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Figure 9. Learning curves for training an SVHN classifier which 
is adversarially robust to ` ∞ perturbations of radius 8/255. Note 
that robust overfitting occurs before the learning rate has decayed, 
likely due to the lower initial learning rate. 

A. Full set of results for Table 1 
In this section, we extend Table 1 to additionally include 
standard error and results from different adversarial training 
schemes (FGSM and TRADES), as shown in Table 3. The 
final error is an average over the final 5 epochs of when 
the model has converged, along with the standard deviation. 
The best error is the lowest test error of all model check-
points during training. For convenience we also show the 
difference in the final model’s error and the best model’s 
error, which indicates the amount of degradation incurred 
by robust overfitting. 

The remainder of this section contains the experimental de-
tails for reproducing these experiments, as well as the learn-
ing curves for each experiment as visual evidence of robust 
overfitting. We default to using pre-activation ResNet18s 
for our experiments, with the exception of Wide ResNets 
with width factor 10 for ` ∞ adversaries on CIFAR-10 (for a 
proper comparison to what is reported for TRADES), and 
ResNet50s for ImageNet. For CIFAR-10 and CIFAR-100, 
we train with the SGD optimizer using a batch size of 128, a 
step-wise learning rate decay set initially at 0.1 and divided 
by 10 at epochs 100 and 150, and weight decay 5 ·10−4 . For 
SVHN, we use the same parameters except with a starting 
learning rate of 0.01 instead. For ImageNet, we use the same 
learning configuration used to train the pretrained models 
and simply run them for longer epochs and lower learn-
ing rates using the publicly released repository available at 
https://github.com/madrylab/robustness. 

` ∞ adversary We consider the ` ∞ threat model with ra-
dius 8/255, with the PGD adversary taking 10 steps of 
size 2/255 on all datasets except for ImageNet. For Im-

Figure 10. Learning curves for training an SVHN classifier which 
is adversarially robust to ` 2 perturbations of radius 128/255. Ro-
bust overfitting occurs early here as well, with robust test error 
increasing after the 9th epoch. 

ageNet, we fine-tune the pretrained model from https: 
//github.com/madrylab/robustness (Engstrom 
et al., 2019) and continue training with the exact same pa-
rameters with a learning rate of 0.001, which uses an ad-
versary with 5 steps of size 0.9/255 within a ball of radius 
4/255. 

` 2 adversary We consider the ` 2 threat model with ra-
dius 128/255, with the PGD adversary taking 10 steps of 
size 15/255 on all datasets except for ImageNet. For Im-
agenet, we fine-tune the pretrained model from https: 
//github.com/madrylab/robustness (Engstrom 
et al., 2019) and continue training with the exact same pa-
rameters with a learning rate of 0.001, which uses an adver-
sary with 7 steps of size 0.5 within a ball of radius 3. 

A.1. SVHN experiments 

Figures 9 and 10 contain the convergence plots for the PGD-
based adversarial training experiments on SVHN for ` ∞ and 
` 2 perturbations respectively. We find that robust overfitting 
occurs even earlier on this dataset, before the initial learning 
rate decay, indicating that the learning rate threshold at 
which robust overfitting begins to occur has already been 
passed. The best checkpoint for ` ∞ achieves 39.0% robust 
error, which is a 6.6% improvement over the 45.6% robust 
error achieved at the end of training. 

A.2. CIFAR-100 experiments 

Figures 11 and 12 contain the convergence plots for the 
PGD-based adversarial training experiments on CIFAR-100 
for ` ∞ and ` 2 perturbations respectively. We find that ro-

https://github.com/madrylab/robustness
https://github.com/madrylab/robustness
https://github.com/madrylab/robustness
https://github.com/madrylab/robustness
https://github.com/madrylab/robustness
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Table 3. Performance of adversarially robust training over a variety of datasets, adversarial training algorithms, and perturbation threat 
models, where the best error refers to the lowest robust test error achieved during training and the final error is an average of the robust 
test error over the last 5 epochs. We observe robust overfitting to occur across all experiments. 

