
Normalizing Flows on Tori and Spheres

A. Density Transformations on Manifolds
In this section, we explain how to update the density of a
distribution transformed from one Riemannian manifold to
another by a smooth map. We only consider the case where
both manifolds are sub-manifolds of Euclidean spaces.

LetM and N be D-dimensional manifolds embedded into
Euclidean spaces Rm and Rn respectively. For example,
M and N could be SD embedded in RD+1 as in Sec-
tion 2.3. Both manifolds inherit a Riemannian metric from
their embedding spaces. Let T be a smooth injective map
T :M→N . We will assume that T can be extended to a
smooth map between open neighbourhoods of the embed-
ding spaces that containM andN , and that we have chosen
such an extension. For example, the exponential-map flow
in Equation (19) can be written using the coordinates of the
embedding space RD+1, and can thus be extended to open
neighbourhoods of the embedding spaces as desired.

In what follows, we will use the fact that if u1, . . . , uD are
vectors in Rn, then the volume of the parallelepiped with
sides u1, . . . , uD is

√
det(U>U), where U is the n × D

matrix with column vectors u1, . . . , uD. If u1, . . . , uD form
an orthonormal system, this volume is 1.

Let π : M → R+ be a density on M. This defines a
distribution on M and we can use T to transform it into
a distribution on N . Let p : N → R+ be the density of
the transformed distribution. We are interested in comput-
ing p assuming we know π. Let x be a point onM, and
e1, . . . , eD be an orthonormal basis of the tangent space
TxM. Define E to be the m×D matrix with i-th column
vector ei. Let J be the n×m Jacobian of T , where T is seen
as a map between open sets in Rm and Rn. The tangent
map of T at x transforms each ei to Jei, and the matrix
that collects all transformed vectors in its columns is JE.
Hence, the volume of the parallelepiped with sides the trans-
formed vectors is

√
det((JE)>JE) =

√
det(E>J>JE).

Therefore, the density p is given by

p(T (x)) =
π(x)√

det(E>J>JE)
. (24)

In the special case whereM = N = RD and m = n = D,
the matrix E is an orthogonal matrix, and the above reduces
to the familiar density update in Equation (2).

A.1. The case of Tc→s : SD−1 × [−1, 1]→ SD

In this section, we specialize toM = SD−1 × (−1, 1) and
N = SD with D ≥ 2. In particular, we will prove:
Proposition 1. Let π be a density π : SD−1 × (−1, 1) →
R+. Let p : SD → R+ be the density of the transformed
distribution under Tc→s. Then:

p(Tc→s(z, r)) =
π(z, r)

(1− r2)
D
2 −1

. (25)

Proof. The sphere SD−1 is embedded in RD. This gives us
an embedding ofM in RD+1. The map Tc→s, introduced in
Equation (14), is easily extended to a map RD × (−1, 1)→
RD+1 using the same formula Tc→s(z, r) = (

√
1− r2z, r).

Its Jacobian is an upper triangular D + 1 by D + 1 matrix

J =


√

1− r2 0 · · · −x1r√
1−r2

0
√

1− r2 −x2r√
1−r2

...
. . .

...
0 · · · 1

 .

We will use a symmetry argument to simplify the computa-
tion of the determinant in Equation (24). Let G be a rotation
of RD+1 that leaves the last coordinate invariant.1 Note that
for any point x ∈ RD+1, we have Tc→s(Gx) = GTc→s(x).
This means that the Jacobian J transforms as a function of
x as J(Gx) = GJ(x)G>. Note also that if x is inM, and
E(x) is a matrix where the column vectors form a basis of
the tangent space at x, then Gx is also inM, and GE(x)
is a matrix where the column vectors form a basis of the
tangent space at Gx. So we can choose E(Gx) = GE(x).
With that choice

det
(
E(Gx)>J(Gx)>J(Gx)E(Gx)

)
= det

(
E(x)>G>GJ(x)>G>GJ(x)G>GE(x)

)
= det

(
E(x)J(x)>J(x)E(x)

)
.

Since for any x ∈ M, we can always choose G such that
Gx is of the form (

√
1− r2, 0, . . . , 0, r), we can restrict

ourselves to this case. For such a choice, the Jacobian
simplifies to

J =


√

1− r2 0 · · · −r√
1−r2

0
√

1− r2 0
...

