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Abstract 

It is common practice in deep learning to use over-
parameterized networks and train for as long as 
possible; there are numerous studies that show, 
both theoretically and empirically, that such prac-
tices surprisingly do not unduly harm the gener-
alization performance of the classifier. In this 
paper, we empirically study this phenomenon 
in the setting of adversarially trained deep net-
works, which are trained to minimize the loss 
under worst-case adversarial perturbations. We 
find that overfitting to the training set does in 
fact harm robust performance to a very large de-
gree in adversarially robust training across mul-
tiple datasets (SVHN, CIFAR-10, CIFAR-100, 
and ImageNet) and perturbation models (` ∞ and 
` 2). Based upon this observed effect, we show 
that the performance gains of virtually all recent 
algorithmic improvements upon adversarial train-
ing can be matched by simply using early stop-
ping. We also show that effects such as the dou-
ble descent curve do still occur in adversarially 
trained models, yet fail to explain the observed 
overfitting. Finally, we study several classical and 
modern deep learning remedies for overfitting, in-
cluding regularization and data augmentation, and 
find that no approach in isolation improves sig-
nificantly upon the gains achieved by early stop-
ping. All code for reproducing the experiments 
as well as pretrained model weights and training 
logs can be found at https://github.com/ 
locuslab/robust_overfitting. 
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Figure 1. The learning curves for a robustly trained model repli-
cating the experiment done by Madry et al. (2017) on CIFAR-10. 
The curves demonstrate “robust overfitting”; shortly after the first 
learning rate decay the model momentarily attains 43.2% robust 
error, and is actually more robust than the model at the end of train-
ing, which only attains 51.4% robust test error against a 10-step 
PGD adversary for ` ∞ radius of � = 8/255. The learning rate is 
decayed at 100 and 150 epochs. 

1. Introduction 
One of the surprising characteristics of deep learning is the 
relative lack of overfitting seen in practice (Zhang et al., 
2016). Deep learning models can often be trained to zero 
training error, effectively memorizing the training set, seem-
ingly without causing any detrimental effects on the gener-
alization performance. This phenomenon has been widely 
studied both from the theoretical (Neyshabur et al., 2017) 
and empirical perspectives (Belkin et al., 2019), and re-
mains such a hallmark of deep learning practice that it is 
often taken for granted. 

In this paper, we consider the empirical question of overfit-
ting in a similar, but slightly different domain: the setting of 
adversarial training for robust networks. Adversarial train-
ing is a method for hardening classifiers against adversarial 
attacks, i.e. small perturbations to the input which can drasti-
cally change a classifier’s predictions, that involves training 
the network on adversarially perturbed inputs instead of 
on clean data (Goodfellow et al., 2014). It is generally re-
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garded as one of the strongest empirical defenses against 
these attacks (Madry et al., 2017). 

A key finding of our paper is that, unlike in traditional 
deep learning, overfitting is a dominant phenomenon in 
adversarially robust training of deep networks. That is, 
adversarially robust training has the property that, after a 
certain point, further training will continue to substantially 
decrease the robust training loss of the classifier, while 
increasing the robust test loss. This is shown, for instance, 
in Figure 1 for adversarial training on CIFAR-10, where the 
robust test error dips immediately after the first learning rate 
decay, and only increases beyond this point. We show that 
this phenomenon, which we refer to as “robust overfitting”, 
can be observed on multiple datasets beyond CIFAR-10, 
such as SVHN, CIFAR-100, and ImageNet. 

Motivated by this initial finding, we make several contribu-
tions in this paper to further study and diagnose this problem. 
First, we emphasize that virtually all the recent gains in ad-
versarial performance from newer algorithms beyond simple 
projected gradient descent (PGD) based adversarial training 
(Mosbach et al., 2018; Xie et al., 2019; Yang et al., 2019; 
Zhang et al., 2019c) can be attained by a much simpler ap-
proach: using early stopping. Specifically, by just using an 
earlier checkpoint, the robust performance of adversarially 
trained deep networks can be drastically improved, to the 
point where the original PGD-based adversarial training 
method can actually achieve the same robust performance 
as state-of-the-art methods. For example, vanilla PGD-
based adversarial training (Madry et al., 2017) can achieve 
43.2% robust test error against a PGD adversary with ` ∞ ra-
dius 8/255 on CIFAR-10 when training is stopped early, on 
par with the 43.4% robust test error reported by TRADES 
(Zhang et al., 2019c) against the same adversary. This phe-
nomenon is not unique to ` ∞ perturbations and is also seen 
in ` 2 adversarial training. For instance, early stopping a 
CIFAR-10 model trained against an ` 2 adversary with ra-
dius 128/255 can decrease the robust test error from 31.1% 
to 28.4%. 

