical counterpart of the previous operators for
each agent. For each agent v € V define the operator SJ(C}) :RM 5 R™ as
g _ 1
S]\Z = ﬁ(qu(xl,v),'"3¢N]($m,v))7

and with 5](\? :RM — RM and EE\Z) : R™ — R™ are defined as 5](\7[) = §J(C})T§I(\Z) and Eg\? = §§?)§§\Z)T respectively.
Moreover, define the empirical operators associated to all of the samples held by agents in the network. To do so index the
agents in V between 1 and n, so x; ; is the ith data point held by agent j. Then, define the operator Sy, : RM — R™™ as
1
vnm

1 ST an)T
:%(s](vﬁ L, 8T

aT _
SJW -

(¢N1(x1,1); ey ¢M(xm,l)a ¢M(x1,2)a cee QSJW(l'mQ)v ) (j)M(ml,n)v LI} ¢]\/l(xm,n))
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and with éM :RM 5 RM and EM : R™ — R™™ are defined as éM = §]L §M and EM = §M §1T/1 respectively. From
the above it is clear that we have Cj; = % > wev §1(\Z})T§§\}U) = %Zwev C’ﬁ’). For some number A > 0 we let the
operator plus the identity times A be denoted L) = L 4+ AI, and similarly for L x> as well as Cpy y = Cyr + A1 and C M-

Remark 4 Let P : L*(X, px) — L?(X, px) be the projection operator whose range is the closure of the range of L. Let
fp : X — R be defined as

@) = [ vantulo)
If there exists fy € H such that

inf €(f) = E(fu)

feH
then
Pfy=Sfu.
or equivalently, there exists g € L*(X, px) such that
Pf,=L'%g.
In particular, we have R := || fa |2 = ||9l| 2 (x,px)- The above condition is commonly relaxed in approximation theory as
Pfy=1L"g

with1/2 <r < 1.

With the operators introduced above and the above remark, we can rewrite the auxiliary objects respectively as
i}\l = 0; i)\t+1 = (I — naM)i)\t + 77§1—\r/[§/\
01 =0; U1 = (I —nCun)0r + 1Sy fp
v1=0; w1 = —nCr)ve +1SyPf,

~

where the vector of all nm responses are ' = (nm) ™ Y2(y1.1, s Yt.ms Y2.ms - - - 2 Ynm) = (1)~ 2(F1, ..., Un), and
each agents responses are, for i = 1,...,n, denoted 7, = (m)~"/2(y; 1....,Yi.m). We then denote

uy = S;WLJT;,)\PfP
uy = S*Ly ' Pf,.

Inductively the three sequences can be written as

t
Ve =y (I =nCu)' "S5

k=1
t
Vg1 = ZU(I —1Cum)" " Sy
k=1
t
verr = Y n(I —=nCu)' " *Si,Pf,
k=1
B.3. Error Decomposition
We can now write the deviation ﬁ+1,v — f using the operators
J?t+1,v — fu = SmBit1,0 — SV + Svte — Pf, (8)

Network Error Statistical Error

where the first term aligns with the network error and the second with the statistical error. Each of these will be analysed in
it own section.
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C. Statistical Error

In this section we summarise the analysis for the Statistical Error which has been conducted within (Carratino et al., 2018).
Here we provided the proof for completeness. Firstly, we further decompose the statistical error into the following terms

1SaVe 41 — Pfollp < [SmVeq1 — SmVesr + Sarvepr — Sarvellp + || Sarvesr — LML]T/[{,\prHp 9

Sample Error Gradient Descent and Ridge Regression

+ ||LML pr LL;IprHp—l—HLLXIpr _pr”P

Random Features Error Bias

Each of the terms have been labelled to help clarity. The first term, sample error includes the difference between the
empirical iterations with sampled data vy, as well as iterates under the population measure v;. The second term Gradient
Descent and Ridge Regression is the difference between the population variants of the Gradient Descent v; and ridge
regression Ly L;ﬁ s\ f, solutions. The third term Random Feature Error accounts for the error introduced from using
Random Features. Finally the Bias term accounts for the bias introduced due to the regularisation. Each of these terms will
be bounded within their own sub-section, except the Bias term which will be bounded when bounds for all of the terms are
brought together.

The remainder of this section is then as follows. Section C.1, C.2 and C.3 give the analysis for the Sample Error, Gradient
Descent and Ridge Regression and Random Feature Error error respectively. Section C.4 bounds the Bias and combines
bounds for the previous terms.

C.1. Sample Error

The bound for this term is summarised within the following Lemma which itself comes from Lemma 1 and 6 in (Carratino
etal., 2018).

Lemma 1 (Sample Error) Under assumptions 2, 4 and 3, let § € (0,1), n € (0,x2). When
M > (4 + 18nt) log

for all t > 1 with probability atleast 1 — 36

H
oq‘lz\’
ﬁ :

HSMﬁt_SMEt'FSJWEt SM’Ut||p<4 -— 7 v \/1 +\/B)
2[(]0./\/'
/nt 4
x (12 + 4log(t) + v/2n) (717 ) log —
nm Vnm é

_ 2
where qp = max (2 55, HZH)

Proof 1 Apply Lemma 1 in (Carratino et al., 2018) to say ||Sarvs — Sarve||, = O, meanwhile Lemma 6 in the same work to
bound ||Sni0y — Sy || with0 = 0and T = t.
C.2. Gradient Descent and Ridge Regression

This term is controlled by Lemma 9 in (Carratino et al., 2018).

Lemma 2 (Gradient Descent and Ridge Regression) Under Assumption 3 the following holds with probability 1 — ¢ for
A= 2L fort>1
nt -

2r—1 2
log2 N(%) log 5 2R
s I 11 p <8R2r( 5 n )1 =r (11620t
H MUt+1 — L ]u)\ fp“ﬂ MrT M(nt)Qrfl 08 ( o ) * (Wt)r

when

2
M > (4 4 18nt) log (8“5"15)




Decentralised Learning with Random Features and Distributed Gradient Descent

C.3. Random Features Error

The following Lemma is from Lemma 8 of (Rudi & Rosasco, 2017; Carratino et al., 2018).
Lemma 3 Under assumption 2 and 3 for any X > 0, 6 € (0,1/2], when

18k2 8k
M > (4+ T) log =

the following holds with probability at least 1 — 20

- - (log 2 A2r=1Af(\)2r—1]og 2 _
HLMLM{APfP h LL,\lpfp”p < 4R < o+ \/ = S ad

Mr M

where q = log —11;2

C.4. Combined Error Bound
The following Lemma combines the error bounds.