DATASET ADVERSARY NORM RADIUS 
ROBUST TEST ERROR (%) 

FINAL BEST DIFF 
STANDARD TEST ERROR (%) 

FINAL BEST DIFF 

SVHN PGD ` ∞ 

` 2 

8/255 
128/255 

45.6 ± 0.40 
26.4 ± 0.27 

39.0 
25.2 

6.6 
1.2 

10.0 ± 0.15 
7.0 ± 0.23 

10.2 
7.2 

−0.2 
−0.2 

PGD ` ∞ 

` 2 

8/255 
128/255 

51.4 ± 0.41 
31.1 ± 0.46 

43.2 
28.4 

8.2 
2.7 

13.4 ± 0.19 
11.0 ± 0.08 

13.9 
11.3 

−0.5 
−0.3 

CIFAR-10 FGSM ` ∞ 

` 2 

8/255 
128/255 

59.8 ± 0.09 
31.6 ± 0.18 

53.7 
29.2 

6.1 
2.4 

12.4 ± 0.21 
9.9 ± 0.16 

13.6 
10.5 

−1.2 
−0.6 

TRADES ` ∞ 

` 2 

8/255 
128/255 

50.6 ± 0.31 
58.2 ± 0.66 

45.0 
53.6 

5.6 
4.6 

14.97 ± 0.24 
33.9 ± 0.95 

15.9 
15.7 

−0.9 
18.2 

CIFAR-100 PGD ` ∞ 

` 2 

8/255 
128/255 

78.6 ± 0.39 
62.5 ± 0.09 

71.9 
56.8 

6.7 
5.7 

45.9 ± 0.23 
39.9 ± 0.22 

47.3 
37.5 

−1.4 
2.4 

IMAGENET PGD ` ∞ 

` 2 

4/255 
76/255 

85.5 ± 8.87 
94.8 ± 1.16 

62.7 
63.0 

22.8 
31.8 

50.5 ± 14.32 
63.2 ± 6.80 

37.0 
40.1 

13.5 
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Figure 11. Learning curves showing robust overfitting on CIFAR-
100 for the ` ∞ perturbation model. 

bust overfitting on this dataset reflects the CIFAR-10 case, 
occurring after the initial learning rate decay. Note that in 
this case, both the robust test accuracy and the standard test 
accuracy are degraded from robust overfitting. The best 
checkpoint for ` ∞ achieves 71.9% robust error, which is a 
6.7% improvement over the 78.6% robust error achieved at 
the end of training. 

A.3. ImageNet experiments 

Figure 13 contains the convergence plots for our contin-
uation of PGD-based adversarial training experiments on 
ImageNet for ` ∞ and ` 2 perturbations respectively. Thanks 
to logs provided by the authors (Engstrom et al., 2019), we 

Figure 12. Learning curves showing robust overfitting on CIFAR-
100 for the ` 2 perturbation model. 

know the pretrained ` 2 robust ImageNet model had already 
been trained for 100 epochs at learning rate 0.1 followed by 
at least 10 epochs at learning rate 0.01, and so we continue 
training from there and further decay the learning rate at 
the 150th epoch to 0.001. Logs could not be found for the 
pretrained ` ∞ model, and so it is unclear how long it was 
trained and under what schedule, however the pretrained 
model checkpoint indicated that the model had been trained 
for at least one epochs at learning rate 0.001, so we continue 
training from this point on. 

The ` ∞ pre-trained model appeared to have not yet con-
verged for the checkpointed learning rate, and so further 
training without any form of learning rate decay was able 
to gradually deteriorate the performance of the model. The 
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Figure 13. Continuation of training released pre-trained ImageNet 
models for ` ∞ (top) and ` 2 (bottom). The number of epochs 
indicate the number of additional epochs the pre-trained models 
were trained for. 

` 2 pre-trained model seemed to have already converged at 
the checkpointed learning rate, and so we do not see any 
significant changes in performance until after decaying the 
learning rate down to 0.001. 