Second, we study various empirical properties of overfit-
ting for adversarially robust training and how they relate 
to standard training. Since the effects of such overfitting 
appear closely tied to the learning rate schedule, we begin 
by investigating how changes to the learning rate schedule 
affect the prevalence of robust overfitting and its impacts on 
model performance. We next explore how known connec-
tions between the hypothesis class size and generalization in 
deep networks translate to the robust setting, and show that 
the “double descent” generalization curves seen in standard 
training (Belkin et al., 2019) also hold for robust training 
(Nakkiran et al., 2019). However, although this is used as 
a justification for the lack of overfitting in the standard set-
ting, surprisingly, changing the hypothesis class size does 

not actually mitigate the robust overfitting that is observed 
during training. 

Our final contribution is to investigate several techniques 
for preventing robust overfitting. We first explore the effects 
of classic statistical approaches for combating overfitting 
beyond early stopping, namely explicit ` 1 and ` 2 regular-
ization. We then study more modern approaches using data 
augmentation, including cutout (DeVries & Taylor, 2017), 
mixup (Zhang et al., 2017), and semisupervised learning 
methods, which are known to empirically reduce overfitting 
in deep networks. Ultimately, while these methods can miti-
gate robust overfitting to varying degrees, when trained to 
convergence, we find that no other approach to combating 
robust overfitting performs better than simple early stop-
ping. In fact, even combining regularization methods with 
early stopping tends to not significantly improve on early 
stopping alone. We find that the one exception is data aug-
mentation with semi-supervised learning, where although 
the test performance can vary wildly even when training has 
converged, at select epochs it is possible to find a model 
with improved robust performance over simple early stop-
ping. Code for reproducing all the experiments in this pa-
per along with pretrained model weights and training logs 
can be found at https://github.com/locuslab/ 
robust_overfitting.1 

2. Background and related work 
One of the first approaches to using adversarial training 
was with a single step gradient-based method for generating 
adversarial examples known as the fast gradient sign method 
(FGSM) (Goodfellow et al., 2014). The adversary was 
later extended to take multiple smaller steps, in a technique 
known as the basic iterative method (Kurakin et al., 2016), 
and eventually reincorporated into adversarial training with 
random restarts, commonly referred to as projected gradient 
descent (PGD) adversarial training (Madry et al., 2017). 
Further improvements to both the PGD adversary and the 
training procedure include incorporating momentum into the 
adversary (Dong et al., 2018), leveraging matrix estimation 
(Yang et al., 2019), logit pairing (Mosbach et al., 2018), and 
feature denoising (Xie et al., 2019). Most notably, Zhang 
et al. (2019c) proposed the method TRADES for adversarial 
training that balances the trade-off between standard and 
robust errors, and achieves state-of-the-art performance on 
several benchmarks. 

Because PGD training is significantly more time consuming 
than standard training, several works have focused on im-
proving the efficiency of adversarial training by reducing the 

1Since there are over 75 models trained in this paper, we se-
lected a subset of pretrained models to release (e.g. those which 
are for Wide ResNets since those take the most time to train, and 
can achieve the best performance in the paper) 
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computational complexity of calculating gradients and re-
ducing the number of attack iterations (Shafahi et al., 2019; 
Zhang et al., 2019a; Wong et al., 2020). Separate works 
have also expanded the general PGD adversarial training 
algorithm to different threat models including image trans-
formations (Engstrom et al., 2017; Xiao et al., 2018a), dif-
ferent distance metrics (Wong et al., 2019), and multiple 
threat models (Maini et al., 2019; Tramèr & Boneh, 2019). 