. . .
...

0 · · · 1

 .
For E, we can simply choose the D + 1 by D matrix made
by removing the first column from the identity matrix. Then
JE is equal to J with the first column removed:

JE =


0 0 · · · −r√

1−r2√
1− r2 0 0

0
√

1− r2 0
...

. . .
...

0 · · · 1

 .

The product (JE)>JE is simply a diagonal matrix of size
D with diagonal (1 − r2, . . . , 1 − r2, 1

1−r2 ). Taking the
determinant and applying Equation (24) concludes the proof.

1The set of such rotations is the group of rotations of RD

embedded in RD+1.
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At first, Proposition 1 might seem worrying since the density
ratio in that proposition vanishes when r is −1 or 1. So, as
r approaches the boundary of the interval [−1, 1], it seems
that the correction term to the density will tend to infinity
and lead to numerical instability.

What saves us is that we do not use Tc→s on its own, and
instead combine it with a particular flow transformation on
SD−1 × [−1, 1] and the inverse Ts→c, as shown in Equa-
tions (12) to (14). In these formulas, the map g is a spline
on the interval [−1, 1] which maps −1 to −1, 1 to 1, and
has strictly positive slopes g′(−1) and g′(1). Looking only
at −1 (the case 1 can be similarly dealt with), this means

g(−1 + ε) ≈ −1 + g′(−1)ε.

As ε goes to 0, the density corrections coming from Tc→s
and Ts→c combine to(

D

2
− 1

)
log

1− g(−1 + ε)2

1− (−1 + ε)2
,

which is equivalent to(
D

2
− 1

)
log g′(−1)

as ε goes to 0. In particular, the terms that tend to infinity
cancel each other, and the flow is well-behaved. When
implementing the flow, numerical stability is achieved by
not adding the terms that cancel each other. Finally, we
note a subtle point about what we proved: the sequence
of transformations Tc→s ◦ Tc→c ◦ Ts→c will transform a
distribution with finite density into another distribution with
finite density, but we do not guarantee that the resulting
density will be continuous.

B. Detailed Diagram of Recursive Flow on SD

In Figure 6, we provide an illustration of the recursive con-
struction in Equations (12) to (14), showing the specific
wiring order of the conditional maps inside the flow. This
order is the one implied by the recursion. In general, any
other order can be used, or a composition of autoregressive
flows with multiple orders.

C. Examples of Möbius Transformations
To illustrate the kind of densities we get on S1 using the
Möbius flows, we show a few random examples in Figure 7.

D. Fourier Transformations on S1

Another family of circle transformations that we considered
are Fourier transformations, defined by

fα,φ,w(θ) = θ +
∑
i

αi
wi

sin(wiθ − φi) + µ, (26)

AR

Figure 6. Detailed illustration of the recursive flow on the sphere
SD showing the explicit wiring of the conditional flows. The
sphere SD is recursively transformed to the cylinder S1 ×
[−1, 1]D−1, then an autoregressive flow is applied to the cylinder,
and finally the cylinder is transformed back to the sphere.

where µ =
∑
i αi sin(φi), wi ∈ Z, φi ∈ [0, 2π] and∑

i |αi| ≤ 1. The integers wi are fixed frequencies in the
Fourier basis.

We found empirically that this family of transformations is
not competitive with the other transformations considered
in this paper, especially for highly concentrated densities as
shown in Figure 8.

E. Polynomial Exponential Map
The polynomial exponential map of Sei (2013) is the
exponential-map flow built using the scalar field

φ(x) = µ>x+ x>Ax, (27)

where x ∈ SD in the coordinates of the embedding space
RD+1. The parameters µ and A must satisfy the constraint
‖µ‖1 + ‖A‖1 ≤ 1 where ‖·‖1 is the elementwise `1 norm.

F. Target Densities Used in Experiments
For the experiments on the torus T2, we used targets built
from densities in the von Mises family as shown in Table 2.