Note that the learning curves here are smoothed by tak-
ing an average over a consecutive 10 epoch window, as 
the actual curves are quite noisy in comparison to other 
datasets. This noise is reflected in Table 3, where ImageNet 
has the greatest variation in final error rates (both robust 
and standard). Training the models further can in fact im-
prove the performance of the pretrained model slightly at 
specific checkpoints (e.g. from 66.4% initial robust test 
error down to 62.7% robust test error at the best checkpoint 
for ` ∞), however eventually the ImageNet models suffer 
greatly from robust overfitting, with an average increase of 
22.8% robust error for the ` ∞ model and 31.8% robust error 
for the ` 2 model. 

A.4. CIFAR-10 experiments 

For CIFAR-10, in addition to the standard PGD training 
algorithm, we also consider the FGSM adversarial training 
algorithm (Wong et al., 2020) and TRADES (Zhang et al., 
2019b). The convergence curves showing that robust over-
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Figure 14. Learning curves showing robust overfitting from train-
ing with an FGSM adversary on CIFAR-10 for the ` ∞ perturbation 
model. 

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

Er
ro

r

Test robust
Train robust

Test standard
Train standard

Figure 15. Learning curves showing robust overfitting from train-
ing with an FGSM adversary on CIFAR-10 for the ` 2 perturbation 
model. 

fitting still occurs for these two algorithms in both the ` ∞ 

and ` 2 setting are shown in Figures 14 and 15 for FGSM 
and Figures 16 and 17 for TRADES. 

FGSM adversarial training For FGSM adversarial train-
ing, we use the random initialization described by Wong 
et al. (2020). However, we find that when training until con-
vergence using the piecewise decay learning rate schedule, 
the recommended step size of α = 10/255 for ` ∞ training 
eventually results in catastrophic overfitting. We resort to 
reducing the step size of the ̀  ∞ FGSM adversary to 7/255 to 
avoid catastrophic overfitting, but still see robust overfitting. 

We also note that Wong et al. (2020) use a cyclic learning 
rate schedule to further boost the speed of convergence, 
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Figure 16. Learning curves when running TRADES for robustness to ` ∞ perturbations of radius 8/255 on combinations of learning rates 
and architectures for CIFAR10. 

which differs from the piecewise decay schedule we discuss 
in this paper. If we run FGSM adversarial training in a 
more similar fashion to Wong et al. (2020) with the cyclic 
learning rate and fewer epochs, we find that this can sidestep 
the robust overfitting phenomenon and converge directly to 
the best checkpoint at the end of training. However, this 
requires a careful selection of the number of epochs: too 
few epochs and the final model underperforms, whereas 
too many epochs and we observe robust overfitting. In our 
setting, we find that training against an FGSM adversary 
for 50 epochs using a cyclic learning rate with a maximum 
learning rate of 0.2 allows us to recover a final robust test 
error of 53.22%, similar to the best checkpoint of FGSM 
adversarial training with piecewise decay and 200 epochs 
which achieved 53.7% robust test error in Table 3. 

Relation of robust overfitting to catastrophic overfitting 
Previous work studying the effectiveness of an FGSM adver-
sary for robust training noted that it is necessary to prevent 
“catastrophic overfitting” in order for FGSM training to be 
successful, which can be avoided by evaluating a PGD ad-
versary on a training minibatch (Wong et al., 2020). Here 
we note that this is a distinct and separate behavior from 

robust overfitting: while catastrophic overfitting is a product 
of a model overfitting to a weaker adversary and can be 
detected by a stronger adversary on the training set, robust 
overfitting is a degradation of robust test set performance 
under the same adversary used during training which can-
not be detected on the training set. Indeed, even successful 
FGSM adversarial training can suffer from robust overfitting 
when given enough epochs without catastrophically overfit-
ting, as shown in Figure 14, suggesting that this is related to 
the generalization properties of adversarially robust training 
rather than the strength of the adversary. 