Other adversarial defenses that have been proposed were 
not always successful, such as distillation (Papernot et al., 
2016; Carlini & Wagner, 2017b) and detection of adver-
sarial examples (Metzen et al., 2017; Feinman et al., 2017; 
Carlini & Wagner, 2017a; Tao et al., 2018; Carlini, 2019), 
which eventually were defeated by stronger attacks. Adver-
sarial examples were also believed to be ineffective in the 
real world across different viewpoints (Lu et al., 2017) until 
proven otherwise (Athalye et al., 2017), and a large number 
of adversarial defenses were shown to be relying on obfus-
cated gradients and ultimately rendered ineffective (Athalye 
et al., 2018), including thermometer encoding (Buckman 
et al., 2018) and various preprocessing techniques (Guo 
et al., 2017; Song et al., 2017). 

Because many defenses were “broken” by stronger adver-
saries, a separate but related line of work has looked at 
generating certificates which can guarantee or prove robust-
ness of the network output to norm-bounded adversarial 
perturbations. While not always scalable to large convolu-
tional networks, methods for generating these robustness 
certificates range from using Satisfiability Modulo Theories 
(SMT) solvers (Ehlers, 2017; Huang et al., 2017; Katz et al., 
2017) and mixed-integer linear programs (Tjeng et al., 2019) 
for exact certificates, to semi-definite programming (SDP) 
solvers for relaxed but still accurate certificates (Raghu-
nathan et al., 2018a;b; Fazlyab et al., 2019). Other methods 
focus on generating more tractable but relaxed certificates, 
which provide looser guarantees but can be optimized during 
training. These methods leverage techniques such as duality 
and linear programming (Wong & Kolter, 2017; Dvijotham 
et al.; Wong et al., 2018; Salman et al., 2019b; Zhang et al., 
2019b), randomized smoothing (Cohen et al., 2019; Lecuyer 
et al., 2019; Salman et al., 2019a), distributional robustness 
(Sinha et al., 2017), abstract interpretations (Gehr et al., 
2018; Mirman et al., 2018; Singh et al., 2018), and interval 
bound propagation (Gowal et al., 2018). Another approach 
is to use theoretically justified training heuristics (Croce 
et al., 2018; Xiao et al., 2018b) which result in models 
which are verifiable by an independent certification method. 

Highly relevant to this work are those that study the general 
problem of overfitting in machine learning. Both regular-
ization (Friedman et al., 2001) and early stopping (Strand, 
1974) have been well-studied in classical statistical settings 
to reduce overfitting and improve generalization, and con-

nections between the two have been established in vari-
ous settings such as in kernel boosting algorithms (Wei 
et al., 2017), least squares regression (Ali et al., 2018), and 
strongly convex problems (Suggala et al., 2018). Although 
` 2 regularization (also known as weight decay) is commonly 
used for training deep networks (Krogh & Hertz, 1992), 
early stopping is less commonly used despite being studied 
as an implicit regularizer for controlling model complex-
ity for neural networks at least 30 years ago (Morgan & 
Bourlard, 1990).2 Indeed, it is now known that the standard 
bias-variance trade-off from classical statistical learning the-
ory fails to explain why deep networks can generalize so 
well (Zhang et al., 2016). Consequently, it is now standard 
practice in many modern deep learning tasks to train for as 
long as possible and use large overparameterized models, 
since test set performance typically continues to improve 
past the point of dataset interpolation in what is known as 
“double descent” generalization (Belkin et al., 2019; Nakki-
ran et al., 2019). The generalization gap for robust deep 
networks has also been studied from a learning theoretic 
perspective in the context of data complexity (Schmidt et al., 
2018) and Rademacher complexity (Yin et al., 2018). 

Also relevant to this work are methods specific to deep 
learning that empirically reduce overfitting and improve 
performance of deep networks. For example, Dropout is a 
commonly used stochastic regularization technique that ran-
domly drops units and their connections from the network 
during training (Srivastava et al., 2014) with the intent of pre-
venting complex co-adaptations on the training data. Data 
augmentation is another technique frequently used when 
training deep networks that has been empirically shown to 
reduce overfitting. Cutout (DeVries & Taylor, 2017) is a 
form of data augmentation that randomly masks out a sec-
tion of the input during training, which can be considered 
as augmenting the dataset with occlusions. Another tech-
nique known as mixup (Zhang et al., 2017) trains on convex 
combinations of pairs of data points and their corresponding 
labels to encourage linear behavior in between data points. 
Semi-supervised learning methods augment the dataset with 
unlabeled data, and have been shown to improve generaliza-
tion when used in the adversarially robust setting (Carmon 
et al., 2019; Zhai et al., 2019; Alayrac et al., 2019). 