On the sphere S2, the target was a mixture of the form

p(x) ∝
4∑
k=1

e10x
>Ts→e(µk), (28)

where µ1 = (0.7, 1.5), µ2 = (−1, 1), µ3 = (0.6, 0.5),
µ4 = (−0.7, 4), Ts→e maps from spherical to Euclidean
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Figure 7. Probability density functions of convex combinations of 15 Möbius transformations applied to a uniform base distribution on
the circle S1. Each of these distributions required 30 = 15× 2 parameters.

Target Expression Parameters

Unimodal pA(θ1, θ2) ∝ exp[cos(θ1 − φ1) + cos(θ2 − φ2)] φ = (4.18, 5.96)

Multi-modal pB(θ1, θ2) ∝ 1
3

∑3
i=1 pA(θ1, θ2;φi) φ = {(0.21, 2.85), (1.89, 6.18), (3.77, 1.56)}

Correlated pC(θ1, θ2) ∝ exp[cos(θ1 + θ2 − φ)] φ = 1.94

Table 2. Target densities used for experiments on T2.

Figure 8. Same as Figure 2, with KL and values for the Fourier transforms added. For the Fourier models, the numbers between brackets
represent used frequencies, and a number before the bracket means each frequency was repeated. For example, Fourier3[1 − 4] is a
Fourier model with 12 frequencies: 3 frequencies of k for each k = 1, . . . , 4.
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coordinates, and x ∈ R3 is a point on the embedded sphere
in Euclidean coordinates.

On SU(2) ∼= S3, the target was a mixture of the same
form where µ1 = (1.7,−1.5, 2.3), µ2 = (−3.0, 1.0, 3.0),
µ3 = (0.6,−2.6, 4.5), µ4 = (−2.5, 3.0, 5.0), and x ∈ R4

is a point on the embedded sphere in Euclidean coordinates.

G. Misaligned Density on S2

The recursive formulas shown in Equations (12) to (14)
require choosing a sequence of axes in order to construct the
cylindrical coordinate system. This may introduce artifacts
to the density related to this choice of axes. To test if this
results in numerical problems, we compare the flow from
Equations (12) to (14) on a target density that forms a non-
axis-aligned ring against a composition of the same flow
with a learned rotation.

The results of this experiment are shown in Figure 9. We
compared both large (Ks = 32, Km = 12) and small
(Ks = 3, Km = 3) versions of the auto-regressive Möbius-
Spline flow and observed no significant differences between
the two models on S2.

More experiments would be necessary to investigate this
potential effect in higher dimensions.

H. NCP as a complex Möbius transformation
For a general Möbius transformation

f(z) =
az + b

cz + d
, (29)

where a, b, c, d, z ∈ C, to define a diffeomorphism on S1 it
must be constrained to be of the form

h(z) =
z − a
1− āz

. (30)

This form ensures that h(z)h̄(z) = 1 if zz̄ = 1 and has two
real-valued free parameters <(a) and =(a).

In what follows we show that for the choice =(a) = 0
and <(a) = − 1−α

1+α , the transformation h(z) is equivalent
to an NCP transform w = 2 arctan

(
α tan

(
θ
2

)
+ β

)
with

scale parameter α and offset parameter β = 0 (assuming
w, θ ∈ (−π, π)). If we define θ via z = eiθ, the goal is to
show that w defined via

eiw =
eiθ + 1−α

1+α

1 + 1−α
1+αe

iθ
, (31)

follows the NCP transformation rule

w = 2 arctan

(
α tan

(
θ

2

))
mod 2π.

We begin by expanding Equation (31) in terms of more basic
trigonometric quantities,

eiw =
eiθ + 1−α

1+α

1 + 1−α
1+αe

iθ

=
eiθ + 1−α

1+α

1 + 1−α
1+αe

iθ

1 + 1−α
1+αe

−iθ

1 + 1−α
1+αe

−iθ

=
eiθ + 2 1−α

1+α +
(

1−α
1+α

)2
e−iθ

2(cos(θ)+α2(− cos(θ))+α2+1)
(α+1)2

=

(
ei
θ
2 + 1−α

1+αe
−i θ2
)2

2(cos(θ)+α2(− cos(θ))+α2+1)
(α+1)2

=
1

2

(
(1 + α)ei

θ
2 + (1− α)e−i

θ
2

)2
cos(θ) + α2(− cos(θ)) + α2 + 1

=
2
(
cos
(
θ
2

)
+ iα sin

(
θ
2

))2
cos(θ) + α2(− cos(θ)) + α2 + 1

.