TRADES For TRADES we use the publicly released im-
plementation of both the defense and attack available at 
https://github.com/yaodongyu/TRADES to re-
move the potential for any confounding factors resulting 
from differences in implementation. We consider two pos-
sible options for learning rate schedules: the default sched-
ule used by TRADES which decays at 75 and 90 epochs 
and runs for 100 epochs total (denoted TRADES learning 

https://github.com/yaodongyu/TRADES
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Figure 17. Learning curves when running TRADES for robustness 
to ` 2 perturbations of radius 128/255 for CIFAR10. 

rate),10 and the standard learning rate schedule used by 
Madry et al. (2017) for PGD adversarial training, which de-
cays at 100 epochs and 150 epochs. We additionally explore 
both the pre-activation ResNet18 architecture that we use 
extensively in this paper, as well as the Wide ResNet archi-
tecture which TRADES uses. The corresponding learning 
curves for each combination of learning rate and model can 
be found in Figure 16 for ` ∞. 

We note that in three of the four cases, we see a clear in-
stance of robust overfitting. Only the default learning rate 
schedule used by TRADES on the smaller, pre-activation 
ResNet18 model doesn’t indicate any degradation in robust 
test set performance. This is likely due the shortened learn-
ing rate schedule which implicitly early stops combined 
with the regularization induced by a smaller architecture 
having less representational power. The results here are con-
sistent with our earlier findings on the impact of architecture 
size, where the Wide ResNet architecture achieves better 
performance than the ResNet18. The shortened TRADES 
learning rate schedule does not show the full extent of robust 
overfitting, as the models have not yet converged, whereas 
the Madry learning rate does (and also achieves a slightly 
better best checkpoint). 

Figure 17 shows a corresponding curve for ` 2 robustness 
using TRADES for the pre-activation ResNet18 model with 
the Madry learning rate, which was the optimal combination 
from ` ∞ training. Note that the TRADES repository does 

10This is the learning rate schedule described in the paper by 
Zhang et al. (2019c). Note that this differs slightly from the im-
plementation in the TRADES repository, which uses the same 
schedule but only trains for 76 epochs, which is one more epoch 
after decaying. In our reproduction of the TRADES experiment, 
the checkpoint after the initial learning rate decay ends up with the 
best test performance over all 100 epochs. 

not provide default training parameters or a PGD adversary 
for ` 2 training on CIFAR-10 nor could we find any such 
description in the corresponding paper, and so we used our 
attack parameters which were successful for PGD-based 
adversarial training (10 steps of size 15/255). 

B. Experiments for various learning rate 
schedules 

In this section, we explore the effect of the learning rate 
schedule with greater detail on the CIFAR10 dataset with a 
pre-activation ResNet18. Our search begins with a sweep 
over a range of different potential schedules which are com-
monly used in deep learning. Following this, we tune the 
best learning rate schedule to investigate its effect on the 
prevalence of robust overfitting. 

B.1. Different types of schedules 

We consider the following types of learning rates for our 
setting. 

1. Piecewise decay: This is a fairly common learning 
rate used in deep learning, which decays the learning 
rate by a constant factor at fixed epochs. We begin with 
a learning rate of 0.1 and decay it by a factor of 10 at 
the 100th and 150th epochs, for 200 total epochs. 

2. Multiple decay: This is a more gradual version of the 
piecewise decay schedule, with a piecewise constant 
schedule which reduces the learning rate at a linear 
rate in order to make the drop in learning rate less 
drastic. Specifically, the learning rate begins at 0.1 
and is reduced by 0.01 every 50 epochs over 500 total 
epochs, eventually reaching a learning rate of 0.01 in 
the last 50 epochs. 

3. Linear decay: This schedule does a linear interpola-
tion of the drop from 0.1 to 0.01, resulting in a piece-
wise linear schedule. The learning rate is trained at 0.1 
for the first 100 epochs, then linearly reduced down 
to 0.01 over the next 50 epochs, and further trained at 
0.01 for the last 50 epochs for a total of 200 epochs. 

4. Cyclic: This schedule grows linearly from 0 to to some 
maximum learning rate λ, and then is reduced linearly 
back to 0 over training as proposed by Smith (2017). 
We adopt the version from Wong et al. (2020) which 
already computed the maximum learning rate for the 
CIFAR10 setting on the same architecture which peaks 
2/5 of the way through training at a learning rate of 0.2 
over 200 epochs. 