3. Adversarial training and robust overfitting 
In order to learn networks that are robust to adversarial 
examples, a commonly used method is adversarial training, 

2It is common practice in deep learning to save the best check-
point which can be seen as early stopping. However, in the standard 
setting, the test loss tends to gradually improve over training, and 
so the best checkpoint tends to just select the best performance at 
the end of training, rather than stopping before training loss has 
converged. 
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Table 1. Robust performance showing the occurrence of robust 
overfitting across datasets and perturbation threat models. The 
“best” robust test error is the lowest test error observed during 
training. The final robust test error is averaged over the last five 
epochs. The difference between final and best robust test error 
indicates the degradation in robust performance during training. 

DATASET NORM RADIUS 
ROBUST TEST ERROR (%) 

FINAL BEST DIFF 

SVHN ` ∞ 

` 2 

8/255 
128/255 

45.6 ± 0.40 
26.4 ± 0.27 

39.0 
25.2 

6.6 
1.2 

CIFAR-10 ` ∞ 

` 2 

8/255 
128/255 

51.4 ± 0.41 
31.1 ± 0.46 

43.2 
28.4 

8.2 
2.7 

CIFAR-100 ` ∞ 

` 2 

8/255 
128/255 

78.6 ± 0.39 
62.5 ± 0.09 

71.9 
56.8 

6.7 
5.7 

IMAGENET 
` ∞ 

` 2 

4/255 
76/255 

85.5 ± 8.87 
94.8 ± 1.16 

62.7 
63.0 

22.8 
31.8 

which solves the following robust optimization problem X 
min max ̀ (fθ(xi + δ), yi), (1)
θ δ∈Δ 

i 

where fθ is a network with parameters θ, (xi, yi) is a train-
ing example, ` is the loss function, and Δ is the perturbation 
set. Typically the perturbation set Δ is chosen to be an 
` p-norm ball (e.g. ` 2 and ` ∞ perturbations, which we con-
sider in this paper), such that Δ = {δ : ||δ||p ≤ �} for 
� > 0. Adversarial training approximately solves the inner 
optimization problem, also known as the robust loss, using 
some adversarial attack method, typically with projected 
gradient descent (PGD), and then updates the model param-
eters θ using gradient descent (Madry et al., 2017). For 
example, an ` ∞ PGD adversary would start at some random 
initial perturbation δ(0) and iteratively adjust the perturba-
tion with the following ` ∞ gradient steps while projecting 
back onto the ` ∞ ball with radius �: 

δ̃ = δ(t) + α · signrx ̀ (f(x), y)) 
(2) 

δ(t+1) = max(min(δ̃, �), −�) 

We denote error rates when attacked by a PGD adversary as 
the “robust error”, and error rates on the clean, unperturbed 
data as “standard error”. 

3.1. Robust overfitting: a general phenomenon for 
adversarially robust deep learning 

In the standard, non-robust deep learning setting, it is com-
mon practice to train for as long as possible to minimize 
the training loss, as modern convergence curves for deep 
learning generally observe that the testing loss continues to 
decrease with the training loss. On the contrary, for the set-
ting of adversarially robust training we make the following 
discovery: 

Unlike the standard setting of deep networks, overfitting for 
adversarially robust training can result in worse test set 
performance. 

This phenomenon, which we refer to as “robust overfitting”, 
results in convergence curves as shown earlier in Figure 
1. Although training appears normal in the earlier stages, 
after the learning rate decays, the robust test error briefly 
decreases but begins to increase as training progresses. This 
behavior indicates that the optimal performance is not ob-
tained at the end of training, unlike in standard training for 
deep networks. 