Lemma 4 Under assumption 1 to 4, let § € (0,1) and n € (0, 5~2) when

60k2nt
1

M > (4 + 18ntk?) log

the following holds with probability greater than 1 — §

(nt\/l)log¥)< nt N(%

Sarter1 — PF|% < 2<1v
153041 = Pl < a1 M (nm)?2 ~ nm

1 NPt 6 c?
2 nt 2(1—r) 2 2 3
+02( =V (77t)27‘—1) log?' =" (11k2nt) log (5) + OOk

where the constants

e =8x 12 x 15(VB v (Re?)) (1 V \/2[%)

¢y = 24RK*"
C3 = 3R

Proof 2 (Lemma 1) Begin fixing A = % and bounding the bias from Lemma 5 of (Rudi & Rosasco, 2017) as
|LLY Pf, — Pfyll, < RN

Now use Lemma 1 to bound the Sample Error, Lemma 2 for the Gradient Descent and Ridge Regression Term, and 3 for
the Random Features Error. With a union bound, note that the conditions on M for each of these Lemmas is satisfied by

M > (4 + 18ntk?) log GOKTQW. Cleaning up constants and squaring then yields the bound.

D. Network Error

In this section we the proof of the following bound on the network error, which improves upon (Richards & Rebeschini,
2019). This section is then structured as follows. Section D.1 provides the error decomposition for the Network Error.
Section D.2 introduces a number of prelimary lemmas utilised within the analysis. Section D.3, D.4, D.5, D.6 and D.7 then
provides bounds for each of the error terms that arise within the decomposition.
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D.1. Error Decomposition

Recall the vector of observations associated to agent v € V' is denoted 3, = ﬁ (Y105 - -+ »Ym). Using the previously

introduced notation note that we can write the Distributed Gradient Descent iterates as fort > 1 andv € V

a25—}-1,1) = Z va (at,w - naj(\zj)@t,w + 77§](\/1[U)T§w)
weV

Centering the iterates around the population sequence v; we have from the doubly stochastic property of P

Bei1 = Vo411 = Y Pow (@t,w — B+ n{(Carte — Sisfp) — (CR7 B + §§\ZU)T27W)}>

weV

= > Pou((I = C) Gt — 30) + 0 {(Carii = i) = (O T + 537 5u)} )
weV N, .

= > P (1= C3) @1 — ) + nNe )
weV

where we have defined the error term

Ny = (Cary — St fy) — (C0T; + 8 G,) Vs > 1w e V.

)

Note that a similar set of calculation can be performed for the iterates v; leading to the recursion for v € V initialised at
¥1,, = 0 and updated for ¢ > 1

N — 1 ~(w) s ~
Vt41,0 — Vt+1 = Z ﬁ ((I - C](M))(Ut,’w - Ut) + T]Nt,w)
weV
For a path indexed from time step ¢ to k such that 1 < k <t as wy., = (wy, we—1, ..., Wk) € Vi—k+l let the product of
operators be denoted
I = (I -CWN)I -y (1 -y 10
(wek) = ( ) v ) M) (10)

Meanwhile for & > ¢ we say II(w,) = I. Unravelling the sequences &;41,, — Ug+1 and Upy1 — U¢11 with the above
notation and taking the difference we then have

t
~ ~ 1
Wit+lw = V41 = ZU Z (vat;k - W)H(wt:k-i-l)]vk,wk

k=1 wp.,eVt—k+1

t
=" > Awer) T (wers1) Vi,
k=1

=1 wy.peVi—k+1

where we have introduced the notation where we have denoted (va e ﬁ) = A(wyr) € R. Introduce notation for
the difference between the product of operators indexed by the paths and the population equivalent

2 (wgt1) = M(wegs1) — (I —nCrr)' ™",

Fixing some t* € N and supposing that t > 2t* > 2, observe that we can then write, for k <t — t* — 1,

T2 (w4h11)
= M(weks1) — Wwepre+1) I —1Cx)" + M(wegse 1)L —nCar)" — (I —nCar)'=*
= H('wt:k+t*+1)HA(wk+t*:k+1) + HA(wt:k+t*+1)(I - WCM)t*
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where we have replaced the first t* operators in IT(w;.; ) with the population variant (I — nC'). Plugging this in then yields

t
Wit1,0 — Vpg1 = 277 Z Awgg)(I — UCM)Fka,wk

k=1 w,eVi-ktl

t
+ Z n Z A (W) T (Wt 1) Nig oy,

k=t—2t* . cVit—k+1

+
(]

Z A(wt:k)n(wt:k+t*+1)HA(wk-i-t*:k—i-l)Nk,wk
k=1 Wi, EVE—k+1
2

T Y Awe) T (Wi 1) (I = nCn)" N,
=1 Wy EVE—RA1

x>

where we split the series off for paths shorter than 2¢*. Note for the first and last term above, elements in the series can be
simplified by summing over the nodes in the path. Defining for s > 1 and v,w € V the difference A®(v,w) = P2, — %,
we get for the first term when k < ¢

> Awer)I =nCw) N, = Y ( > A(wt:k))(I—UCM)t_ka,wk

Wy €VETRHL wr €V wigpq €VETF
t—k t—k
= g AT (v, w) (I —nCha) " Nig
wevV
_ _ 1 _ pt—k _ 1 _ At—k :
where Zwt:k“evt*k Awyg) = Zwmﬂevt*k Pv_wf,:k Zwt;kﬂevt*’f Rt R T Py n = A% (v, w). Meanwhile
for the last term we can sum over the last ¢* nodes in the path wy.k, that is with
1
E Awy.g) = g Py, — =k
Whptr iy EVE Whpr iy EVE
1
= Pow,ppir i1 > Puyyioin — > T
wk+t*:k+1evt* wk+t*:k+levt*
x 1
_ ¢
- vat:k+t*+1 (P )wk+t*+lwk - nt—t*—k+1
1 1 1