5. Cosine: This schedule reduces the learning rate using 
the cosine function to interpolate from 0.1 to 0 over 200 
epochs. This type of schedule was used by Carmon 
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Figure 18. Learning curves for a piecewise decay schedule with a modified starting learning rate. 
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Figure 19. Learning curves for a piecewise decay schedule with a modified ending learning rate. 
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Table 4. Tuning experiments using stochastic gradient descent to 
optimize the best robust test error obtained from the piecewise 
decay schedule for a pre-activation ResNet18 on CIFAR-10. 

DECAY EPOCH START LR END LR BEST ROB ERR 

100 0.1 0.01 46.7% 

60 47.4% 
70 47.3%

0.1 0.01
80 46.9% 
90 47.3% 

0.06 47.4% 
0.08 46.7%

100 0.01
0.3 48.7% 
0.5 51.0% 

0.006 46.0% 

100 0.1 0.008 
0.03 

46.1% 
47.8% 

0.05 49.3% 

et al. (2019) when leveraging semi-supervised data 
augmentation to improve adversarial robustness. 

Note that the piecewise decay schedule is the primary learn-
ing rate schedule used in this paper. All of these approaches 
beyond the standard piecewise decay schedule dampen the 
initial drop in robust test error experienced by the piecewise 
decay schedule. As a result, the best checkpoints of these 
alternatives end up with worse performance than the best 
checkpoint of the piecewise decay schedule, since all of the 
learning rates eventually start increasing in robust test error 
due to robust overfitting after the initial drop. Robust overfit-
ting appears to be ubiquitous across different schedules, as 
most approaches achieve their best checkpoint well before 
training has converged. 

The cyclic learning rate is the exception here, which has 
two phases corresponding to when the learning rate is grow-
ing and shrinking, with the best checkpoint occurring near 
the end of the second phase. In both phases, the robust 
performance begins to improve, but then robust overfitting 
eventually occurs and keeps the model from improving any 
further. We found that stretching the cyclic learning rate 
over a longer number of epochs (e.g. 300) results in a simi-
lar learning curve but with worse robust test error for both 
the best checkpoint and the final converged model. 

B.2. Tuning the piecewise decay schedule 

Since the piecewise decay schedule appeared to be the most 
effective method for finding a model with the best robust 
performance, we investigate whether this schedule can be 
potentially tuned to improve the robust performance of the 
best checkpoint even further. The discrete piecewise decay 
schedule has three possible parameters: the starting learning 

rate, the ending learning rate, and the epoch at which the 
decay takes effect. We omit the last 50 epochs of the final 
decay, since the bulk of the impact from robust overfitting 
occurs shortly after the first decay in this setting. 

While tuning the starting learning rate and the decay epoch 
largely results in either similar or worse performance, we 
find that adjusting the learning rate used after the decay 
epoch can actually slightly improve the robust performance 
of the best checkpoint by 0.5%, as seen in Table 4. Note that 
robust overfitting still occurs in these tuned learning rate 
schedules as seen in Figures 18, 19, and 20, which show the 
learning curves for each one of the models shown in Table 
4. 

C. Double descent: exploring architecture 
sizes 

For architecture size experiments, we use a Wide ResNet 
architecture (Zagoruyko & Komodakis, 2016) with depth 28 
and varying widths to control the size of the network. For 
each width tested, we plot the standard and robust perfor-
mance from the best checkpoint and final model in Figure 
21. Learning curves for each width can be found in Figure 
22. All models were trained with the same training parame-
ters described in Section 4. Mean and standard deviation of 
the final model was taken over the last 5 epochs. 

From both the generalization curves and the individual con-
vergence plots, we see that no matter how large the archi-
tecture is, the checkpoint which achieves the lowest robust 
test error always has higher training robust error than the 
final model at convergence. We also find that both the final 
model at the end of convergence as well as the best check-
point found during training all benefit from the increase in 
architecture size. Consequently, we find that robust overfit-
ting and double descent can occur at the same time, despite 
having seemingly opposite effects on the notion of overfit-
ting. 