We find that robust overfitting occurs across a variety of 
datasets, algorithmic approaches, and perturbation threat 
models, indicating that it is a general property of the adver-
sarial training formulation and not specific to a particular 
problem, as can be seen in Table 1 for ` ∞ and ` 2 pertur-
bations on SVHN, CIFAR-10, CIFAR-100, and ImageNet. 
A more detailed and expanded version of this table sum-
marizing the full extent of robust overfitting as well as the 
corresponding learning curves for each setting can be found 
in Appendix A. We consistently find that there is a signif-
icant gap between the best robust test performance during 
training and the final robust test performance at the end 
of training, observing an increase of 8.2% robust error for 
CIFAR-10 and 22.8% robust error for ImageNet against 
an ` ∞ adversary, to highlight a few. Robust overfitting is 
also not specific to PGD-based adversarial training, and 
affects faster adversarial training methods such as FGSM 
adversarial training3 (Wong et al., 2020) as well as top per-
forming algorithms for adversarially robust training such as 
TRADES (Zhang et al., 2019c). 

Learning rate schedules and robust overfitting Since 
the change in performance appears to be closely linked with 
the first drop in the scheduled learning rate decay, we ex-
plore how different learning rate schedules affect robust 
overfitting on CIFAR-10, as shown in Figure 2, with com-
plete descriptions of the various learning rate schedules in 
Appendix B.1. In summary, we find that smoother learning 
rate schedules (which take smaller decay steps or interpolate 
the change in learning rate over epochs) simply result in 
smoother curves that still exhibit robust overfitting. Further-
more, with each smoother learning rate schedule, the best 
robust test performance during training is strictly worse than 
the best robust test performance during training with the 
discrete piecewise decay schedule. In fact, the parameters of 
the discrete piecewise decay schedule can even be tuned to 
slightly exacerbate the sudden improvement in performance 

3Wong et al. (2020) also observe a different form of overfitting 
specifically for FGSM adversarial training which they refer to 
as “catastrophic overfitting”. This is separate behavior from the 
robust overfitting described in this paper, and the specifics of this 
distinction are discussed further in Appendix A.4. 
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Figure 2. Robust test error over training epochs for various learn-
ing rate schedules on CIFAR-10. None of the alternative smoother 
learning rate schedules can achieve a peak performance compet-
itive with the standard piecewise decay learning rate, indicating 
that the peak performance is obtained by having a single discrete 
jump. Note that the multiple decay schedule is actually run for 500 
epochs, but compressed into this plot for a clear comparison. 

after the first learning rate decay step, which we discuss 
further in Appendix B.2 

3.2. Mitigating robust overfitting with early stopping 

Proper early stopping, an old form of implicit regularization, 
calculates a metric on a hold-out validation set to determine 
when to stop training in order to prevent overfitting. Since 
the test performance does not monotonically improve during 
adversarially robust training due to robust overfitting, it is 
advantageous for robust networks to use early stopping to 
achieve the best possible robust performance. 

We find that, for example, the TRADES approach relies 
heavily on using the best robust performance on the test 
set from an earlier checkpoint in order to achieve their top 
reported result of 43.4% robust error against an ` ∞ PGD ad-
versary with radius 8/255 on CIFAR-10, a number which is 
typically viewed as a substantial algorithmic improvement in 
adversarial robustness over standard PGD-based adversarial 
training. In our own reproduction of the TRADES experi-
ment, we confirm that allowing the TRADES algorithm to 
train until convergence results in significant degradation of 
robust performance as seen in Figure 3. Specifically, the 
robust test error of the model at the checkpoint with the best 
performance on the test set is 44.1% whereas the robust test 
error of the model at the end of training has increased to 
50.6%.4 

Surprisingly, when we early stop vanilla PGD-based ad-
versarial training, selecting the model checkpoint with the 

4We used the public implementation of TRADES available 
at https://github.com/yaodongyu/TRADES and sim-
ply ran it to completion using the same learning rate decay schedule 
used by Madry et al. (2017). 
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Figure 3. Learning curves showing standard and robust error rates 
for a Wide ResNet model trained with TRADES on CIFAR-10. 
Early stopping after the initial learning rate decay is crucial in 
order to achieve the 43.4% robust test error reported by Zhang 
et al. (2019c), which eventually degrades to 50.6% robust test error 
when the training has converged. 