*
= vat:k+t*+1((Pt )wk+t*+1wk - E) + E(vat:k+t*+l - W)

* 1
= vat:,cﬂ*ﬂﬁt (Whttr+1, wE) + ﬁﬁ(wt:k+t*+1)

Plugging this in we getfor 1 < k <t —2t* — 1

Yo Awe) T ek 1) = nCar)" N,

wyp EVE—RHL

- Z Z ( Z A(wt:k))HA(wt:k+t*+1)(I — 1)t N

WEEV Wy oy px 1 EVETT TR gk €VES

Z Z Powyrrein A (Wit 41, W) T2 (Weitee 1) (L = 1C0)" Ny,

wi eV wt:k+t*+1€Vt7t*’k
1 N .
+ o Z Z A(wt:k+t*+1)n (wt:k+t*+1)(f - ﬁCM)t N wy,
wr eV wt:k+t*+1evt7t*7k

Z Z P or 11 A (Wit 41, W) T (Wt +1) (T = nCx)" Nig
wieV wt:k+t*+1€Vt7t*’k’
+ > A(Wep o +1) I Weepo1) (1 = nCar)" Ny

Weoper 1 EVEITE R
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where at the end for the second term we have

1 e & o~ AT~
- > Niw, = N = (Cuty — Sivf,) = (Carr + S39) Yk > 1.

wg €V

Plugging the above in, using the isometry property (7) and triangle inequality we get

t
150 @110 = Bern) o < D0 D 1A, w)[|C3 (T = nCrr)' ™ Nic |
k=1 weV

t
+ 3 0 Y 1AW T (Wees 1) N |
t

k=t—2t* wt:kGVt7k+1

t—2t* —1
1/2
+ Z Ui Z |A(wer)] HCJ\/f H(wt:k+t*+1)HA(wk+t*:k+1)Nk,wk |
k=1 Wy EVE—k+1
t—2t* —1
+ n Z Z |vat:k+t*+1At (wk+t*+17 wk)|
k=1 wkvet;kth*JrlEV‘*t**"'
1/2 x
% [|CHPI (wrskae 1) (I = 1C0)" Ny |
t—2t* —1
+ Z UH Z A(Wes 1) Cyf A (weagee 1) (= 100! NkH
k=1 Wy ppr g1 EVETET TR
=E1+E; +Es+E4+E;5 Y
where we have respectively labelled the error terms E; for ¢ = 1,...,5. We will aim to construct high probability bounds

for each of these error terms within the following sections. This will rely on utilising the mixing properties of P to control
the deviations A®(v, w) for some s > 1 and v, w € V, the contractive property of operators Cj\lf(] — nChr)* for some

k € N, as well as concentration of the error terms Ny, and IV, for k£ > 1 and w € V. These are summarised within the
following section.

D.2. Preliminary Lemmas

In this section we provide some Lemmas that will be useful for later. We begin with the following that bounds the deviation
A®(v,w) in terms of the second largest eigenvalue in absolute value of P.

Lemma 5 (Spectral Bound) Let s > 1, v € V. Then the following holds

S 1A% (0, w)| < 2(vAos A1)

weV

Proof 3 (Lemma 5) Let e, € R" denoting the standard basis with a 1 in the place associated to agent v. Observe that we
can write the deviation in terms of the {y norm 'y, i, |A% (v, w)| = |le] P* — L1||;. We immediately have an upper bound
from triangle inequality that Y, o\, |A* (v, w)| < ||le] P*[|1 + || 21]|y = 2. Meanwhile, we can also go to the {3 norm
and bound

1 1
lel P* = =1] < valle] P* = ~1||> < Vo3.
n n
The bound is arrived at by taking the maximum between the two upper bounds.
The following Lemma bonds the norm of contractions

Lemma 6 (Contraction) Ler £ be a compact, positive operator on a separable Hilbert Space H. Assume that n||L|| < 1.
Fort € N, a > 0 and any non-negative integer k < t — 1 we have

I =noy e < (s )
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Proof 4 (Lemma 6) The proof in Lemma 15 of (Lin & Rosasco, 2017) considers this result with a = r. The proof for more
general a > 0 follows the same steps.

The following remark will summarise how the above Lemma is applied to control series of contractions.

Remark 5 (Lemma 6) Lemma 6 will be applied to control series of the formn'S"_, ||(I — nL)*=*L2|| for some t > 3,
most notably with powers a = 1,1/2. In the case a = 1 we immediately have the bound

t t—1

NI =)7L =n) (= nL) " Ll + nllL]

k=1 k=1
t—1 1
<n) —— tallf
kZ:l”(t_k) L]l
< 5log(t)

where we have bounded the series 22;11 - < 4log(t) and n||L|| < 1. Similarly for a = 1/2 we have

t

t—1
n Y (I —nL) kL2 <q + )|l
2 > H
<3Vt + /1
<5Vt

n
q = 0, as well as the bound that \/ﬁHLl/QH <1

where we have bounded the series Zf; 1 \/T < 4/, see for instance Lemma 23 in (Richards & Rebeschini, 2019) with

Now for A > 0 define the effective dimension associated the feature map ¢y, that is
NM(A) =Tr ((L]u + )\I)_lL]\/[).
Given this, the following Lemma summarises the concentration results used within our analysis.

Lemma 7 (Concentration of Error) Let § € (0,1], n,m, M € Ny, A > 0 and 77/<;2 < 1. Under assumption 2,3 and 4 we
have with probability greater than 1 — 0 for 1 < k <t

w 2 A 6
max||C 1/2(CM Cz(w))H §2/{(m\%+ Nu( ))log (;1
2/PNar (A 6
mas €47 Nl € 2VB( 2t wsmm )Y 1og &
2K N]\/j( ) 9 6n
+4I€<mﬁ+ - )<1+ M (\/ntﬁ\/l))log7

Meanwhile, under the same assumptions with probability greater than 1 — § for k > 1

2K + NM(/\)) 2

1C343(Car = Can)ll < 26( log

nmvA 1)
_1/2 2\/]3NM(A) 6
1Cy NkH<2\F<\f m+ o )logg

2 Nar(N) [9  3M 6
+4H(nm\ﬂ+ v )(1+ MlogT(\/ntn\/l))logS



Decentralised Learning with Random Features and Distributed Gradient Descent

The proof for this result is given in Section F.1. Lemma 7 will be used extensively within the following analysis. To save on
the burden of notation we define the following two functions for A > 0, K € N and § € (0, 1]

g\ K) = 2&(}{2\% + NA;(()\))
K + 2@/\/]\4(/\))

VK K

(2 AN (1 10 B (i v ).