In order to isolate w, only the numerator v =

2
(
cos
(
θ
2

)
+ iα sin

(
θ
2

))2
of the expression above matters

as we are only interested in ratios of the imaginary and real
parts of this expression, tan(w) = =(v)

<(v) . The numerator
can be expanded as

2
(
cos
(
θ
2

)
+ iα sin

(
θ
2

))2
2 cos2

(
θ
2

) = −α2 tan2

(
θ

2

)
+ 2α tan

(
θ

2

)
i + 1,

from which we conclude,

tan(w) =
=(v)

<(v)
=

2α tan
(
θ
2

)
1− α2 tan2

(
θ
2

) . (32)

Using the trigonometric formula tan(2x) = 2 tan(x)
1−tan(x)2 , we

arrive at the final result

tan
(w

2

)
= α tan

(
θ

2

)
⇔

w = 2 arctan

(
α tan

(
θ

2

))
mod 2π.

I. Application: Multi-Link Robot Arm
As a concrete application of flows on tori, we consider
the problem of approximating the posterior density over
joint angles θ1,...,6 of a 6-link 2D robot arm, given (soft)
constraints on the position of the tip of the arm. The possible
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configurations of this arm are points in T6. The position rk
of a joint k = 1, . . . , 6 of the robot arm is given by

rk = rk−1 +

lk cos

∑
j≤k

θj

, lk sin

∑
j≤k

θj

,
where r0 = (0, 0) is the position where the arm is affixed,
lk = 0.2 is the length of the k-th link, and θk is the angle of
the k-th link in a local reference frame. The constraint on the
position of the tip of the arm, r6, is expressed in the form
of a Gaussian-mixture likelihood p(r6 | θ1,...,6) with two
components. The prior p(θ1,...,6) is taken to be a uniform
distribution on T6. The experimental results are illustrated
in Figure 10.

J. Application: Learning from samples
In most of the experiments shown on this paper, we trained
the models to fit a target density known up to a normalization
constant (i.e. an inference problem). In this experiment we
train our flow directly on data samples instead.

Training a flow-based model from data samples via max-
imum likelihood requires an explicit computation of the
inverse map as shown in Equation (2). To demonstrate this
is feasible with data coming from a non-trivial target density
on the sphere S2 (i.e. that would require a large number
of mixture components from simpler densities such as von
Mises), we created a dataset of samples on the sphere com-
ing from a density shaped as Earth’s continental map as
shown in Figure 11 (left).

We trained a flow built from stacking two autoregressive
flows. Each flow in the stack used circular splines and
standard splines on the interval. The model was trained to
maximize the likelihood of the dataset for 100,000 training
steps. Both splines used Ks = 80 segments. The neural
networks producing the spline parameters are the same as
for the other experiments. In Figure 11 (middle) we show
samples from the learned model overlaid on Earth’s map
and in Figure 11 (right) we show a heat map of the learned
density.
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Figure 9. Learning a non-axis-aligned density on S2 using Equations (12) to (14) with and without composing with a learnable rotation.
We compare Möbius-spline flow (MS) (Ks = 32, Km = 12), learnable rotation composed with MS (Rot ◦ MS), small MS (Ks = 3,
Km = 3) (SMS) and learnable rotation composed with SMS (Rot ◦ SMS). We observed no substantial differences between these models,
suggesting that the particular choice of axis inside the flow has no impact on performance.

Figure 10. Learning the posterior density over joint angles of a 6-link 2D robot arm. We used an autoregressive Möbius flow on the torus
T6 to approximate the posterior density of joint angles resulting in a Gaussian mixture density for the tip of the robot arm. Left: The heat
map shows the target density for the tip of the robot arm, a Gaussian mixture with two modes with centres at (−0.5, 0.5) and (0.6,−0.1).
White paths show arm configurations sampled from the learned model in angle space converted to position space. Right: Density of the
tips of the robot arm using samples from the learned model.

Figure 11. Learning a complex density from data samples using autoregressive spline flows. Left: Target density from which i.i.d. data
samples were generated. Middle: Model samples overlaid on target density; Right: Heat map of the learned density.