best performance on the test set, we find that PGD-based 
adversarial training performs just as well as more recent al-
gorithmic approaches such as TRADES. Specifically, when 
using the same architecture (a Wide ResNet with depth 28 
and width factor 10) and the same 20-step PGD adversary 
for evaluation used by Zhang et al. (2019c) for TRADES, 
the model checkpoint with the best performance on the test 
set from vanilla PGD-based adversarial training achieves 
42.3% robust test error, which is actually slightly better 
than the best reported result for TRADES from Zhang et al. 
(2019c).5 

Similarly, we find early stopping to be a factor in the robust 
test performance for publicly released pre-trained ImageNet 
models (Engstrom et al., 2019). Continuing to train these 
models degrades the robust test performance from 62.7% to 
85.5% robust test error for ` ∞ robustness at � = 4/255 and 
63.0% to 94.8% robust test error for ` 2 robustness at � = 
128/255. This shows that these models are also susceptible 
to robust overfitting and benefit greatly from early stopping.6 

The corresponding learning curves are shown in Appendix 
A.3. 

Validation-based early stopping Early stopping based 
on the test set performance, however, leaks test set infor-

5We found that our implementation of the PGD adversary to 
be slightly more effective, increasing the robust test error of the 
TRADES model and the PGD trained model to 45.0% and 43.2% 
respectively. 

6We use the publicly available framework from https:// 
github.com/madrylab/robustness and continue train-
ing checkpoints obtained from the authors using the same learning 
parameters. 
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Figure 4. Learning curves for a CIFAR-10 pre-activation ResNet18 
model trained with a hold-out validation set of 1,000 examples. 
We find that the hold-out validation set is enough to reflect the 
test set performance, and stopping based on the validation set is 
able to prevent overfitting and recover 46.9% robust test error, 
in comparison to 46.7% achieved by the best-performing model 
checkpoint. 

mation and goes against the traditional machine learning 
paradigm. Instead, we find that it is still possible to re-
cover the best test performance achieved during training 
with a true hold-out validation set. By holding out 1,000 
examples from the CIFAR-10 training set for validation pur-
poses, we use validation-based early stopping to achieve 
46.9% robust error on the test set without looking at the test 
set, in comparison to the 46.7% robust error achieved by 
the best-performing model checkpoint for a pre-activation 
ResNet18. The resulting validation curve during training 
closely matches the testing curve as seen in Figure 4, and 
suggests that although robust overfitting degrades the ro-
bust test set performance, selecting the best checkpoint in 
adversarially robust training for deep networks still does 
not appear to significantly overfit to the test set (which has 
been previously observed in the standard, non-robust setting 
(Recht et al., 2018)). 

3.3. Reconciling double descent curves 

Modern generalization curves for deep learning typically 
show improved test set performance for increased model 
complexity beyond data point interpolation in what is known 
as double descent (Belkin et al., 2019). This suggests that 
overfitting by increasing model complexity using overpa-
rameterized neural networks is beneficial and improves test 
set performance. However, this appears to be at odds with 
the main findings of this paper; since training for longer 
can also be viewed as increasing model complexity, the fact 
that training for longer results in worst test set performance 
seems to contradict double descent. 

We find that, while increasing either training time or archi-
tecture size can be viewed as increasing model complexity, 
these two approaches actually have separate effects; train-
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Figure 5. Generalization curves depicting double descent for adver-
sarially robust generalization, where hypothesis class complexity is 
controlled by varying the width factor for a wide residual network. 
Each final model point represents the average performance over 
the last 5 epochs with the corresponding width factor from training 
until convergence. The best checkpoint refers to the lowest robust 
test error achieved by a model checkpoint during training, and 
illustrates the significant gap in performance between the best and 
final models resulting from robust overfitting. 