Looking to Lemma 7 we note the function g is associated to the high probability bound on the difference between the
covariance operators, for instance 0&11\2 (Cy — Chur), meanwhile f is associated to the bound on the error terms, for

O\ K, 8) = 2VB(

. -1/2
instance C; " Nj.

D.3. Bounding E,

The bound for E; is then summarised within the following Lemma.

Lemma 8 (Bounding E1) Let § € (0,1], n,m, M € Ny and nk? < landt > 2t* > 2 and A\, \' > 0. Under assumption
2,3 and 4 we have with probability greater than 1 — §

N 12
Ey < (O3 105t~ F(Xm, 6/(2n)) + 201og(t*) (1 V /Ant) F( m, 8/ (2n) ) log =

Proof 5 (Lemma 8) Splitting the series at 1 < k <t — t* we have the following

t—t*
t—k 1/2 t—k
By < (s INeull) 320 3 164l = nCon) ™|
Ei1
/ : / /
-1/2 t—k /2.7 t—k 41/2
(Lomax O ENell) D0 0 3 1A @)l —nCan) T Cagil

k=t—t*+1 weV

E12

To bound Eq utilise the mixing properties of the matrix P through Lemma 5. With nk? < 1 ensuring that nHC’}Vf(I —
nCu )t k| < 7)||C]1\4/2|| < /1 < 7Y we arrive at the bound

t—t*
E11 S /43_1 E O'éik S Ué tli_l.
k=1

Meanwhile to bound E12 utilise the contraction of the gradients, that is Lemma 6 remark with a = 1/2 and L = Cyy. With
> wev |ATF (v, w)| < 2 this allows us to say

t

t
E<2 Y 10 —nCa) " +20vA 3 [CHAT —nCa) "
k=t—t*+1 k=t—t*+1

< 20log(t*)(1 V v/ Ant*).

Bounding maxi<i<twev | Nkwl| < ||leé72)\, | maxi<p<twev ||C];11)/\,2Nkw|| and plugging in high probability bounds for

both maxi <<t wev ||C]\}1)/\,2Nk’w || and maxi<p<iwev ||C]\741>/\2N;€’w || from Lemma 7 yields the result.
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D.4. Bounding E,

The bound for this term utilises the following Lemma to bound operator ||C'11\/§2HA (we.k)||. To save on national burden, we
define the following random quantity for A > 0

Ax = max | Oy (Car = i)
We begin with the following Lemma which rewrites the norm of nm (w¢.1) for any path wy.; as a series of contractions.

Lemma 9 Let N € RM and wy.q € V' and nk? < 1. Then for u € [0,1/2]

t
1/2—u 1/2—u — 1/2
1C32 I (wie )N || < 2085 [N D7 I1C2 (1 = nCu) 3
=1

Given this Lemma we present the high probability bound for E,.

Lemma 10 (Bounding E) Let§ € (0,1, n,m, M € Ny and nr? < 1andt > 2t* > 2 and A\, ' > 0. Under assumption
2,3 and 4 we have with probability greater than 1 — ¢

12
Ex < 408]|Cp 3, [t Log () (1 V v/ nt) log® ==g(A, m) f(N',m. 5/ (2n))

Proof 6 (Lemma 10) Using Lemma 9 with u = 0 we have for any t > k >t — 2t* and wy., € Vi—F+1

t—k
1/2 1/2 —k— 1/2
1C3 T (weik1) Ny | < 2088 [N | Y132 = nCan)t 54032

(=1
t—k t—k
—k— 1/2 —k—
< 208 1N | (DO (T = nCa) ™+ VA ICHA = nCan) =)
/=1 (=1

< 200AN [Nk [ 1og(8) (1 V v/ Ant)

where we applied Lemma 6 remark 5 to the bound the series of contractions. The case k = t the above quantity is zero. With
Y w,pevi-k+t |Awek)| < 2 this leads to the error term being bounded

< * .
E» < 40A, log(t)(1V /Apt)t (Kg%w ||N,{,wu)

The final bound is arrived at by bounding for X' > 0 the error term in the brackets as maxi<g<iwev ||New| <

, and plugging in high probability bounds for maxi<p<t wev HC’A_/[l/(,ZNk’wH and

1/2 —-1/2
1375 Imasi <izrwev 1Ok N
Ay from Lemma 7, with a union bound.

D.5. Bounding E;

The bound for this error term is similar to E, and will be presented within the following Lemma.

Lemma 11 (Bounding E3) Let§ € (0,1, n,m, M € Ny and nr* < 1andt > 2t* > 2 and A\, \' > 0. Under assumption
2,3 and 4 we have with probability greater than 1 — ¢

12n
Ey < 24]Cyf* [1C33 | )Vt (1 v /At log? =5 g(A,m) f(N',m, 6/ (2n))

Proof 7 (Lemma 11) For1 < k < t — 2t* — 1 and wy., € V51 use Lemma 9 with w = 1/2 as well as nK? < 1to
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bound with A > 0

chlvfn(wt:kﬂ*ﬂ)HA(wk+t*:k+1)Nk,wk, |
1/2
< [ CA2 T (whss o) Ny |
t*
1/2 *_ 1/2
< 2/|C3 AN N | I = 0Can)™ 4 CHA
=1

t*
< 2O 1AM Nl (3D I = 1C) 4O + Vi)
{=1

1/2
< 12]|Ca 2 N AN Nig o VT (1 v/ Npt*)

where we have bounded the series of contractions using Lemma 6 remark 5 once again. With 3, vri—iir [A(wer)| <2,
plugging in the above yields the bound for Eg

Es < 24| Cy ()i ALV VAt (| _max [Nyl )-

1<k<t,weV

The final bound is arrived at by bounding A and ( maxi<k<t,wev | Nkw ||) in an identical manner to Lemma 10 for error

term Es.