In contrast to the standard setting, we observe that the dou-
ble descent occurs well before robust interpolation of the 
training data at a width factor of 5, after which the robust 
test set performance of the final model continues to improve 
with even larger architecture sizes. The network with width 
factor 20, the largest that we could run on our hardware, 
achieves 48.8% robust test error at the end of training and 
41.8% robust test error at the best checkpoint. This marks a 
further improvement over the more typical choice of width 
factor 10 which achieves 51.4% robust test error at the end 
of training and 43.2% robust test error at the best checkpoint. 
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Figure 21. Standard and robust performance on the train and test set across Wide ResNets with varying width factors. 
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Table 5. Performance of adversarially robust training over a variety of regularization techniques for PGD-based adversarial training on 
CIFAR-10 for ` ∞ with radius 8/255. 

ROBUST TEST ERROR (%) STANDARD TEST ERROR (%) 
REGULARIZATION METHOD FINAL BEST DIFF FINAL BEST DIFF 

EARLY STOPPING W/ VAL 46.9 46.7 0.2 18.2 18.2 0.0 
` 1 REGULARIZATION 53.0 ± 0.39 48.6 4.4 15.9 ± 0.13 15.4 0.5 
` 2 REGULARIZAITON 51.4 ± 0.73 46.4 8.8 15.7 ± 0.21 14.9 0.8 
CUTOUT 48.8 ± 0.79 46.7 2.1 16.8 ± 0.21 16.4 0.4 
MIXUP 49.1 ± 1.32 46.3 2.8 23.3 ± 3.04 19.0 4.3 
SEMI-SUPERVISED 47.1 40.2 6.9 23.0 ± 3.82 17.2 5.8 

D. Preventing overfitting 
D.1. Experimental setup 

For the experiments in preventing overfitting, we use a PGD 
adversary with random initialization and 10 steps of step 
size 2/255. This is a slightly stronger adversary than con-
sidered in Madry et al. (2017) by using 3 additional steps, 
and we found the attack to be more effective than the adver-
sary implemented by TRADES, achieving approximately 
1% more PGD error than the TRADES adversary. However, 
our goal here is to explore the prevention of robust overfit-
ting, and so it is not necessary to have strongest possible 
adversarial attack, and so for our purposes this adversary is 
good enough (and is known to be reasonably strong in the 
` ∞ setting). For training, we use the same parameters as 
used for the CIFAR-10 experiments in Appendix A.4 (batch 
size, learning rate, weight decay, number of epochs). We 
primarily use the pre-activation ResNet18 since it is already 
sufficient for exhibiting the robust overfitting behavior. 

D.2. Full set of results for Table 2 

In this section, we present the expanded version of Table 2 
to include standard test error metrics. The final robust and 
standard errors are an average of over the final 5 epochs 
of training when the model has converged, from which the 
standard deviation is also computed. The one exception 
is validation-based early stopping, where the final error 
is taken from the checkpoint chosen by the validation set, 
and consequently does not have a standard deviation. The 
best robust error is the lowest test robust error of all check-
points through training, and the best standard error is the 
corresponding standard error which comes from this same 
checkpoint. For convenience we also show the difference 
in the final model’s error and the best model’s error, which 
indicates the amount of degradation incurred by robust over-
fitting. 

to also show the performance on the training set. We also 
show the learning curves for models trained with explicit 
regularization to show the extent of robust overfitting on 
various hyperparameter choices. 

` 1 regularization Figure 23 shows the training and testing 
performance of models using various degrees of ` 1 regular-
ization. We performed a search over regularization parame-
ters λ = {5 · 10−6 , 5 · 10−5 , 5 · 10−4 , 5 · 10−3}, and found 
that both the final checkpoint and the best checkpoint have 
an optimal regularization parameter of 5 · 10−5 . Note that 
we only see robust overfitting at smaller amounts of regular-
ization, since the larger amounts of regularization actually 
regularize the model to the point where the performance is 
being severely hurt. 

Figure 24 shows the corresponding learning curves for these 
four models. We see clear robust overfitting for the smaller 
two options in λ, and find no overfitting but highly regu-
larized models for the larger two options, to the extent that 
there is no generalization gap and the training and testing 
curves actually appear to match. 