ing for longer degrades the robust test set performance re-
gardless of architecture size, while increasing the model 
architecture size still improves the robust test set perfor-
mance despite robust overfitting. This was briefly noted by 
Nakkiran et al. (2019) for the ` 2 robust setting, and so in 
this section we show that this generally holds also in the 
` ∞ robust setting. We explore these properties by training 
multiple adversarially robust Wide ResNets (Zagoruyko & 
Komodakis, 2016) with varying widths to control model 
complexity. In Figure 5, we see that no matter how large 
the model architecture is, robust overfitting still results in a 
significant gap between the best and final robust test perfor-
mance. However, we also see that adversarially robust train-
ing still produces the double descent generalization curve, 
as the robust test performance increases and then decreases 
again with architecture size, suggesting that the double de-
scent and robust overfitting are separate phenomenon. Even 
the lowest robust test error achieved during training contin-
ues to descend with increased model complexity, suggesting 
that larger architecture sizes are still beneficial for adversar-
ially robust training despite robust overfitting. More details 
and learning curves for a wide range of architecture sizes 
can be found in Appendix C. 
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Table 2. Robust performance of PGD-based adversarial training 
with different regularization methods on CIFAR-10 using a PreAc-
tResNet18 for ` ∞ with radius 8/255. The “best” robust test error 
is the lowest test error achieved during training whereas the final 
robust test error is averaged over the last five epochs. Each of the 
regularization methods listed is trained using the optimally chosen 
hyperparameter. Pure early stopping is done with a validation set. 

ROBUST TEST ERROR (%) 
REG METHOD FINAL BEST DIFF 

EARLY STOPPING W/ VAL 46.9 46.7 0.2 
` 1 REGULARIZATION 53.0 ± 0.39 48.6 4.4 
` 2 REGULARIZATION 55.2 ± 0.4 46.4 55.2 
CUTOUT 48.8 ± 0.79 46.7 2.1 
MIXUP 49.1 ± 1.32 46.3 2.8 
SEMI-SUPERVISED 47.1 ± 4.32 40.2 6.9 

4. Alternative methods to prevent robust 
overfitting 

In this section, we explore whether common methods for 
combating overfitting in standard training are successful at 
mitigating robust overfitting in adversarial training. We run 
a series of ablation studies on CIFAR-10 using classical and 
modern regularization techniques, yet ultimately find that no 
technique performs as well in isolation as early stopping, as 
shown in Table 2 (a more detailed table including standard 
error can be found in Appendix D.2). Unless otherwise 
stated, we begin each experiment with the standard setup for 
` ∞ PGD-based adversarial training with a 10-step adversary 
with step size 2/255 using a pre-activation ResNet18 (He 
et al., 2016) (details for the training procedure and the PGD 
adversary can be found in Appendix D.1). All experiments 
in this section were run with one GeForce RTX 2080ti unless 
a Wide ResNet was trained, in which case two GPUs were 
used. 

4.1. Explicit regularization 

A classical method for preventing overfitting is to add an 
explicit regularization term to the loss, penalizing the com-
plexity of the model parameters. Specifically, the term is 
typically of the form λΩ(θ), where θ contains the model 
parameters, Ω(θ) is some regularization penalty, and λ is a 
hyperparameter to control the regularization effect. A typi-
cal choice for Ω is ` p regularization for p ∈ {1, 2}, where 
` 2 regularization is canonically known as weight decay and 
commonly used in standard training of deep networks, and 
` 1 regularization is known to induce sparsity properties. 

We explore the effects of using ` 1 and ` 2 regularization 
when training robust networks on robust overfitting, and 
sweep across a range of hyperparameter values as seen in 
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Figure 6. Robust performance on the train and test set for varying 
degrees of ` 2 regularization. ` 2 regularization is unable to match 
the same performance of early stopping without also using early 
stopping, even with an optimally chosen hyperparameter of λ = 
5 · 10−3 which achieves 55.2% robust test error. 

Figure 6 for ` 2.7 Although explicit regularization does im-
prove the performance to some degree, on its own, it is 
still not as effective as early stopping, with the best explicit 
regularizer achieving 55.2% robust test error with ` 2 regular-
ization and parameter λ = 5 · 10−2 . Additionally, neither of 
these regularization techniques can completely remove the 
detrimental effects of robust overfitting without drastically 
over-regularizing the model, which is shown and discussed 
further in Appendix D.3, along with the corresponding plots 
for ` 1 regularization. 