D.6. Bounding E,

This term will be controlled through the convergence of P* to the stationary distribution. It is summarised within the
following Lemma.

Lemma 12 (Bounding E4) Let§ € (0,1], n,m, M € N, and ne? < landt > 2t* > 2 and \ > 0. Under assumption
2,3 and 4 we have with probability greater than 1 — ¢

" 6n
Es < 4|yl (Viios” A1) () log = f (A, m. 5/n)

Proof 8 (Lemma 12) Begin by bounding fort —2t* — 1>k > 1, wy € V and wy.jp44+41 € yi-t'—k the following
ICA I (Weekey e +1) (T = 1) N | < 2 C7 1 N |-

Furthermore, we can bound the summation over paths by the deviation of the form ) .\, |AY" (v, w)| and use Lemma 5
thereafter to arrive at

Z Z |P'uwt:k+,,*+1At (wk+t*+17wk)| = Z |vat:k+t*+1|( Z ‘At (wk+t*+17wk)|)

WKEV wy gy ex p  EVETL =K Wyipy k1 EVETL —F wr €V

< I;lg}/(( Z |At*(u,w)|>( Z |vat:k+t*+1|)
eV

Wiopppr 41 EVETE R

Bringing everything together yields the following bound for E4

Es < 2(vnob A 1)(”t)(1<k3?§ev ||Nk,w||) (12)

Plugging in high probability bounds for maxi<p<twev || Niwl| following Lemma 10 for error term Eo then yields the
bound.
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D.7. Bounding E;

The summation over paths in this case is decoupled from the error. This allows for a more sophisticated bound to be applied,
which considers the deviation of the iterates from the average. The following Lemma effectively bounds the norm of
Zwmevt A(wy.1 )2 (wy.1 ), which involves a sum over the paths wy.; .

Lemma 13 Let N € RM, w1 € Vtand \; > 0 fori € {1,2,3}. Then,

1Y Afwa)Cy A (wen )N | <4nAM||N||Z||c”2 I—nCa)~*03 3, Il(es 1 A )
w1 EV'E k=1
k—1 R
NG (T = nCan) a3 I —nCar)* =40y, (kA )
(=1

t
+ 8772A)\2A/\3 ”NH Z
k=2

The bound for this error term is then summarised within the following Lemma.

Lemma 14 (Bounding E;5) Let 6 € (0,1], n,m, M € Ny andnk®> < landt > 2t* > 2and X', \; > Ofori=1,...,3.
Under assumption 2,3 and 4 and if % log % < )\ for i = 1,2 then with probability greater than 1 — 89

E; <Es + Es
where

N 6
Esy < 84|03 Ch A IOy It (L o8 nt v Ant*) x g(Ar, m) f(N, nm, 8) log(t) log? 7”

* 3 6n
Esy < 160 C /3 103 Il () (1 V Aant) (08 nt v 1) x g(Aa,m)g(As,m) f(N', nm, 6) log(t) log® =

Proof 9 (Lemma 14) Applying for 1 < k <t — 2t* — 1 Lemma 13 with N = (I — nCy)" Ny, = N}, and wy.jy¢+4+1 €
V=" =k 10 elements within the series of E5 we arrive at

t—2t*—1 t—t*—k
1/2 o et k— 1/2 _
Es<4 Y n*AIING YD 1632 = nCan) =" 740y (o™ F 4+ A1)
/=1
t—2t*—1 t—t*—k ¢—1
1/2 =~ *_ 1/2
+8 3 PALALINI ST Yl T - 0GRy
= (=2 j=1
=~ S 1/2 l—3
< ||(I = nCar) =710y 3, (057 A L)
=E51 + Es59

where we have labelled the remaining error terms Ex1, E5o. Each of these terms are now bounded.

To bound the first term E5q, begin by for 1 < k <t — 2t* — 1 splitting the series at 1 < { <t — 2t* — k to arrive at

t—t*—k
n Z ”01/2 I—’I]C )t t*—k— 6011\/;2)\1”( t—t* —k— €+1/\1)

t—2t* —k t—t*—k
1/2 ~1/2 —t k-2 1/2 -~ it —k—0 ~1/2
<leyeyilin o (oA vy ST IO = nCan) A
=1 (=t—2t*—k
t—2t*—k t—t*—k
1/2 ~1/2 *_ 1/2 73—1/2 ~N—1/2 12 1/2 _ 1/2
<oy S0 (o8 TR AL O O NG VAL ST ICA, (= nCa) RGN
=1 {=t—2t*—k

1/2 ~1/2 1/2 1/2 1/2 12
< [loy ey, ot it + 101 C 2 o G 20, INog (£) (1 V At
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where for the first series used that aé_t*_k_“l < crg from ¢ <t — 2t* — k meanwhile for the second series

t—t*—k t—t*—k t—t*—k
1/2 — 1/2 -~ -~ t —k— o ot —k—
oy ICYA, U = nCar)' =" = Ch 3 I < S G =nCu) ™ T A > (T = nCan) R
l=t—2t*—k l=t—2t*—k l=t—2t*—k

< 5log(t) + S int*
to which we applied Lemma 6 remark 5 to bound the series of contractions. This leads to the bound for E5;

1/2 ~1/2 1/253—-1/2 —1/2 ~1/2
Es < 480t (| C3 273, llo8 nt + 101 Ca* Gt IO AT Car, s () (1 At ) ( ma INR).

Provided % log % < A1 we have from Lemma 3 in (Carratino et al., 2018) that with probability greater than 1 —

1/2 1/2 1/2 ~1/2 1/2 ~1/2
OOt CINC AL < G2 1 < 2.

Meanwhile for X > 0, we can bound maxi<p<¢|N}| < HCM,\f”maxlgk-gt ||C';11)/\,2N;Q|| <

The bound is arrived at by also plugging in high probability bounds for ||C]\_/11§/2Nk | and

HCM vl maxi<p< ||CJC[1,<,2N;€| )
Ay, from Lemma 7.