` 2 regularization Figure 25 shows the training and testing 
performance of models using various degrees of ` 2 regular-
ization. We performed a search over regularization parame-
ters λ = {5 · 10k} for k ∈ {−4, −3, −2, −1, 0} as well as 
λ = 0.01. Note that 5 ·10−4 is a fairly widely used value for 
weight decay in deep learning. We find that only the small-
est choices for λ result in robust overfitting (e.g. λ ≤ 0.1. 
However, inspecting the corresponding learning curves in 
Figure 26 reveals that the larger choices for λ have a similar 
behavior to the larger forms of ` 1 regularization, and end 
up with highly regularized models whose test performance 
perfectly matches the training performance at the cost of 
converging to a worse final robust test error. 

D.4. Data augmentation 
D.3. Explicit regularization 

In this section, we present additional details for the data 
In this section, we extend the plots depicting the robust and augmentation approaches for preventing overfitting, namely 
standard error over various regularization hyperparameters cutout, mixup, and semi-supervised data. 
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Cutout To analyze the effect of cutout on generalization, 
we range the cutout hyperparameter of patch length from 2 
to 20. Figure 27 shows the training and testing performance 
of models using varying choices of patch lengths. Addition-
ally, for each hyperparameter choice, we plot the resulting 
learning curves in Figure 28. 

We find the optimal length of cutout patches to be 14, which 
on it’s own is not quite as good as vanilla early stopping, 
but when combined with early stopping merely matches 
the performance of vanilla early stopping. In all cases, we 
observe robust overfitting to steadily degrade the robust test 
performance throughout training, with less of an effect as 
we increase the cutout patch length. 

Mixup When training using mixup, we vary the hyperpa-
rameter α from 0.2 to 2.0. The training and testing perfor-
mance of models using varying degrees of mixup can be 
found in Figure 29. The resulting learning curves for each 
choice of α can be found in Figure 30. 

For mixup, we find an optimal parameter value of α = 1.4. 
Similar to cutout, when combined with early stopping, it 
can only attain similar performance to vanilla early stop-
ping, and otherwise converges to a worse model. However, 
although the learning curves for mixup training are signifi-
cantly noisier than other methods, we do observe the robust 
test error to steadily decrease over training, indicating that 
mixup does stop robust overfitting to some degree (but does 
not obtain significantly better performance). 

E. Semi-supervised approaches 
For semi-supervised training, we use a batch size of 128 
with equal parts labeled CIFAR-10 data and pseudo-labeled 
TinyImages data, as recommended by Carmon et al. (2019). 
Each epoch of training is now equivalent in computation to 
two epochs of standard adversarial training. Note that the 
pre-activation ResNet18 is a smaller architecture than used 
by Carmon et al. (2019), and so in our reproduction, the best 
checkpoint which achieves 40.2% error is about 2% higher 
than 38.5%, which is what Carmon et al. (2019) can achieve 
with a Wide ResNet. Note that in the typical adversarially 
robust setting without additional semi-supervised data, a 
Wide ResNet can achieve about 3.5% lower error than a 
pre-activation ResNet18. 

We observe that the semi-supervised approach does not ex-
hibit severe robust overfitting, as the smoothed learning 
curves tend to be somewhat relatively flat and don’t show 
significant increases in robust test error. However, relative 
to the base setting of using only the original dataset, the 
robust test performance is extremely variable, with a range 
spanning almost 10% robust error even when training error 
is relatively flat and has converged. As a result, it is critical 

to still use the best checkpoint even without robust overfit-
ting, in order to avoid the fluctuations in test performance 
induced by the augmented training data. 
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Figure 23. Standard and robust performance on the train and test set using varying degrees of ` 1 regularization. 
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Figure 24. Learning curves for adversarial training using ` 1 regularization. 
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Figure 25. Standard and robust performance on the train and test set using varying degrees of ` 2 regularization. 
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Figure 26. Learning curves for adversarial training using ` 2 regularization. 
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Figure 27. Standard and robust performance on the train and test set for varying cutout patch lengths. 
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Figure 28. Learning curves for adversarial training using cutout data augmentation with different cutout patch lengths. 
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Figure 29. Standard and robust performance on the train and test set for varying degrees of mixup. 
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Figure 30. Learning curves for adversarial training using mixup with different choices of hyperparameter α. 