4.2. Data augmentation for deep learning 

Data augmentation has been empirically shown to reduce 
overfitting in modern deep learning tasks that involve very 
high-dimensional data by enhancing the quantity and diver-
sity of the training data. Such techniques range from simple 
augmentations like random cropping and horizontal flipping 
to more recent approaches leveraging unlabeled data for 
semi-supervised learning, and some work has argued that 
robust deep learning requires more data than standard deep 
learning (Schmidt et al., 2018). 

7Proper parameter regularization only applies the penalty to the 
weights w of the affine transformations at each layer, excluding 
the bias terms and batch normalization parameters. 
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Figure 7. Robust performance on the train and test set with cutout 
across varying patch lengths. Even with the optimal patch length 
of 14, cutout does not surpass the performance of early stopping, 
achieving at best 48.8% robust test error at the end of training. 

Cutout and mixup Recent data augmentations tech-
niques for deep networks, such as cutout (DeVries & Taylor, 
2017) and mixup (Zhang et al., 2017), are known to reduce 
overfitting and improve generalization in the standard train-
ing setting. We scan a range of hyperparameters for these 
approaches when applicable, and find a similar story to that 
of explicit ` p regularization; either the regularization effect 
of cutout and mixup is too low to prevent robust overfitting, 
or too high and the model is over-regularized, as seen in 
Figures 7 for cutout. When trained to convergence, neither 
cutout nor mixup is as effective as early stopping, achieving 
at best 48.8% robust test error for cutout with a patch length 
of 14 and 49.1% robust test error for mixup with α = 1.4. 8 

The corresponding plots for mixup and the learning curves 
for both methods are in Appendix D.4, where we see signif-
icant robust overfitting cutout but less so for mixup, which 
appears to be more regularized. 

Semi-supervised learning We additionally consider a 
semi-supervised data augmentation technique (Carmon 
et al., 2019; Zhai et al., 2019; Alayrac et al., 2019) which 
uses a standard classifier to label unlabeled data for use in 
robust training. Although there is a large gap between best 

8We used the public implementations of cutout 
and mixup available at https://github.com/ 
davidcpage/cifar10-fast and https://github. 
com/facebookresearch/mixup-cifar10 
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Figure 8. Learning curves for robust training with semi-supervised 
data augmentation, where we do not see a severe case of robust 
overfitting. When robust training error has converged, there is 
a significant amount of variance in the robust test error, so the 
average final model performance is on par with pure early stopping. 
Combining early stopping with semi-supervised data augmentation 
to avoid this variance is the only method we find that significantly 
improves on pure early stopping, reaching 40.2% robust test error. 

and final robust performance shown in Table 2, we find that 
this is primarily driven by high variance in the robust test er-
ror during training rather than from robust overfitting, even 
when the model has converged as seen in Figure 8. Due to 
this variance, the final model’s average robust performance 
of 47.1% robust test error is similar to the performance 
obtained by early stopping. By combining early stopping 
with semi-supervised data augmentation, this variance can 
be avoided. In fact, we find that the combination of early 
stopping and semi-supervised data augmentation is the only 
method that results in significant improvement over early 
stopping alone, resulting in 40.2% robust test error. Experi-
mental details and further discussion for this approach can 
be found in Appendix E. 9 

5. Conclusion 
Unlike in standard training, overfitting in robust adversarial 
training decays test set performance during training in a 
wide variety of settings. While overfitting with larger ar-
chitecture sizes results in better test set generalization, it 
does not reduce the effect of robust overfitting. Our exten-
sive suite of experiments testing the effect of implicit and 
explicit regularization methods on preventing overfitting 
found that most of these techniques tend to over-regularize 
the model or do not prevent robust overfitting, and all of 

9We used the data from https://github.com/ 
yaircarmon/semisup-adv containing 500K pseudo-
labeled TinyImages 

https://github.com/davidcpage/cifar10-fast
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https://github.com/facebookresearch/mixup-cifar10
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https://github.com/yaircarmon/semisup-adv
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them in isolation do not improve upon early stopping. 

Especially due to the prevalence of robust overfitting in ad-
versarial training, we particularly urge the community to 
use validation sets when performing model selection in this 
regime, and to analyze the learning curves of their mod-
els. This work exposes a key difference in generalization 
properties between standard and robust training, which is 
not fully explained by either classic statistics or modern 
deep learning, and re-establishes the competitiveness of the 
simplest adversarial training baseline. 
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