Finally to bound Ess. Begin by bounding for 1 < k <t —2t* — 1 as well as 2 < { < t* the series as

~

-1
] 1/2 /—q 1/2
I(Z = nCan) 7035, (o5~ A L) < [[CHA, I1E
1

J

Meanwhile for t* + 1 < ¢ <t — t* — k we can split the seriesas 1 < j < { —t*

ST = nCan) 033,05 AT

—t* —1
1/2 1/2
< [lc3A Z TAD+ Y T aCan) A
j=l—t*+1

1/2
< ||0A§,A3||<02 )

where for the first series we applied j < £ — t* to say O'gij < aé*, and for the second simply summed up the t* terms after
bounding ||(I — 77C'J\4)£_7'C']1é’2>\3 | < HC’M’%\S |l. Plugging in the above bound for all 2 < ¢ <t —t* — k we arrive at the

following bound for Es;

t—2t*—1 t—t*—k

1/2 * * 1/2 ~ * 1/2
Es> < 88,8, (oax [NUDICYA NS e +0t) D7 0* D7 107 =nCon)' ™ 7403, |

For1 < k <t —2t* — 1 the series of contractions over { can be bounded using Lemma 6 remark 5 in a similar manner to
previously as

t—t*—k

1/2 A Nttt —k—f /2 L2E-1/2)) A-1/2 /2
n Y G = nCan) ™ O < 03O G2 O, 10 log(£)(1V Agr).
(=2
Summing up the remaining series for over k, using that ||C’1/QC’M1<§|| ||C’Ml>/j 11\4/2/\2 | <2 from 55 92 log < Ao, plugging

in high probability bounds for maxi <<, | N.|| from the the error term Es1, as well as high probabzllty boundsfor Ay, Ay,
from Lemma 7 yields the bound.

E. Final bounds

In this section we bring together the high probability bounds for the Statistical Error and Distributed Error. This section is
then as follows. Section E.1 provides the proof for Theorem 1. Section E.2 gives the proof for Theorem 1.
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E.1. Refined Bound (Theorem 2)

In this section we give conditions under which we obtained a refined bound.
Proof 10 (Theorem 2) Fixing 6 € (0, 1] and a constant cypion > 1, assume that

nt = (nm)ﬁ

- 2 )
M ((nm) Lt 1)) y (Ut log 60nk (T)t(\s/ M)cml,,m)

o> 2log(nmt)
- 1-— g9

A+y)@r+y) (r+1)
m > (1 @) me ) v (L en) v (v ) ST i )

Now, consider the error decomposition given (8), to arrive at the bound

E(frr10) — E(fn) < 2)|SuBrsr,o — Sutel2 +2 [1Sarte — P2

(Network Error)? (Statistical Error)?

Begin by bounding the statistical error by using Lemma 4. Using Assumption 5 to bound N (%) < Q*(nt)?, and noting that
M > (4 + 18ntx?) log 60“727” is satisfied, allows us to upper bound with probability greater than 1 — §

0 —2r/(2r (nt) log 34 12
IS = Pyl < (omy 2/ (1 SR ) (v @) log? ) og? (57) + 3)
1 Q? - 6
2 2(1—-r) 2 2 /b
+c; (MQT v M(nm)(l—’v)(%—l)/@?‘-&-’v)) log (11x*nt) log (6)

The quantity within the brackets for second term is then upper bounded M(nm)(l_w)l(gr_l)/(g,‘ﬂ) < (nm) =2/ provided

14~ (2r—1

M > (nm)™ 2r+7 , which is satisfied as an assumption in the Theorem. This results in an upper bound on the statistical
error that is, up to log factors, decreasing as (nm)_27"/(2’“+7) in high probability.

We now proceed to bound the Network Error Term. Begin by considering error decomposition given in (11) into the terms
E\,E5,E3 E,, Es, in particular by applying the inequality (a + b)? < 2a% + 2b? multiple times we get

S0@es1,0 — Sl < 2ET + 4E3 + 8E3 + 16E3 + 32E2,

and thus it is sufficient to show each of these terms is decreasing as (nm)~2"/(?7+7) in high probability. Before doing so we
note Lemma 4 in (Carratino et al., 2018) states for any A > 0 that if

18/@2)1 12k2
PNARGEDY;

M > (4+

then with probability greater than 1 — § we have Ny () < g/N'(\) where ¢ = max (2.55, ﬁ) We note this is satisfied

with both A = (nt)~1, (1 V (nt*))~! by the assumptions within the Theorem, and as such, we can interchange from Ny (\)
to N'(X\) with at most a constant cost of q.

We begin by bounding E? by considering Lemma 8 with X' = k% and A = (1 V nt*) ™1, which leads to with probability
greater than 1 — §
5 12n

E2 < (21331203 2572 (£ m, 8/(2m))? + 4010g*(#*) (F(\ m, 5/ (20)))?) log? ="

Now due to t* > 2101’{(7;?” > 27101§(g7(l:;t)) (the second inequality arising from log(x) > 1 — =1 for x > 0) we have

ol < (tnm)~2 As such with the fact that f(k* m,5/(2n)) < m~'2 in high probability, the first term above is
decreasing, upto logarithmic factors, as (nm)_%/ (2747 Meanwhile for the second term we have that

1V nt* 1V ) th V1 M
(Vn)v(vn) v3(nﬂv)10g6 n

FV )™t m,6/2) < af (- ——) i 5)
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for the constant a; = 64( (K V \/\/D ) (KZ \% \f) For E2 to be decreasing at the rate (nm)~2"/ ™) up to

logarithmic factors, we then require % < (nm) =2/ G which is satisfied when m > (1 (nt*))2"+1n2"/7,

Proceed to bound E3 by considering Lemma 10 with \ = 1/(nt) and ' = k? to arrive at with probability greater than
1-6

1120
0

As discussed previously, we have with high probability that (f(k?,m,5/(2n)))? < 1/m, meanwhile

E3 < 40267 C1 2 | Tog” (6) (nt*) (g(A, m))*(F(X',m, 6/ (2)))* log

g((nt)_l,m)2 S a%(it Vi (nt)"/)

where as = 8k(k V \/q). As such for E3 to be decreasing at the rate (nm)~2"/("*7) e require Wii\z/”t*)z <
(nm) =27/ @) which, plugging in nt = (nm)Y ?r+7) is satisfied when m > (1 V nt*)?n.

Bounding E3 using Lemma 11 with A = (1V (nt*)) ™! and \' = k? we have with probability greater than 1 — §

E2 < 22| Y22 CL2 1P 02 Gt (g (0 m)2(F(N m, 6/ (20)))? log 2.

Following the steps for Eo, we have with high probability that f(k?,m,d5/(2n))? < 1/m, meanwhile g((1V (nt*))~1,m) <

(1Vnt*)" /m. As such for E2 to be decreasing with the rate (nm)~2"/(?m+7) we require (’7’”2(%72“)”7 < (nm) =20/ Crtm),
A+N@rty)  _(rD)

which is satisfied when r +~ > 1 and m > (1 V nt*) oD D

Now to bound E we consider Lemma 12 with A\ = k2 to arrive at with probability greater than 1 — §
6n
E3 <16 C3/3 P (no3"” AL)(nt)log? (5 ) (FON, m, 8/m))2.

Following the previous analysis we know with high probability (f(\,m,5/n))2 = O(1/m) and that t* is such that
ob’ < (tnm)~2. Combining these two facts we have that E3 is of the order (nm)~=2"/?+7) with high probability.

The bound for Eg is naturally split across the terms Es1, E5o from Lemma 14. In particular we have that
E2 < 2E%, +2EF2,

The remainder of the proof then shows each of the terms above are decreasing at the rate (nm) —2r/(2r+9) in high probability

by using the bounds provided within Lemma 14. We note the condition 92 a7 log M9” < \; fori = 1,2 is satisfied for
A1 = (1V (nt*)) =1 and Ay = (nt) ! by the assumptions.

Consider the bound for E5y with \; = (1V (nt*))~! and N = k?, so we have with probability greater than 1 — §

2 ~1/2 1/2 * 48n
B2, < S2CY2CHA, PN A P 0P LV 03 (10)%) (g, m))2(F (N, 6/8))? log? (1) log! "
From previously we have that t* so that 05* < (tnm)~2 and thus 05* nt < 1. Meanwhile following steps from previously
we have (g(A\1,m))? < (1V (nt*))Y /m as well as with high probability (f(N,nm,§))? < (nm)~t. As such we require
2 * — (2r+~)
O VO < (1) =21/ 214+ \which is satisfied when r +~ > 1 and m > n D (1V (nt*)) 26451, This is then

oyt
L () . (149 @rty)  _(r41)
implied by the assumption that m > (1 V nt*) 2G+=0 nT+H=0 andr + v > 1.

Finally to bound Eso consider the bound given with Ay = (nt) ™1, and A\3 = X' = k? to arrive at with probability greater
than 1 — 9

48n
)

Once again ot < (tnm)~2 ensures o nt < (1V nt*). Meanwhile we have (g(Aa,m))? < (nt)?/m, (9(As,m))?> < 1/m
and with high probability (f(N,nm,§/8))? < 1/(nm). As such to ensure this term is sufficiently small we require

EZ, <1607 Ch 3 PICA, 12 (nt)? (oh it v (0t)2) (Ao, m)g(Ns, m) (N, nim, 6/8) log? (¢) log® ——
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24 12 274

% < (nm)=27/CrEN | which satisfied if m > nIE (1V (nt*))= <. This then being implied by m >
A4 @riy) (41 ,

(1Vnt*) 20T T since L > 1 gpg WENCIEY) 5 2ty e cocond inequality arising from the

r+y—1 = 2r+v 2(r+v—1) = 2r4~H-—1°
1 1

. 1 —
observation that ST D) 2 3D — =T

Each of the bounds for Ef fori=1,...,5 hold in high probability, and as such, can be combined with a union bound. This
incurs at most a logarithmic factor in the bound, with the number of unions applied being upper bounded by the constant
Cunion > 1 chosen at the start.

E.2. Worst Case (Theorem 1)

Consider the refined bound in Theorem 2 with » = 1/2 and v = 1.

E.3. Leading Order Error Terms (Theorem 3)
Follow the proof of Theorem 2, where the error is decomposed into the following terms
E(fir1.0) — E(fu) < (Network Error)? + (Statistical Error)?.

The statistical error follows (Carratino et al., 2018) and, in our work, is summarised within Lemma 4 to be upto logarithmic
factors in high-probability

. 2~y ity () 1 1
(Statistical Error)* < (1V M) I+ ()= @ D + e
— ——

Sample Variance

Random Fourier Error Bias

Meanwhile the network error is bounded into terms
(Network Error)? < Ef + E3 + E5 + E] + E2

where high-probability bounds from Section D are used. In particular, the bounds each term are, up to logarithmic factors, in
high probability

o _ (nt)*(nt*)'*7
B3 S  om2
E2 < no—%t* (nt)2
4 m
£)2(1V (nt*))Y )27 (1 Vv nt*)?
Egg(”” (nt*)) +(77) (1Vnt*)
m(nm) m2(nm)

~

The leading order terms are then defined as E? and E%

F. Proofs of Auxiliary Lemmas

In this section we provide the proofs of the auxiliary lemmas. This section is then as follows. Section F.1 provides the proof
for Lemma 7. Section F.2 provides the proof of Lemma 9. Section F.3 provides the proof of Lemma 13.

F.1. Concentration of Error terms (Lemma 7)

Proof 11 (Lemma 7) Fix w € V. We begin by collecting the necessary concentration results. Following Lemma 18 in (Lin

& Cevher, 2018) with T,, Tx swapped for Cy, 6’1(\74”) respectively (or Proposition 5 in (Rudi & Rosasco, 2017)) we have
with probability greater than 1 — §

2
log =
og(5

2K N]yj ()\) )

”CM,/\ (Cu = Cy)ll < H(m\/X+ =
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From Lemma 2 in (Carratino et al., 2018) under assumptions 2 and 3 we have with probability greater than 1 — § for all

t>1
~ 9k2 M
V41| < 2RK*"1 (1 +4/ % log ~ max (\/nt, /@’1>).

Meanwhile from Lemma 6 in (Rudi & Rosasco, 2017) under assumption 2 and 4 we have with probability greater than 1 — ¢

20PN (N) 2
L

ICA2 ST = Siufp)ll < 2VB(—2— +

Vam

Lo —1/2
Considering ||C),;
probability greater than 1 — §

1037 Nl < 1C383 (Crr = CEM el + 110355575 = Sa £l

< 2&(;\% + NA;;”) logg(l +4/ 9% log % max (\/7%,5_1>>

+2\F(\fm+ 2\/13/7\2&1()\))1%%

Now a bound over the maximum max,,cv ||C];[1)/\2N k.|| is obtained by taking a union bound over w € V. Meanwhile, an
identical set of steps with C'\](\}U), §](\;[U) swapped for Chr, Sar vields the bound for 1Cs l/szH and |C,, 1/z(CM —Cu)|.

F.2. Difference between Product of Empirical and Population Operators (Lemma 9)

In this section we provide the proof for Lemma 9.

Proof 12 (Lemma 9) Begin by writing the quantity II1* (ws.1) N using two auxiliary sequences. Initialized at y; =~} = N
and updated fort > s > 1 we have

Yoyr = (I — 770(““ )7 = IM(we1 )N
Vo1 =T =nCrn)vs = (I =nCr)°N

We can then write the difference as between these two sequences as the recursion
7;-&-1 — Vs+1 = (I - T]C]w)(’yg — 'Ys + n{CM _ C(wb)} ;

=T —nCum)*(" —m +Zn (I = nCar)*~{Cur = C37"
=1

= Zn I - HCM 5 Z{CM C w")}'yé.

=1
We then have

1/2—u 1/2—u
|C3> T (w1 )N|| = Hc/ C——|

= | Z nC> (I = nCar)' = {Crs — C¥ Yl
=1

NCy (L = 1nCa) ~ CyAINIC 2 (Coar — CSE N NIl

]~

~
[
—

t
< AN gl I = nCan)t ey Al
=1

where we have taken out the maximum over the wy € V for ||C’X/[1/<2 (Cry — G(N}““)H and simply bounded ||v)|| =
1 =nC5y il < il < 1N from ? < 1.
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F.3. Convolution of Difference between Product of Empirical and Population Operators (Lemma 13)

This section provides the proof of Lemma 13.

Proof 13 (Lemma 13) Begin by observing that this quantity can be written as

> Alwe)T*(we)N = > Awe)M(we)N = Y Awea)(I —nCy)'N

w1 €V'E w1 EV'E we. EV'E

Z A(wt:I)H(wtzl)N

w1 EVE

since 3, ey A(wia) = 0. Now introduce the following auxiliary variables. Initialized as 1., = V1, = N for all
w € V we update the sequences fort > s > 1

Vs+1,0 = Z va I— 770( '75 w = Z vas 1 ws:l)N (13)
weV ws.1 EVS
1 i 1
Voprw = 2 o0 =nCi Nl = D —H(wa)N.
weV we1 €VSE

The quantity bounded within Lemma 13 can then be seen as the difference
1/2 1/2
10 G = Yl = || D0 Alwe) Ol (we) V.
w1 EVE

Introducing the auxiliary sequence {7, }s>1 independent of the agents. Also initialised vy ,, = N =: 71 forallw € V we

have due to averaging over all of the agents uniformly 7§7u, =7, =(1- naM)Nfor all w € V. Applying this recursively
we have for s > 1 andv € V

’Y;+1,v = ’Yé+1 = (I —nCy)°N
Combined with the fact that the iterates {"s , } sc[t),vev can be written and unravelled

Yt+1,0 = Z Puw((I - 776M)7t,w + n{aM - é}\jjﬂ)}yt,w)
weV

t
= (I —nCox)'N +1 D S (P 0 (1= nCan) " {Crr — O Y
k=1weV
means the difference is written as

t
Yt+1,v _’}44_1, Z Z Pt k+1 vw(I 7701\4' t k{CM 6](\1[“)}7k,w

=1lweV
To analyse the difference Y411, — 7, 41,0 we then consider the following decomposition where we denote the network

averaged iterates 7y, = % Y wey Yo

1/2 1/2 — 1/2 ,—
1C (a0 = Yesr) | < 10K G0 = Tex )|+ 1Co Frsr — Yer)l (14)

Term 1 Term 2

It is clear the network average can be written using the fact that the communication matrix P is doubly stochastic i.e.
>vey PLoFt =1 as follows

Ve41 = Vig1 = = Z%Jrlv ’Yt+1—772 Z (I - nCMt k{CM CM k-

UGV k=1 wEV
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When taking the difference we then arrive at

t
_ B 1 P o
Verto = Vg1 — Tegr = Vea1) Z Z (P*FH1) 0y — E)(I —nCum)" k{CM - Oj(w)}%,w

1weV
We can then bound Term 1 with A1 > 0
1/2 —

1CA? (Y10 = Tern)

t

—k 1/2 s 1/2 -1/2 ¢ A~ ~(w

<03 ST PTEY - ||\o P =) Ry A O L Cr = O3 I

k=1 weV

1/2 1/2 1/2
<277AA1||NHZHC/ IOy Ry 10 (P w7|)
k=1 weV

<4nAM||NHZ|\O”2 I—nCa)t 033 I(oh ™+ A1)
k=1

where we have used that || s 1.1l < ey Powll(T =003 sl € Xev Powllvswll < IN1] as well as

10 42 (Car — S|

IN

10343 (Car — Can) | + 11C3 42(Cor — TS

1 — ~(v — ~(w
<Y ICA O = CIDI+ 10353 (Cu = G
veV
<248

in addition to Lemma 5 to bound ", o\, |(P'™F ), — L[ =3 (1 |ATFFL (v, w)].
To bound Term 2 we note that we can rewrite

t

1 A Nk A Aw _
Fer1 = Vie1 = TIZ - Z (I —0Cx) ™ Corr — O (s — )

k=2 weV

where % Y wey (I — néM)H“{@M — 51(\;)) e = 0 for k > 1. Applying triangle inequality as well as similar step to
previously, we get with Ay, A3 > 0

t
1/2,— 1/2 A ik o1/2 1 —1/2 _
10 e =) <0 Y ICN I = nCar) a3, 11— 3 10343 Cor = Gl — Tl

k=2 weV
t k—1
1/2 o 1/2 1/2 —
<82 A0 A0 NI Y. ST IO = nCan) R0y 3, I = nCan) 140 (oh 4 A1)
k=2 /(=1

where we plugged in the bound from Term 1 for the deviation ||yg.., — 7| for k > 2.



